ON INVARIANTS BY FEEDBACK OF A FAMILY OF LINEAR DYNAMICAL SYSTEMS

R. Marta García Fernández

Department Mathematics University of León Spain marta.garcia@unileon.es Miguel V. Carriegos

Department Mathematics University of León Spain miguel.carriegos@unileon.es

Abstract

In this paper we try the problem to provide a set of invariants for pointwise feedback equivalence of linear systems. This relation has sense in the case of rings of real continuous functions defined on a compact topological space.

We study, in general, the n-dimensional case.

Key words

Feedback classification. Systems over commutative rings. Controllability.

1 Introduction

Let consider the family systems:

$$\Sigma(\lambda) = \begin{cases} \dot{x} = A(\lambda)x(t) + B(\lambda)u(t) \\ y(t) = C(\lambda)x(t) \end{cases}$$
(1)

where $A(\lambda), B(\lambda)$ and $C(\lambda)$ are matrices with elements in the set of continuous functions of a compact topological space Λ in \mathbb{R} , denoted by $C(\Lambda, \mathbb{R})$.

It is well known that if the matrices have constant coefficients then there is a canonical form for Σ (Brunovsky's canonical form [Brunovsky, 1970]).

2 Feedback classification problem

Throughout this paper R denotes a commutative ring with unit element. We consider an *m*-input, *n*dimensional linear dynamical system $\Sigma = (A, B)$ over R, where A and B are $n \times n$ and $n \times m$ matrices with entries in R respectively. Let's assume the system is reachable (i. e. the columns of the $n \times nm$ block matrix $A * B = (B, AB, \ldots, A^{n-1}B)$ generates R^n). $\Sigma' = (A', B')$ is feedback equivalent to Σ when Σ can be transformed to Σ' by one element of the feedback group $\mathbb{F}_{nm}(R)$ and we will note this by $\Sigma \sim \Sigma$. For the reader's convenience we recall that $\mathbb{F}_{nm}(R)$ is the generated group by the following three types of transformations:

- A → A' = PAP⁻¹, B → B' = PB for some invertible matrix P. The transformation is a consequence of a change of base in Rⁿ, the state module.
- (2) A → A, B → B' = BQ for some invertible matrix Q. The transformation is a consequence of change of base in R^m, the input module.
- (3) $A \longrightarrow A' = A + BK$, $B \longrightarrow B$ for some $m \times n$ matrix K which is called a feedback matrix.

The feedback classification problem is what is known as a wild problem and is open in the general case. However in some cases it is possible to obtain a solution. When R is a field the problem is known as classical case and a classical result of Brunovsky [Brunovsky, 1970] characterizes the class of equivalence of Σ by the action of the feedback group as follows.

Theorem 1. Let $\Sigma = (A, B)$ be a reachable linear dynamical system of size (m, n) (i.e. m-input, ndimensional) over a field R = K. Then there exist positive integers $\kappa_1 \ge \kappa_2 \ge \cdots \ge \kappa_s$ uniquely determined by Σ with $n = \kappa_1 + \kappa_2 + \cdots + \kappa_s$, such that Σ is feedback equivalent to the system $\Sigma_{\kappa} = (A_{\kappa}, B_{\kappa})$ where A_{κ} is the block matrix

$$A_{\kappa} = \begin{pmatrix} A_{\kappa_1} & 0 & \cdots & 0 \\ 0 & A_{\kappa_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{\kappa_s} \end{pmatrix},$$

with A_{κ_i} the $\kappa_i \times \kappa_i$ matrix

$$A_{\kappa_i} = \begin{pmatrix} 0 \ 1 \ 0 \ 0 \cdots 0 \\ 0 \ 0 \ 1 \ 0 \cdots 0 \\ 0 \ 0 \ 1 \ \cdots 0 \\ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \\ 0 \ 0 \ 0 \ \cdots 1 \\ 0 \ 0 \ 0 \ 0 \ 0 \end{pmatrix}$$

The integers $\kappa = \{\kappa_1, \kappa_2, \ldots, \kappa_s\}$ *are called the Kro*necker indices of Σ . They are a complete set of invariants for Σ by the action of the feedback group.

Proof. See [Brunovsky, 1970].

