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Abstract
In this paper, a switching control approach is stud-

ied with applications to active vibration isolation. The
control design is based on the concept of input-to-state
stability of the resulting discontinuous feedback sys-
tem with respect to disturbances. The switching con-
trol strategy demonstrates improved disturbance rejec-
tion under feedback combined with a small sensitivity
to noise in the absence of such feedback. Herein the
control effort needed to achieve improved performance
is substantially reduced. To access the performance of
the closed-loop system, the control scheme is tested on
a commercially available isolation system.
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1 Introduction
In high-precision motion systems, vibration isolation

is used to isolate (sub-)systems from environmental
disturbances such as floor vibrations and acoustic ex-
citations. Examples include electron microscopes for
nano-scale imaging and wafer scanners for the man-
ufacturing of integrated circuits. In these systems,
vibration isolation performance is obtained both pas-
sively and actively. Herein active vibration isolation
addresses both feed-forward and feedback control de-
sign. In terms of feedback control, the discrimina-
tion between high-frequent disturbances for which the
isolated system is sensitive and low-frequent distur-
bances for which it is not (Hrovat, 1997) is key to
isolation performance. The additional discrimination
between small-amplitude steady-state responses and
large-amplitude transients provides the means to im-
prove this performance even further.
Envisioning such improvements starts with the obser-

vation that passive isolation typically relates to steady-
state operation,i.e., the kind of isolation for which

the isolator is designed to achieve performance. Only
in the incident of having large-amplitude transient re-
sponses (and corresponding disturbances) active con-
trol is actually needed to improve upon the error re-
sponse. In fact, the injection of additional (measure-
ment) noise resulting from closing the loop is largely
unnecessary and undesirable in steady-state. It can be
avoided by adopting the following switching control
strategy: feedback control is switched on only when
the system’s response exceeds a pre-defined thresh-
old value. Hence a further increase of the transient
response is avoided but at the cost of an increased
(measurement) noise sensitivity. Below the thresh-
old value, the control is switched off. This keeps the
steady-state response limited in amplitude whereas the
high-frequency isolation properties corresponding to
the passive isolator design remain valid. Moreover,
the control effort is kept small and so is the injec-
tion of noise by closing the loop. A comparable strat-
egy is known to improve upon the disturbance rejec-
tion properties of optical storage drives, see (Baek,et
al., 2006; Van de Wouw,et al., 2007). The approach in
this paper is different because of the discontinuous na-
ture of the switching (Liberzon, 2003), which requires
a careful analysis of the resulting closed-loop system
as it is known that favorable properties (e.g., stability)
are not always maintained in discontinuous closed-loop
systems. In the problem of vibration isolation consid-
ered here, we will prove that the desirable properties
of the subsystems based on passive isolation and active
control remain in the switched system. We will use the
concepts of input-to-state stability (Sontag, 1995) and
extensions of absolute stability theory (Yakubovich,et
al., 2004; Materassi,et al., 2007) to show this.
The paper is further organized as follows. In Sec-

tion 2, a representative vibration isolation system is dis-
cussed. In Section 3, the switching control strategy is
introduced as a means to improve upon isolator perfor-
mance by active damping. In Section 4, stability prop-
erties induced by this strategy are studied. In Section
5, experimental results are discussed, and in Section 6,



a brief overview of the key observations is presented.

2 Vibration Isolation
Vibration isolation is used, for example, in the wafer

scanner industry where a so-called metrology frame is
isolated from environmental disturbances. This metrol-
ogy frame contains interferometers consisting of lasers,
mirrors, and other measuring devices, and provides a
position reference for nano-scale position control of the
wafer scanner’s main motion control systems, see (Van
de Wal,et al., 2002) for a brief system description.
An example of such a metrology frame, which is used

as an experimental benchmark in this study, is depicted
in Figure 1. It shows a payload mass of 1000 kg

1000 kg payload

isolator

6��1PPi

Lorentz actuator
�
�
�
�
�
��

z

xy

Figure 1. Vibration isolation system.

which is supported by four pneumatic isolators. The
natural frequency of the passive system in the verti-
cal z-direction is 3.24 Hz. Because the passive system
is weakly damped, six Lorentz actuators and six geo-
phones – the latter for velocity measurement – provide
the means to actively damp the system; three of each
in both the horizontal and the vertical direction. In the
absence of such active damping, the behavior of the
isolation system is shown in Figure 2, which involves
a typical measurement series. Through time-frequency
analysis, the figure shows the scaled magnitude of the
z-velocity response of the payload both in time- and
frequency-domain. The magnitude is linearly scaled
from deep red (small) to deep blue (large). In the re-
sponse, large non-stationary oscillations near 3.24 Hz
are clearly recognized.

