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Abstract
This paper addresses the numerical resolution of a

state transfer problem in a single spin qubit using three
different Optimal Control algorithms: Krotov algo-
rithm, Rabitz algorithm, used on Quantum Molecular
Dynamics, and a new algorithm that we propose. In the
problem of finding the optimal control in the spin trans-
ference between two given states with a minimal cost
in Nuclear Magnetic Resonance (NMR), we present
the application of the two algorithms mentioned above
to control a quantum system with one varying exter-
nal electromagnetic field. Then, we propose a new al-
gorithm, inspired in the Maday-Turinici algorithm, to
compute the optimal controls for a system with two
varying external electromagnetic fields, integrating the
adjoint equations of the Pontryagin Maximum Princi-
ple (PMP). We compare the numerical results with the
analytic solutions known for both problems and ana-
lyze the performance of these algorithms.

Key words
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1 Organization of the Paper
In the next section we give an introduction to the ba-

sic concepts used in Quantum Optimal Control applied
to Nuclear Magnetic Resonance. In the third section
we establish the optimal control problem to be solved:
controlling a single spin immersed in a static electro-
magnetic field and an external radio frequency mag-
netic field, with a minimal cost. In the first subsection
we treat a system with a single external radio frequency
magnetic field along the Y axis, we present the algo-
rithm of H. Rabitz et al. and apply it to obtain the
optimal control so that the system performs a unitary
transformation and compute the corresponding cost. In

the following subsection we apply the algorithm of V.
F. Krotov et al. to the same system and obtain the opti-
mal control and the corresponding cost for the realiza-
tion of that unit transformation. In the fourth section
we treat the problem with two varying external radio
frequency magnetic fields along the X and Y axes. We
have devised a general algorithm based on the two al-
gorithms presented above and the Maday-Turinici al-
gorithm. We get the optimal controls in this problem
and the corresponding cost. We compar of the results
with the analytic solutions for both problems.

2 Introduction
A sample is placed in a uniform and longitudinal

static magnetic field Bz in the direction of the Z axis,
aligning the magnetic moments of this sample. Then,
it is exposed to variable radio frequency fields (r.f.)
along the X-Y axes, ux(t), uy(t), absorbing the energy
through a sequence of transverse magnetic pulses. The
total magnetic field to which the sample is subjected is

B(t) = ux(t)⃗ı+ uy(t)ȷ⃗+Bz k⃗ (1)

When the magnetic moment vector of the system
is transferred to the XY plane, the sequence of
transverse magnetic pulses is stopped, causing the
magnetic moment vector to precess. Repetitions of
this process produce fluctuations in Bz and eventually,
decoherence. The pulse sequence should be as short
as possible to minimize the effects of relaxation, to
optimize the sensitivity to the experiment and the
contrast of the obtained image. This is achieved by
controlling the sequence of pulses that create a unitary
transformation in the shortest possible time. For
Control Theory the minimization in time of a sequence
of pulses equals the minimization of lengths of trajec-
tories of vector states (in homogeneous spaces).
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A quantum control system describes the dynamics of
a system like an n-level quantum system, governed by
the Schrödinger equation for a pure state (we set ~ = 1)

d

dt
ψ⃗(t) = −iH(u(t))ψ⃗(t) (2)

where the state ψ⃗ : [0, T ] → C2 is a vector represen-
ting the unitary ket |ψ⟩, T ∈ R is the duration oh the
process, the control u : [0, T ] → R is the external mag-
netic field and the energy of the system is represented
by the Hamiltonian H(t) that, in our case, is the inter-
action of the spin angular momentum with the external
magnetic field. So, we can write

H(t) = −γS ·B(t) (3)

where S = sx⃗ı + sy ȷ⃗ + sz k⃗ is the spin angular mo-
mentum operator and γ is the gyromagnetic ratio of the
system (i.e. the proportionality constant between the
magnetic momentum and the angular moment). There-
fore

H(u(t)) = −γszBz − γsxux(t)− γsyuy(t) (4)

We study the simplest control system of a −1
2 spin

particle interacting with the magnetic field, neglecting
other interactions with the system. We use the approach
adopted on [D’Alessandro, 2001]. Rescaling the time
and denoting −γszBz = Sz , −γsx = Sx and −γsy =
Sy , the state vector is written as |ψ(t)⟩ = α|+⟩+β|−⟩,
where |+⟩ and |−⟩ are the orthonormal eigenvectors
corresponding to eigenvalues +~

2 and −~
2 , respectively,

of Sz . So, in the {|+⟩, |−⟩} basis, the matrix represen-

ting Sz is Sz =

(
−i 0
0 i

)
. In the same way, we have

Sx =

(
0 −i
−i 0

)
, Sy =

(
0 −1
1 0

)
.