Information over the feedback classification theorem can be found in [Kalman, 1972; Wonham and Morse, 1972]. $\Sigma_{\kappa} = (A_{\kappa}, B_{\kappa})$ is called Brunovsky's form associated to κ . In general, if R is an arbitrary commutative ring and $\Sigma = (A, B)$ is an *m*-input *n*-dimensional system over R, Σ is not feedback equivalent to a system $\Sigma_{\kappa} = (A_{\kappa}, B_{\kappa})$ when A_{κ} and B_{κ} are matrices as in the above theorem. An example it is shown in [Hermida-Alonso, Pérez and Sánchez-Giralda, 1995].

3 Sets of invariants over a ring

Let $\Sigma = (A, B)$ be a linear dynamical system of size (m,n) over R. We introduce some notation. N_i^{Σ} denotes the submodule of R generated by the columns of the $n \times im$ matrix

$$(A * B)_i = (B, AB, \dots, A^{i-1}B)$$

and we denote by M_i^{Σ} the submodule

$$M_i^{\Sigma} = R^n / N_i^{\Sigma}$$

for $1 \leq i \leq n$.

The following result contains the main properties of these modules.

Proposition 1. Let $\Sigma = (A, B)$ be a linear dynamical system of size (m, n) over a ring R. Then

(i) (0) $\subseteq N_0^{\Sigma} \subseteq N_1^{\Sigma} \subseteq \ldots \subseteq N_n^{\Sigma}$. (ii) The canonical homomorphism

$$\varphi_i: N_i^{\Sigma}/N_{i-1}^{\Sigma} \to N_{i+1}^{\Sigma}/N_i^{\Sigma}$$

$$\underline{x} + N_{i-1}^{\Sigma} \to F\underline{x} + N_i^{\Sigma}$$

- is surjective for $1 \leq i \leq n-1$. (iii) If Σ is feedback equivalent to Σ' then N_i^{Σ} and M_i^{Σ} are isomorphic to $N_i^{\Sigma'}$ and $M_i^{\Sigma'}$ respectly, for $1 \leq i$ i < n.
- (iv) If Σ is a reachable system of simple input ndimensional then the modules $\{N_i^{\hat{\Sigma}}\}_{1 \leq i \leq n}$ and
- $\begin{cases} M_i^{\Sigma} \\ _{1 \leq i \leq n} \end{cases} \text{ are free.} \\ (v) If \Sigma \text{ is a brunovsky system then the modules} \\ \begin{cases} N_i^{\Sigma} \\ _{1 \leq i \leq n} \end{cases} \text{ and } \begin{cases} M_i^{\Sigma} \\ _{1 \leq i \leq n} \end{cases} \text{ are free.} \end{cases}$

Proof. See [Hermida-Alonso, Pérez and Sánchez-Giralda, 1996].

As consequence when $R = \mathbb{R}$ we have the following result.

Corollary 1. Let $\Sigma = (A, B)$ be a reachable linear dynamical system of size (m, n) over \mathbb{R} . Then the feedback equivalence class of Σ is characterized for each one of the following sets:

- (i) The Kronecker's indices $\{\kappa_i\}_{1 \le i \le s}$. (ii) $\{rank_{\mathbb{R}}N_i^{\Sigma}\}_{1 \le i \le n}$.

(iii)
$$\left\{ rank_{\mathbb{R}}N_{i}^{\Sigma}/N_{i-1}^{\Sigma} \right\}_{1 \le i \le n}$$

Proof. See [Hermida-Alonso, Pérez and Sánchez-Giralda, 1996].

Let $M = (a_{ij})$ be an $n \times m$ matrix with entries in R and let i be a nonnegative integer. The i-th determinantal ideal of M, denoted by $\mathcal{U}_i(M)$, is the ideal of R generated by all the $i \times i$ minors of M. By construction we have

$$R = \mathcal{U}_0(M) \supseteq \mathcal{U}_1(M) \supseteq \ldots \supseteq \mathcal{U}_i(M) \supseteq \ldots$$

and $\mathcal{U}_{i}(M) = 0$ for $i > \min\{m, n\}$. The rank of M, denoted by $rank_R(M)$, is the largest i such that $\mathcal{U}_i(M) \neq 0$. Then Σ is reachable if and only if $\mathcal{U}_n\left(A*B\right) = R.$

Proposition 2. Let R = K be a field and $\Sigma = (A, B)$ a reachable linear dynamical system of size (m, n)over R. We put $\sigma_i^{\Sigma} = \dim_K M_i^{\Sigma}$ for $1 \leq i \leq n$. Then $\{\sigma_i^{\Sigma}\}_{1 \leq i \leq n}$ is a complete set of invariants of the class of equivalence of Σ (i.e. Σ is feedback equivalent to Σ' if and only if $\sigma_i^{\Sigma} = \sigma_i^{\Sigma'}$ for all i with $1 \le i \le n$).