3 Active Damping by Switching Control
To improve the payload response, we reside to active

damping by switching control. Herein the simplified
control representation of Figure 3 is used where the
passive isolation system, represented by the transfer
functionH(s), is controlled using a control forcefc.
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Figure 2. Time-frequency analysis of the measuredz-velocity

without active damping.
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Figure 3. Simplified schematic of a controlled vibration isolator

along with a mechanical representation.

A fourth-order isolator model is given by

H(s) =
m2s

2 + b12s + k12

m1m2s4 + (m1 + m2)(b12s3 + k12s2)
,

(1)

with m1 = 950 kg, m2 = 50 kg, b12 = 3 · 102 Nsm−1,
and k12 = 1.75 · 106 Nm−1. The isolation system
is subjected to environmental disturbancesd (floor vi-
brations) andfd (acoustic excitations) and a controller
force fc. Given the payload velocitẏy, the controller
transfer functionC(s) from ẏ to fc is given by

C(s) = kd

{

s

s + ωhp

}2 {

ωlp

s + ωlp

}2

, (2)

with kd a gain, ωhp the cross-over frequency of a
second-order high-pass filter, andωlp the roll-off fre-
quency of a second-order low-pass filter.C(s) reflects
a complex-valued damper and is used to improve dis-
turbance rejection near resonance without significantly
deteriorating the passive isolation properties which are
characterized by the isolator stiffnessk and its damping
coefficientb in combination withH(s). The choices
for ωhp andωlp are related to sensor and actuator limi-
tations. For the given geophone velocity measurement,



sensor limitations typically occur below 0.1 Hz which
lead to the choice forωhp = 0.2π rad/s. Actuator limi-
tations occur beyond 100 Hz, henceωlp = 200π rad/s.
For the system depicted in Figure 1, the characteristics

given by the transfer function fromfd to ẏ:

Ol(s) =
sH(s)

1 + (bs + k)H(s) + sφC(s)H(s)
, (3)

are depicted in Figure 4 (fors = 2πjf and frequency
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Figure 4. Bode representation of the isolator characteristics Ol

with (φ = 1) or without (φ = 0) control.

f ) either with (φ = 1) or without (φ = 0) control. In
Bode representation, the results reflect both measure-
ments and simulations. From the figure, it is clear that
isolator performance benefits from the given control:
the natural frequency is heavily suppressed whereas
high-frequent isolator properties largely remain valid.
The validity of this observation is shown in Figure

5 using time-frequency analysis. In comparison with
Figure 2, it can be seen that the velocity response is
indeed significantly reduced in amplitude. The non-
stationary oscillations dominated by the natural fre-
quency of the passive isolator seem no longer present.
However, the price paid is an amplification of high-
frequent noise (between 10-20 Hz). This is seen more
clearly in Figure 6 by subjecting the corresponding
scaled control force to a similar time-frequency anal-
ysis. In achieving performance, the linear controller
induces a significant high-frequent output which is
undesirable as this kind of controller output should
be avoided in preserving high-frequent passive isola-
tion. Moreover, the controller output shows activity in
the low-frequency range where the geophone velocity
measurement becomes invalid. These observations hint
toward the application of a switching control. Sporadi-
cally switching the control on improves the resonance-
induced isolator response related to large-amplitude
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Figure 5. Time-frequency analysis of the measured and linear con-

trolledz-velocity.
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Figure 6. Time-frequency analysis of the measured control force in

z-direction.

transients. Switching the control off restores the pas-
sive isolation properties, at least intuitively, which are
favorable in view of low-amplitude steady-state noise.
Key to the switching gain control design in Figure 3 is

the choice of selector (or switch) functionφ(·), or

φ(ẏ) =

{

0, if |ẏ| ≤ δ

1, if |ẏ| > δ,
(4)

whereδ ≥ 0. This selector function discriminates be-
tween control (φ(·) = 1) and no control (φ(·) = 0)
on the basis of the magnitude of the input signalẏ(t).
Its characteristics are depicted in Figure 7. The analy-
sis of the switching control system behavior is nontriv-
ial (Liberzon, 2003; Armstrong,et al., 2006) and one
should be cautious not to jump in any conclusions. In
fact, we need a thorough study of its stability and per-
formance properties.
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Figure 7. Switching characteristics ofφ(ẏ)ẏ.