A geometric representation for a −1
2 spin quantum

system is the Bloch sphere SB ⊂ R3. We can observe
the evolution of the state of a single qubit as a trajec-
tory on the Bloch sphere. We use the Hopf projection
Π : S3 ⊂ C2 → SB,

Π :

(
ψ1

ψ2

)
7→

 −2Re(ψ∗
1ψ2)

2Im(ψ∗
1ψ2)

∥ψ1∥2 − ∥ψ2∥2

 (5)

with ψ∗
1 the conjugate of ψ1 in C.

3 The Model
Let us consider a single particle with spin −1

2 . The
optimal control problem for the pure state is:

d

dt
ψ⃗(t) = (Sz + ux(t)Sx + uy(t)Sy)ψ⃗(t)

ψ⃗(0) =

(
1
0

)
 (6)

where ψ⃗(t) = (ψ1(t), ψ2(t)) : [0, π√
2
] → C2, the

Lebesgue integrable function u : [0, π√
2
] → R repre-

sents the intensity of the laser pulsed control field and
the final state

ψ⃗(
π√
2
) =

(
0
i

)
(7)

minimizing the following cost functional

J(u) = ⟨(ψ)t( π√
2
)|O |ψ( π√

2
)⟩+

∫ π√
2

0

(u2x(t)+u
2
y(t)) dt

(8)
where O is the observable with target information:

O = ψ⃗(
π√
2
)ψ⃗t(

π√
2
) (9)

which will allow an optimal evolution of the system.
The first term in the cost functional (8) represents the
fidelity component of the signal and the second one is
the pulse energy component.
We have Lie{Sz, Sx, Sy} = su(2), so the optimal

control for the system (6) with the final condition (7)
exists [D’Alessandro, 2001].
We transform the system (6) into a real one:

d

dt
x⃗ = (S̄z + ux(t)S̄x + uy(t)S̄y)x⃗

x⃗(0) =


1
0
0
0

 , x⃗( π√
2
) =


0
0
0
1


(10)

where S̄z =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 , S̄y =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ,

S̄x =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 , x⃗ =


x1
x2
x3
x4

 =


Re(ψ1)
Re(ψ2)
Im(ψ1)
Im(ψ2)


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3.1 System Subjected to a One r.f. Magnetic Field
In this section we discuss the case where the system

is subjected to a varying radio frequency magnetic field
along the Y -axes, uy(t), denoted u(t). Let us consider
the control problem

d

dt
x⃗ = (S̄z + u(t)S̄y)x⃗

x⃗(0) =


1
0
0
0


min → J(u) = ⟨(x⃗ t( π√

2
)|O |x⃗( π√

2
)⟩+

∫ π√
2

0 u2(t) dt

(11)
also we use an adjoint state or costate (Lagrange mul-
tiplier) λ(t), which satisfies

d

dt
λ⃗ = (S̄z + u(t)S̄y)λ⃗ (12)

3.1.1 Numerical Approximation The develop-
ment of monotonic algorithms applied to Quantum
Control Theory generates approximative procedures to
get pulse sequences in a state transfer problem with a
single spin. Several algorithms exist to compute the
approximate solution of (11) and (12), as those devel-
oped by V. F. Krotov, W. Zhu and H. Rabitz, or Y. Ma-
day and G. Turinici, [Krotov, 1988], [Rabitz, 1998],
[Maday and Turinici, 2003]. Those procedures com-
pute teratively sequences of states, controls and ad-
joint functions, {ψ⃗(k)(t), u(k)(t), x(k)(t), λ⃗(k)(t)}k∈N
solving repeatedly the Schrödinger equation to approx-
imate the solution {ψ⃗(t), u(t), x(t), λ⃗(t)}.

