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Abstract
In this article the method of continuation over inertia

parameter is used for studies of appearance nature of
low-frequent beatings in the system with pulse-phase
synchronization mechanism. It is shown that the use
of pulse-phase control on the one hand ensures global
stability of control regime and on the other hand makes
possible low-frequent beatings appearance. Even the
beatings with quasi-continuous spectrum may appear.
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1 Introduction
Frequency synthesizer is a key component of almost

any test end measurement, communication and mon-
itoring system [Chenakin, 2007]. Today frequency
synthesizers need regular improvement of technical
characteristics, functional possibilities widening, size
diminution, power requirement reduction and retun-
ing acceleration [Chenakin, 2007], [Ryabov, Yuriev,
Nemcev, 2011], [Izmailova, 2009], [Antonovskaya,
Goryunov, 2007]. Moreover the most perspective elab-
orations in the very near future apparently must be con-
nected with the synthesizers based on phase synchro-
nization use [Chenakin, 2007], for such synthesizers
are of lesser size and complexity level and have more
pure spectrum of input signal.
The principle of pulse-phase control based on num-

ber counting and phase position of control pulses is
widely used in electro-mechanics and communications
equipment [Levin, Malinovsky and Romanov, 1989].
Besides for the purposes of spectral characteristics im-
provement for stationary signal, as a rule, inertial fil-
ters are used. But also it is of utmost interest the study
of processes taking place in that sort of systems over

low-inertial filter circuits [Antonovskaya, Goryunov,
Palochkin, 2010]. The work [Goryunov, 2003] repre-
sents the attempt to obtain some qualitative knowledge
of non-local character on dynamic processes peculiari-
ties in synchronization systems using pulse-width mod-
ulation of control signal. As the example the scheme of
frequency synthesizer (FS) with pulse frequent-phase
detector and astatic filter was studied [Levin, Mali-
novsky and Romanov, 1989]. But in spite of general
methodological approach use for processes description
on the base of point mappings method, point map-
pings functions construction in correlation with engi-
neer view did not allow to divide the parameter space
into the regions of motions of different complexity. It
was the result of great difficulties over analysis.

In current paper the results of qualitative analysis
of the system from the work [Goryunov, 2003] are
described. The obtaining of qualitative results be-
came possible due to the method of continuation over
inertia parameter use [Neimark, 2004] (it was for-
mally approved in [Antonovskaya, Goryunov, 2008]
and [Antonovskaya, Goryunov, 2009]) for the systems
with broken limit cycle.

2 Mathematical Model of System and Its Qualita-
tive Analysis

The equations of FS mathematical model (MM) with
guided coordinatex over arbitrary period of control
pulses follow have a form: over switched detector out-
put

αθ̇ = g(x(τ)),
µẋ = u− x,

(0 ≤ θ ≤ 1, 0 ≤ τ ≤ 1, u = ±1)
(1)



and over not switched detector output

αθ̇ = g(x(τ)),
x(τ) = x0.

(0 ≤ θ ≤ 1, 0 ≤ τ ≤ 1)
(2)

Here dot means differentiation over indifferent timeτ
changing within the limits of standard generator (SG)
signal period,0 < µ << 1 – a-static parameter,α –
control parameter of counter (C),u – output detector
signal, x – output filter coordinate,θ – C-coordinate
(θ = 0 when C is empty andθ = 1 when it is full),
g(x) – standardized over1 (g(0) = 1) guided generator
(GG) characteristics.
Since the equations (1),(2) corresponds to the sys-

tem with variable structure with two-positional value of
control signalu, it is useful to look at three subspaces
for phase trajectoriesθ(τ), x(τ) study. That is the sub-
spaceΠ1 where the system (1) withu = +1 is defined,
the subspaceΠ3 where the system (1) withu = −1 is
defined and the subspaceΠ2 where the system (2) is
defined.
As in (1),(2) θ̇ > 0, there is no equilibrium state in

each subspace. That is why there may exist stationary
motions of cyclic type only. Namely stationary mo-
tions with representing motion points (RMP) crossing
subspaces partly or fully may exist. In the case of ideal
a-statism (µ = +0) and the stability inΠ1 andΠ3 area
of subspacex = u = const stability the phase trajec-
tory of each cyclic motion for smallµ values is located
in O(