Proof. See [Carriegos, Hermida-Alonso and Sánchez-Giralda, 1998].

Denote by

$$\psi_M : \mathbb{R}^m \longrightarrow \mathbb{R}^n$$

the homomorphism of free R-modules defined respect to the standard basis by the matrix M. Consider $Coker\psi_M$ and the following exact sequence

$$R^m \xrightarrow{M} R^n \xrightarrow{\psi_M} Coker\psi_M \longrightarrow 0.$$

We have the following property:

Lemma 1. If R = K is a field then

$$dim_R(Coker\psi_M) = n - sup\{j : \mathcal{U}_j(M) \neq 0\}$$

Proof. See [Northcott, 1976], ch. 1,3.

By Proposition 2 and Lemma 1 feedback relation is characterized by the determinantal ideals of the matrix A * B in the following form.

Corollary 2. Let $\Sigma = (A, B)$ and $\Sigma' = (A', B')$ be two linear dynamical systems of size (m, n) over R. If Σ is reachable, then following conditions are equivalent.

(i) Σ is feedback equivalent Σ' . (ii) $\mathcal{U}_j((A * B)_i) = \mathcal{U}_j((A' * B')_i)$ for $1 \le i \le n, 1 \le j \le n$ where

$$(A * B)_i = (B, AB, \dots, A^{i-1}B)$$

 $(A' * B')_i = (B', A'B', \dots, A'^{i-1}B')$

Proof. See [Carriegos, Hermida-Alonso and Sánchez-Giralda, 1998].

The importance of these invariants is that they behave well for base change, something that it does not happen with the set $\{rank_RN_i^{\Sigma}\}_{1 \le i \le n}$.

4 Continuous families of linear systems

Let Λ a compact topological space and let $R = C(\Lambda, \mathbb{R})$ be the continuous real functions defined over Λ . Let $\Sigma = (A, B)$ and $\Sigma' = (A', B')$ be two linear dynamical systems over $R = C(\Lambda, \mathbb{R})$. We denote $\Sigma(\lambda) = (A(\lambda), B(\lambda))$ the valuation at λ of the Σ . We say Σ and Σ' are pointwise feedback equivalents if the systems $\Sigma(\lambda) = (A(\lambda), B(\lambda))$ and $\Sigma'(\lambda) = (A'(\lambda), B'(\lambda))$ over \mathbb{R} are feedback equivalents for all $\lambda \in \Lambda$.

Reachability in the ring $R = C(\Lambda, \mathbb{R})$ is shown in the following result.

Theorem 2. Let Λ a compact topological space and $\Sigma = (A, B)$ be a reachable linear dynamical system of size (m, n) over $R = C(\Lambda, \mathbb{R})$. Then the following conditions are equivalents.

(i) Σ is reachable over $C(\Lambda, \mathbb{R})$.

(ii) $\Sigma(\lambda)$ is reachable over \mathbb{R} , for all $\lambda \in \Lambda$.

Proof. See [García-Fernández, 2005] p. 56.

Since the system $\Sigma(\lambda)$ is a system s over the field \mathbb{R} is necessary to know what a set of invariants. In this line, we give the following result. But first we recall some definitions. Let *n* a positive integer and $\kappa =$ $\{\kappa_1, \kappa_2, \ldots, \kappa_s\}$ a partition of n $(n = \kappa_1 + \kappa_2 + \cdots + \kappa_s$ with $\kappa_1 \ge \kappa_2 \ge \cdots \ge \kappa_s)$. We'll call *conjugate partition* of κ to the partition $\eta = \{n_1, n_2, \ldots, n_p\}$ (with $n_1 \ge n_2 \ge \cdots \ge n_p$) of *n* where n_i , is the number of κ_j bigger or equal than *i*. We denote \mathcal{P}_n the set of partitions of *n*. The application $\kappa \to \eta$ is a biyection in the set of partitions of *n*, see [Biggs, 2002].

Theorem 3. Let $\Sigma = (A, B)$ and $\Sigma' = (A', B')$ be two reachable linear dynamical systems of size (m, n)over $R = C(\Lambda, \mathbb{R})$. For $\lambda_0 \in \Lambda$, the following conditions are equivalent.