3.1.2 Optimization Algorithm I In order to solve
the system (11), we consider the following algorithm
due to H. Rabitz et al. [Maday and Turinici, 2003].
The recursion formulas, k ≥ 1, are:

d

dt
x⃗(k) = (S̄z + u(k)(t)S̄y)x⃗

(k)

x⃗(k)(0) =


1
0
0
0

 (13)

u(k)(t) = −λ(k−1)(t)S̄yx⃗
(k)(t) (14)

d
dt λ⃗

(k) = v(k)(t)S̄yλ⃗
(k)

λ⃗(k)( π√
2
) =


0
0
0

xk4(
π√
2
)

 (15)

v(k)(t) = −λ(k)(t)S̄yx⃗
(k)(t) (16)

So, the procedure (Algorithm I) for finding the optimal
control u(t) and minimizing the cost J(u) is the fol-
lowing:

1. Choose the initial λ(0)(t).
2. Replace λ(0)(t) in the equation (14).
3. Replace u(1)(t) in the equation (13).
4. Integrate forward (13) to obtain x(1)(t) from the

initial state x(1)(0).
5. Obtain u(1)(t) from (14).
6. Replace x(1)(t) in the equation (16) to obtain v(1)

in terms of λ(1)(t).
7. Replace λ(1)(t) in the equation (15).
8. Integrate backwards (15) from the final state
x(T ) = λ1( π√

2
) to get λ(1)(t) .

9. Obtain v(1)(t), replacing λ(1)(t) on (16).
10. {v(k+1)(t), λ(k+1)(t)} → {v(k)(t), λ(k)(t)}
11. {x(k+1)(t), u(k+1)(t)} → {x(k)(t), u(k)(t)}
12. Continue until convergence

We chose as the initial costate λ(0)(t) each of the fol-
lowing vectors:

{
t
0
0
0

 ,


10
10
10
10

 ,


t
t2

10
10

 ,


t
20
20
20

} (17)

In the first selection the process converged and the cost
functional was J = 0.59545 for k = 100. In the sec-
ond one, the process converged and the cost functional
was J = 0.56956 for k = 100. In the third selec-
tion the process was convergent also. We obtained the
optimal control and the cost was again J = 0.59545
for k = 100. In the fourth selection the process was
convergent. We obtained the optimal control shown
in figure (2) and the cost was again J = 0.59545 for
k = 100.

3.1.3 Optimization Algorithm II We consider
the following algorithm due to V. F. Krotov et al. men-
tioned in [Maday and Turinici, 2003]. The recursion
formulas, k ≥ 1, are:

d

dt
x⃗(k) = (S̄z + u(k)(t)S̄y)x⃗

(k)

x⃗(k)(0) =


1
0
0
0

 (18)

u(k)(t) = −λ(k−1)(t)S̄yx⃗
(k)(t) (19)
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Figure 1. Optimal control u(t) for one external electromagnetic
field. Rabitz’s algorithm. Numerical solution (blue continuous line)
for k=100. Analytical solution (red dotted line).

Figure 2. Optimal control u(t) for one external electromagnetic
field. Krotov’s algorithm. Numerical solution (blue continuous line)
for k=100. Analytical solution (red dotted line).

d
dt λ⃗

(k) = u(k)(t)S̄yλ⃗
(k)

λ⃗(k)( π√
2
) =


0
0
0

xk4(
π√
2
)

 (20)

The procedure (Algorithm II) to compute the optimal
control u(t) minimizing the cost J(u) is the following:

1. Choose the initial λ(0)(t).
2. Replace λ(0)(t) in the equation (19).
3. Replace u(1)(t) in the equation (18).
4. Integrate forward (18) to obtain x(1)(t) from the

initial state x(1)(0).
5. Obtain u(1)(t) .
6. Replace x(1)(t) and u(1)(t) in the equation (20).
7. Integrate backwards (20) from the final state
x(T ) = λ1( π√

2
) to get λ(1)(t) .

8. {λ(k+1), x(k+1), u(k+1)} → {λ(k), x(k), u(k)}

Figure 3. State transfer trajectory from |0⟩ to |1⟩ on the Bloch
sphere, using the optimal control in figure 1 for Rabitz algorithm.

Figure 4. State transfer trajectory from |0⟩ to |1⟩ on the Bloch
sphere, using the optimal control in figure 2 for Krotov algorithm.