√
µ)-neighborhood of non-disgraced motion [An-

dronov, Vitt and Haykin, 1959]. This fact gives the
possibility reason for the method of method of contin-
uation over inertia parameterµ.
As the transfer from one subspace to another is de-

fined by the moment of RMP coming to one of the sec-
tionsθ = 1 or τ = 1 and is simply found from (1),(2),
it may be proved that stationary motions are realized
by means of RMP consequent passing over the circuit
Π1 ↔ Π2 → Π3 ↔ Π2 → Π1 and may be stud-
ied with the help of point mappingT properties study.
Point mappingT is the composition of point mappings
T+ andT−.
The point mappingT+ sets up the connection be-

tween the initial point(x0, θ0) of the sectionτ = 0
in Π1−subspace and the following point(x̄, τ̄) of the
sectionθ = 0 in Π3−subspace and is described by cor-
respondence function of the type:

x̄ = +1,
τ̄ = (α/g(1))(m1 + 2− θ0)−m1,

(3)

where

0 ≤ 1− ((g(1)/α)− 1)(m1 + 1) ≤ θ0 ≤
≤ 1− ((g(1)/α)− 1)m1,

m1 = ceil[(1− θ0)/((g(1)/α)− 1)].
(4)

Here the operation”ceil” is used, it means carrying
over the value to the bigger nearest whole number.
The valuem1 in (3) defines the number of return mo-

tions fromΠ2 to Π1 arising in the course of phase re-
count for the pulses controlling of comparison device
state until the situation when RMP inΠ2 comes from
the sectionθ = 0 toθ = 1 and then leave for the section
θ = 0 of Π3−subspace.
The point mappingT− sets up the connection be-

tween the initial point(x0, τ0) of the sectionθ = 0
in Π3−subspace and the following point(x̄, θ̄) of the
sectionτ = 0 in Π1−subspace and is described by cor-
respondence function of the type:

x̄ = −1,
τ̄ = (g(−1)/α)(m2 + 2− τ0)−m2,

(5)

where

0 ≤ 1− ((α/g(−1))− 1)(m2 + 1) ≤ τ0 ≤
≤ 1− ((α/g(−1))m2,

m2 = ceil[(1− τ0)/((α/g(−1))− 1)].
(6)

The valuem2 in (5) defines the number of return mo-
tions fromΠ2 to Π3 arising in the course of phase re-
count for the pulses controlling of comparison device
state until the situation when RMP inΠ2 comes from
the sectionτ = 0 to τ = 1 and then leave for the sec-
tion τ = 0 of Π1−subspace.
It is necessary to mention, that form1,m2 6= 0 due

to return motions the graphs of correspondence func-
tions (3),(5) are non-continuous mappings of straight
line to straight line of saw form. Those mappings
may be characterized by gap number. That is due to
(3),(5) by the valuesM1 = maxθ0 m1(θ0) andM2 =
maxτ0 m1(τ0). Corresponding values ofα are

α(M1) = (M1 + 1)g(+1)/(M1 + 2),
α(M2) = (M2 + 2)g(−1)/(M2 + 1),

(M1,M2 = 1, 2, ...).
(7)

As dα(M1)/dM1 > 0, the valuesα(M1) are sit-
uated between the minimal valueα(M1 = 0) =
g(1)/2 and the maximal valueα(M1 = ∞) = g(1).
dα(M2)/dM2 < 0, so the valuesα(M2) are situated
between the maximal valueα(M2 = 0) = 2g(−1) and
the minimal valueα(M2 = ∞) = g(−1), which is
also controllability boundary of system forα < 1.
SinceT−mapping is composed by the mappingsT+