4 Stability for the Switching Control Strategy
Stability of the closed-loop system for the switching

control strategy directly relates to the distinction be-
tween transient and steady-state disturbances. Tran-
sient disturbances are assumed to occur incidentally.
When present, they often cause the system to react
heavily in terms of error response. Control then mainly
improves upon this response. In case these transient
disturbances are absent, the error response caused by
steady-state noise is typically small enough to validate
the absence of control,i.e., |ẏ(t)| ≤ δ. This restores
then the passive isolation properties. From stability
point of view it is therefore sufficient to require that the
control – if applied – forces the system response toward
the uncontrolled (passive) steady-state. We will use
the concept of input-to-state stability (Sontag, 1995)
to show that, first, the closed-loop system will exhibit
bounded responses to any bounded disturbance both
transient and steady-state and, second, passive isola-
tion behavior will be retained in the absence of these
transient disturbances.
Input-to-state stability is studied using the following

system representation

ẋ1 = Ax1 + bu1 + bv

y1 = cTx1 = ẏ

u1 = −φ(y1)y1,

(5)

with state vectorx1(t), control inputu1(t), disturbance
v(t) and outputy1(t). The relation between the distur-
bance inputv(t) and the disturbancesd(t) andfd(t) in
Figure 3 is given by

L{v(t)} = −C−1(s) (L{fd(t)} + (bs + k)L{d(t)}) ,
(6)

with L{·} the Laplace operator on the corresponding
signals. Furthermore, the matricesA, b, c follow from
standard state-space realization arguments using the
transfer functions related to Figure 3. Without mak-
ing an explicit distinction between the transient and the
steady-state parts contained inv(t), we consider the
Lyapunov function candidateV (x1) = xT

1Px1 for a
positive definite matrixP = P T > 0. Note that

c1‖x1‖2 ≤ V (x1) ≤ c2‖x1‖2, (7)

with c1 = λmin(P ) andc2 = λmax(P ). Using the fol-
lowing positive real condition

ATP + PA = −qqT − ǫP

Pb = c −
√

2q,
(8)

with ǫ > 0, it follows that

V̇ (x1) = xT
1(A

TP + PA)x1 + 2xT
1Pbu1 + 2xT

1Pbv

≤ −ǫxT
1Px1 − (xT

1q +
√

2u1)
2 + 2xT

1Pbv

≤ −ǫV (x1) + 2xT
1Pbv,

(9)

where we used the fact thaty1u1 ≤ −u2
1 which fol-

lows from the characteristics depicted in Figure 7. The
existence of a positive definiteP in (8) implies that

ℜ
{

cT(jωI − A)−1b
}

=

ℜ
{

jωC(jω)H(jω)

1 + (bjω + k)H(jω)

}

≥ −1,
(10)

which is the circle criterion interpretation (Yakubovich,
et al., 2004). With

2‖bv‖‖x1‖ ≤ α‖bv‖2 + (1/α)‖x1‖2, (11)

for anyα > 0, (9) yields

V̇ (x1) ≤ −ǫV (x1) + c2

(

α‖bv‖2 +
1

α
‖x1‖2

)

≤ −ǫβV (x1),

(12)

when

‖x1‖ ≥
√

c2α
2

(1 − β)ǫc1α − c2
‖b‖‖v‖∞, (13)

with 0 < β < 1 and‖v‖∞ = sup
t≥0 |v(t)|. Equations

(12) and (13) represent a Lyapunov characterization of
the ISS of (5) from which it follows that

‖x1(t)‖ ≤ ρβ(‖x1(0)‖, t) + γβ(‖v‖∞), (14)

with ρβ a so-calledKL-function andγβ a K-function
given by

ρβ(‖x1(0)‖, t) =

√

c2

c1
‖x1(0)‖e

−
ǫβ

2
t

γβ(‖v‖∞) =

√

c2
2α2

(1 − β)ǫc1
2α − c1c2

‖b‖‖v‖∞,

(15)



which guarantees a bounded state response for any
bounded disturbancev(t).
Additionally, (14) can be used to compute how large

the ultimate bound is with respect to steady-state distur-
bances. At this point in the analysis we introduce the
discrimination between transient and steady-state dis-
turbances. If we assumev(t) to consist only of steady-
state disturbances then it follows from (14) that all so-
lutionsx1(t) are ultimately confined to a ball of radius
γβ(‖v‖∞), hence

lim sup
t→∞

‖x1(t)‖ ≤ γ0(‖v‖∞). (16)

Indeed, this shows, that ifδ > γ0(‖v‖∞), then the
response induced by small steady-state disturbances is
determined by the passive isolation dynamics only.