9. Continue until convergence

As in the previous algorithm, we chose as the costate
λ(0)(t) the vectors shown in (17). In the first choice
of the costate the process was convergent and the cost
functional was J = 1.2999 for k = 100. In the second
one, the process was convergent and the cost functional
was J = 1.2992 for k = 100. In the third selection
the process was convergent also. We have obtained the
optimal control and the cost was again J = 1.2992
for k = 100. In the fourth selection the process was
convergent. We obtain the optimal control in the figure
(2) and the cost was again J = 1.2992 for k = 100.
We represent the trajectories of the states transfer on

the Bloch sphere SB, corresponding to the optimal con-
trols obtained, figures (3), (4).
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Finally, we mention a theorem about the monotonic
convergence of the algorithms I and II.

Theorem 1 [Maday-Turinici]

The algorithms I and II converge monotonically:

J(u(k+1)) ≥ J(u(k)) ∀k ≥ 1, k ∈ N (21)

where

J(u(k)) = ⟨(x⃗(k))t( π√
2
)|O |x⃗(k)( π√

2
)⟩+

∫ π√
2

0

(u(k))2(t) dt

(22)
For a demonstration, see [Maday and Turinici, 2003]

Remark.
The rigorous proof of the convergence
{u(k)(t), x⃗(k)(t)} → {u(t), x⃗(t)} is still an open
problem [Maday and Turinici, 2003].

4 System Subjected to Two r.f. Magnetic Fields
In this section we consider the case where two time

varying external electromagnetic fields, ux(t), uy(t),
act along the X and Y-axes. We have the control pro-
blem

d

dt
x⃗ = (S̄z + ux(t)S̄x + uy(t)S̄y)x⃗

x⃗(0) =


1
0
0
0

 (23)

minimizing the cost functional:

J(ux, uy) = ⟨(ψ)t( π√
2
)|O |ψ( π√

2
)⟩+

∫ π√
2

0

(u2x+u
2
y) dt

(24)

4.1 Optimization Algorithm III
We devised and tested an algorithm, inspired on

[Maday and Turinici, 2003] and based on those of
algorithms of H. Rabitz and V. F. Krotov which
unifies and generalizes them for the case of two
controls. Given four constants δ1, δ2, η1, η2,∈

Figure 5. Evolution of the cost functional for Rabitz’s algorithm
(dotted line with circles). The fidelity component of the cost func-
tional (dotted line with triangles). The pulse energy component of
the cost functional (dotted line with squares).

Figure 6. Evolution of the cost functional for Krotov’s algorithm
(dotted line with circles). The fidelity component of the cost func-
tional (dotted line with triangles). The pulse energy component of
the cost functional (dotted line with squares).

(0, 2), λ0(t), v0(t), w0(t) and k ≥ 1 let be

d
dt x⃗

(k) =


0 −u(k)y (t) −1 −u(k)x (t)

u
(k)
y (t) 0 −u(k)x (t) 1

1 u
(k)
x (t) 0 −u(k)y (t)

u
(k)
x (t) −1 u

(k)
y (t) 0

 x⃗(k)

x⃗(k)(0) =


1
0
0
0




(25)
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u(k)y = (1−δ1)v(k−1)(t)+δ1λ
t(k−1)


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 x⃗(k)

(26)

u(k)x = (1−δ2)w(k−1)(t)+δ2λ
t(k−1)


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 x⃗(k)

(27)

d
dtλ

(k) =


0 −v(k)(t) −1 −w(k)(t)

v(k)(t) 0 −w(k)(t) 1
1 w(k)(t) 0 −v(k)(t)

w(k)(t) −1 v(k)(t) 0

λ(k)

λ(k)( π√
2
) =


0
0
0

x
(k)
4 ( π√

2
)




(28)

v(k)(t) = (1− η1)u
(k)
y + η1 λ

t(k)


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 x⃗(k)

(29)

w(k)(t) = (1−η2)u(k)x +η2 λ
t(k)


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 x⃗(k)

(30)
the recursion equations. The following algorithm finds
the optimal controls ux(t), uy(t) of the problem (10),
minimizing the cost J(ux, uy):

1. Select the initial λ0(t), v0(t), w0(t).
2. Select the values δ1, δ2, η1, η2,∈ [0, 2].

3. Replace δ1, λ0(t), v0(t) in (26) to get u(1)y (t).
4. Replace δ2, λ0(t), w0(t) in (27) to get u(1)x (t).
5. In (29) replace u(1)y (t) and η1.
6. In (30) replace u(1)x (t) and η2.
7. Integrate (25) forward to get x(1)(t), using u(1)y (t)

and u(1)x (t).
8. Integrate (28) backwards to get λ(1)(t), using
u
(1)
y (t) and u(1)x (t).