andT− it may be characterized by a pair of numbers
which regulative correlation arises when taking into ac-
count the properties of characteristicg(x) of control
object.Thus for the characteristicsg(x) = 1 + Sx,
whereS is characteristics slope, the boundariesα =
α(M1) andα = α(M2) for different M1,M2 values
form two ”fans” on the plainα, S. The ”fan” for pa-
rameterM1 is unrolled about the point(0,−1) in the



limits of straight linesα = 1 + S andα = (1 + S)/2.
The ”fan” for parameterM2 is unrolled about the point
(0, 1) in the limits of straight linesα = 1 − S and
α = 2(1− S).
In each region formed by pointed boundaries corre-

spondence functions (3),(5) graphs are of a concrete
type and allow full qualitative study of the mapping
T by Lamerey diagram (by correspondence functions
graphs representation over one diagram [Andronov,
Vitt and Haykin, 1959]).
Taking into account (3),(5) the composition ofT+ and

T− mappings has press coefficientg(−1)g(+1) < 1.
That is globally stable cycle consisting of fixed points
of the mappingT always exists. Wheng(x) = 1 +
Sx the plainα, S is divided into countable number of
subregions and in each the cycle of definite multiplicity
exists. If correspondence functions (3),(5) graphs are
intersected on the sector of continuity then the simple
fixed point of the mappingT exists. On the plainα, S
it exists everywhere except the regions with the cycles
of multiplicity 2 and higher which are given by non-
equalities: for parameterm1

αp(m1) ≤ α ≤ ᾱp(m1),
αp(m1) = (1+m1)g(1)+g(−1)

2+m1
,

ᾱp(m1) = g(1) (1+m1)g(1)+2g(−1)
(2+m1)g(1)+g(−1) ,

(8)

for parameterm2 (α ≤ 1)

αp(m2) ≤ α ≤ ᾱp(m2),
αp(m1) = g(−1) (1+m2)g(1)+g(−1)

(2+m2)+2g(−1) ,

ᾱp(m1) = (2+m2)g(−1)g(+1)
(1+m2)g(−1)g(+1) .

(9)

Over intersection of such intervals located on the
plain α, S between corresponding boundaries (7) con-
sequently the cycles of high, low (T 2) and once again
high multiplicity appear.
Also it is necessary to mention that forS = 0

αp(m1) = ᾱp(m1) = αp(m2) = ᾱp(m2) = 1. So
on the plainα, S all the existence intervals for the cy-
cles of high multiplicity press to a point(0, 1) when
S → 0. When S = 1 αp(m2) = ᾱp(m2) = 0
and αp(m1) = ᾱp(m1) = 2(1 + m1)/(2 + m1),
so for m = 0, 1, 2, ... αp(m1) = ᾱp(m1) form the
consequence1; 4/3; 3/2; ... with the limit α = 2.
And because of the fact thatsign(αp(m1) − 1) =
signS, sign(1 − ᾱp(m2)) = signS, existence re-
gions for multiple cycles withm1−index are situ-
ated on the plainα, S over α > 1 (except the case
ofm1 = 0, when the left boundary of the region is
α = 1, 0 ≤ S ≤ 1) and existence regions for multiple
cycles withm2−index are situated on the plainα, S
over α < 1. Also ∂αp(m1)/∂m1, ∂ᾱp(m1)/∂m1 >
0, ∂αp(m2)/∂m2, ∂ᾱp(m2)/∂m2 < 0 and for eachS
the boundaries of existence regions for the cycles move
to the right whenm1 increase and to then left whenm2

increase.

3 Conclusion
Qualitative system analysis shows that on the one

hand the use of pulse-phase control principle guar-
antees global stability of control regime and on the
other hand makes possible low-frequent beatings ap-
pearance [Leonov, 1959]. Even the beatings with
quasi-continuous spectrum may appear. Thus as in FS
dynamics the countable number of sub-ranges exists
where the phase of control pulses appearance is mod-
ulated by the cycles of low-frequent reiteration the use
of frequent-phase detection ensures the uniqueness and
stability of limit trajectory in wide frequency range, but
for definite sub-ranges of the interval of conrollability
makes of strict demands on filtration of low-frequency
specter components for input signal of GG.
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