5 Performance for the Switching Control Strategy
Performance of the closed-loop system for the switch-

ing control strategy will be assessed (both in time- and
frequency-domain) at the vibration isolation system de-
picted in Figure 4. This includes a comparison between
no control, switching control, and linear control.
Through experimental evaluation, the result of the

switching control in terms of measured isolator re-
sponse is shown in Figure 8; herein the choice for
δ = 0.2 is based on trial-and-error by seeking the non-
resonant signal levels of the passive system (see Fig-
ure 2) on the one hand and trying to minimize the con-
trol activity on the other hand. Similar to the linearly
controlled isolator characteristics of Figure 5, the non-
stationary oscillations related to the system’s natural
frequency have almost disappeared. But the amplifica-
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ẏ
(s

ca
le

d)

switching controlled isolator behaviour

Figure 8. Time-frequency analysis of the measured and switching

controlledz-velocity.

tion of high-frequent noises is no longer present. Hence

the high-frequent passive isolation properties are pre-
served. This is shown more clearly when applying the
time-frequency analysis to the switching (and scaled)
control forces, the result of which is shown in Figure
9. As compared to the linear control forces depicted in
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Figure 9. Time-frequency analysis of the measured switching con-

trol force.

Figure 6, it can be seen that control is only applied in
those time intervals where the error response exceeds
the threshold valueδ. For the remaining intervals, no
control is applied. The advantages are twofold: the
high-frequent isolation deterioration such as encoun-
tered under linear control is avoided, and much less
control effort is induced to achieve performance.
In time-domain, Figure 10 more clearly illustrates the
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Figure 10. Time-series measurement of the payload velocity and

control force inz-direction in case of no control, linear control, and

switching control.

differences between the considered control strategies.
For the scaled payload velocity inz-direction, it can



be seen that no control yields the expression of large
oscillations (thin black curves) dictated by the weakly
damped pneumatic system’s resonance. Under linear
control these oscillations disappear (grey curves) but
the velocity response shows increased high-frequent
oscillatory behavior. Switching control provides an ef-
fective means in dealing with the pneumatic system’s
resonance (thick black curves) but also limits the pres-
ence of high-frequent noise. This is mainly due to
the fact that control is only sporadically switched on,
which is shown in the lower part of the figure.
Similar observations are obtained from cumulative

power spectral density (cpsd) analysis as can be found
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Figure 11. Cumulative power spectral density (cpsd) analysis of the

payload velocity and control force inz-direction in case of no con-

trol, linear control, and switching control.

in Figure 11. From this figure it can be concluded that
both linear and switching control give a similar root-
mean-square (rms) value of the scaled velocity signals
in z-direction. Each experiment corresponds to a time
interval of 100 seconds in which a sampling frequency
of 1 kHz is used. For switching control, the result is
obtained with significantly less control effort, thus giv-
ing limited transmission (and amplification) of noise
through control.
The relation between rms-performance and control ef-

fort is shown more clearly in Figure 12. By considering
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Figure 12. Root-mean-square (rms) values of the payload velocity

and control force inz-direction under variation ofδ.

several values for the threshold levelδ, conducting nine
cumulative power spectral density experiments such as
considered in Figure 11, and depicting the resulting
rms-values of each experiment as a function ofδ, it can
be seen that for sufficiently smallδ the switching con-
trol competes with the linear control (δ = 0) in terms
of small rms-values but induces less control effort.

6 Conclusions
A switching control design is demonstrated to be ef-

fective in achieving improved active vibration isola-
tion. Sporadically switching the control on effectively
removes oscillations from the velocity response related
to the weakly damped isolation system’s resonance.
The introduction of noise, typically occurring by clos-
ing the loop, is largely avoided by switching the con-
trol off for small velocities. Consequently, the control
effort is kept small while preserving the desired passive
isolation stability and performance properties.
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