9. Replace x(1)(t) in the equation for u(1)(t).
10. {v(k+1), w(k+1), λ(k+1)} → {v(k), w(k), λ(k)}
11. {u(k+1)

y (t), u
(k+1)
x (t)} → {u(k)y (t), u

(k)
x (t)}

Figure 7. State transfer trajectory from |0⟩ to |1⟩ on the Bloch
sphere, using the optimal controls in figure 8 for algorithm III.

Figure 8. Optimal controlsux(t),uy(t), for two external electro-
magnetic fields. Unified algorithm. Numerical solutions (blue con-
tinuous lines) for k=100. Analytical solutions (red dotted lines).

12. Continue until convergence

We start with the selection δ1 = 1
2 , δ2 = 1

2 , η1 =
3
2 , η2 = 3

2 , v
(0) = cos t, w(0) = 1. The process

was convergent at k = 15 for the previous selection
and the cost was J = 1.112498 for k = 100. In
a second selection δ1 = 1

2 , δ2 = 3
2 , η1 = 3

2 , η2 =
1
2 , v

(0) = cos t, w(0) = cos t, the process was conver-
gent at k = 15. We obtain the optimal control in figure
(8) and the cost was again J = 1.112498 for k = 100.
Finally, we obtain the optimal trajectory from |0⟩ to
|1⟩ on the Bloch sphere SB, figure 7, corresponding to
algorithm III. We have the following result:

Theorem 2
The algorithm III converges monotonically for
δ1, δ2, η1, η2 ∈ (0, 2), i.e., if

J∆ := J(u(k+1)
x , u(k+1)

y )− J(u(k)x , u(k)y )

then J∆ ≥ 0.



CYBERNETICS AND PHYSICS, VOL. 6, NO. 4 237

Proof: The proof is a generalization of that of Theo-
rem 1.

J∆ = ⟨(x⃗(k+1))t(T )|O |x⃗(k+1)(T )⟩

+

∫ T

0

(
(u(k+1)

x )2 + (u(k+1)
y )2

)
dt

− ⟨(x⃗(k))t(T )|O |x⃗(k)(T )⟩

−
∫ T

0

((u(k)x )2(t) + (u(k)y )2(t)) dt

= ⟨((x⃗(k+1))t − (x⃗(k))t)(T )|O |(x⃗(k+1) − x⃗(k))(T )⟩
+ 2Re⟨(x⃗(k+1))t(T )− (x⃗(k))t(T )|O |x⃗(k)(T )⟩

+

∫ T

0

(
(u(k+1)

x )2 − (u(k)x )2 + (u(k+1)
y )2 − (u(k)y )2

)
dt

Now, we have

2Re⟨(x⃗(k+1) − x⃗(k))(T )|O |x⃗(k)(T )⟩ =
2Re⟨(x⃗(k+1) − x⃗(k))(T ), λ⃗(k)(T )⟩ =
2Re

∫ T

0

(
⟨(Sz + uk+1

x Sx + uk+1
y Sy)x⃗

(k+1)(t)−
(Sz + ukxSx + ukySy)x⃗

(k)(t), λ⃗(k)(t)⟩+
⟨(x⃗(k+1) − x⃗(k))(t), (Sz + vkSy + wkSx)λ⃗

(k)(t)⟩
)
dt =

2Re
∫ T

0

(
⟨Szx

k+1, λ⃗(k)(t)⟩+ uk+1
x ⟨Sxx

k+1, λ⃗(k)(t)⟩+
uk+1
y ⟨Syx

k+1, λ⃗(k)(t)⟩ − ⟨Szx
k, λ⃗(k)(t)⟩−

ukx⟨Sxx
k, λ⃗(k)(t)⟩ − uk+1

y ⟨Syx
k, λ⃗(k)(t)⟩+

⟨xk+1, Szλ⃗
(k)(t)⟩+ vk⟨xk+1, Syλ⃗

(k)(t)⟩+
wk⟨xk+1, Sxλ⃗

(k)(t)⟩ − ⟨xk, Szλ⃗
(k)(t)⟩−

vk⟨xk, Syλ⃗
(k)(t)⟩ − wk⟨xk, Sxλ⃗

(k)(t)⟩
)
dt =

2Re
∫ T

0

(
uk+1
x

(uk+1
x −(1−δ2)w

k

δ2

)
− ukx

(wk−(1−η2)u
k
x

η2

)
+

uk+1
y

(uk+1
y −(1−δ1)v

k

δ1

)
− uky

(vk−(1−η1)u
k
y

η1

)
+

vk
(uk+1

y −(1−δ1)v
k

δ1

)
− vk

(vk−(1−η1)u
k
y

η1

)
+

wk
(uk+1

x −(1−δ2)w
k

δ2

)
− wk

(wk−(1−η2)u
k
x

η2

))
dt

Therefore, the value of J∆ is

⟨(x⃗(k+1))t − x⃗(k))t|O |x⃗(k+1) − x⃗(k)⟩(T )
+
∫ T

0
(( 2

δ1
− 1)(u

(k+1)
y − v(k))2 + ( 2

η1
− 1)(v(k) − u

(k)
y )2

+( 2
δ2

− 1)(u
(k+1)
x − w(k))2 + ( 2

η2
− 1)(w(k) − u

(k)
x )2)dt

≥ 0

5 Concluding Remarks
In the case of the control with one external electro-

magnetic field, the analytic solution [D’Alessandro,
2001] is u(t) = 1.21cn(2.49 t − 1.0, 0.487), which
was found using the Pontryagin’s Maximum Principle
[Pontryagin et al., 1962], defining two auxiliary
controls and carrying up the system (11) to one of the
Duffing oscillator types. Solving that system, the form
of the solution is a Jacobi elliptic function. We can
observe in figure (1) that the Rabitz’s algorithm I has
a better performance for finding the optimal control

Figure 9. Evolution of the cost functional for two external elec-
tromagnetic fields (dotted line with circles), unified algorithm. The
fidelity component of the cost functional (dotted line with triangles).
The pulse energy component of the cost functional (dotted line with
squares).

in this case, in contrast, with Krotov’s algorithm II
that has a poor performance, figure (2). In figures
(5), (6) we show the evolution of the cost functional
and their split in fidelity and pulse energy, for one
external electromagnetic field with Rabitz’s algorithm
I and Krotov’s algorithm II, respectively. In the case
of Krotov’s algorithm II we note, figure (6), that
the cost functional converges to the expected value
(J=1.312828). This is not the case for the Rabitz
algorithm I, figure (5). For two external electromag-
netic fields, the analytic solution, [D’Alessandro,

2001], ux(t) = −1

2
cos(

2π

3
t− (

√
2− 1)

π√
2
),

uy(t) = −1

2
sin(

2π

3
t− (

√
2− 1)

π√
2
) was found

using again the equations of PMP. We can observe in
figure (8) that the algorithm III has a good performance
for finding the optimal controls in this case. In figure
(9) we show the evolution of the cost functional and
their split in fidelity and pulse energy, for two external
electromagnetic fields with our unified algorithm.
Note that the cost functional does not converge to the
expected value (J=1.543119).

6 Conclusions
In this paper we have addressed the problem of find-

ing the optimal control corresponding to the minimal
time to perform a unitary spin transition from the state
1
2 to the state − 1

2 , subjected to a minimal cost, in a two-
level quantum system. We have considered one or two
time varying external electromagnetic fields along the
Y axes, and the X and Y -axes, respectively. In the first
case we have implemented two monotonic convergent
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algorithms, devised by H. Rabitz et al. and V. F. Krotov
et al. , respectively, for their application in the problem
highlighted. The corresponding optimal control and the
minimum cost were calculated. The results were com-
pared with the analytical solution in each case: the min-
imum value of the cost is close to that obtained in re-
ports like [D’Alessandro, 2001]. We have obtained the
state trajectory from |0⟩ to |1⟩ on the Bloch sphere, us-
ing the optimal control for algorithm I and algorithm II.
In the second case we have devised and implemented a
new algorithm, which converges rapidly to the known
analytical solutions. This strategy yields good perfor-
mances in our case-study. The minimum cost was cal-
culated, but this numerical result was far of the analytic
result, nevertheless, the state trajectory from |0⟩ to |1⟩
on the Bloch sphere, using the optimal controls for al-
gorithm III, is the best.
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