- (i) $\Sigma(\lambda_0) \sim \Sigma_{\kappa}$ where $\Sigma_{\kappa} = (A_{\kappa}, B_{\kappa})$ is the Brunovsky's linear form associated to the Kronecker's indices $\kappa = \{\kappa_1, \kappa_2, \dots, \kappa_s\}$.
- (ii) Let $\eta = \{n_1, n_2, \dots, n_p\}$ be the conjugate partition of κ . Then

$$\dim_{\mathbb{R}}\left(N_{i}^{\Sigma(\lambda_{0})}\right) = n_{1} + n_{2} + \ldots + n_{i}; \quad 1 \leq i \leq p.$$

Proof. See [García-Fernández, 2005].

In order to prove our main result we need to remark usual notation of ideal of zeros of a function. Let \mathfrak{a} be an ideal of $R = C(\Lambda, \mathbb{R})$. We denote by $Z(\mathfrak{a})$ the set

$$Z(\mathfrak{a}) = \left\{ \lambda \in \Lambda \ / \ f(\lambda) = 0 \quad \text{for all} \ f \in \mathfrak{a} \right\}.$$

Lemma 2. Let be a and b two finite generated ideals of $C(\Lambda, \mathbb{R})$. Then

(i) There is $a \in \mathfrak{a}$ with

$$Z(\mathfrak{a}) = Z(a).$$

(ii) If $\mathfrak{a} \subseteq \mathfrak{b}$ then we can choose $a \in \mathfrak{a}$ and $b \in \mathfrak{b}$ with $a = \lambda b$ where

$$Z(\mathfrak{a}) = Z(a) \supseteq Z(b) = Z(\mathfrak{b}).$$

Proof. See [García-Fernández, 2005] p. 54.

If $R = C(\Lambda, \mathbb{R})$ is a ring continuous functions of a compact topological space Λ in \mathbb{R} , then the pointwise feedback relation is characterized by the invariant sets

$$\left\{Z\left(\mathcal{U}_{j}\left((A*B)_{i}\right)\right)\right\}_{1\leq i\leq n,1\leq j\leq n}$$

in the following form.

Theorem 4. Let $be\Sigma = (A, B)$ and $\Sigma' = (A', B')$ two reachable linear dynamical systems of size (m, n)over $R = C(\Lambda, \mathbb{R})$. Then the following statements are equivalent.

- (i) $\Sigma(\lambda)$ is feedback equivalent to $\Sigma'(\lambda)$ for all $\lambda \in \Lambda$.
- (ii) $Z\left(\mathcal{U}_j\left((A*B)_i\right)\right) = Z\left(\mathcal{U}_j\left((A'*B')_i\right)\right)$ for $1 \le i \le n, 1 \le j \le n$.

Proof. (i) \Rightarrow (ii) As $\Sigma(\lambda) \sim \Sigma'(\lambda)$ for all $\lambda \in \Lambda$, we have by Corollary 2

$$\mathcal{U}_{j}\left(\left(A\left(\lambda\right)*B\left(\lambda\right)\right)_{i}\right)=\mathcal{U}_{j}\left(\left(A^{'}(\lambda)*B^{'}(\lambda)\right)_{i}\right)$$

for $1 \leq i \leq n, \ 1 \leq j \leq n$ and for all $\lambda \in \Lambda$. It follows that

$$Z(\mathcal{U}_j((A * B)_i)) = Z\left(\mathcal{U}_j((A' * B')_i)\right).$$

(ii) \Rightarrow (i) Conversely if

$$Z(\mathcal{U}_j\left((A*B)_i\right)) = Z\left(\mathcal{U}_j\left((A'*B')_i\right)\right)$$

for $1 \leq i \leq n, 1 \leq j \leq n$ we have

$$\operatorname{rank}_{\mathbb{R}} \left(\mathcal{U}_j \left((A(\lambda) * B(\lambda))_i \right) \right) =$$

$$\operatorname{rank}_{\mathbb{R}}\left(\mathcal{U}_{j}\left((A^{'}(\lambda) \ast B^{'}(\lambda))_{i}\right)\right)$$

for $1 \leq i \leq n$ and for all $\lambda \in \Lambda$ or equivalent

$$\dim_{\mathbb{R}} \left(N_{i}^{\Sigma(\lambda)} \right) = \dim_{\mathbb{R}} \left(N_{i}^{\Sigma'(\lambda)} \right)$$

for $1 \leq i \leq n$ and for all $\lambda \in \Lambda$. by Corollary 1

$$\left\{\dim_{\mathbb{R}}\left(N_{i}^{\Sigma(\lambda)}\right)\right\}_{1\leq i\leq n}$$

is a complete set of invariants for the feedback equivalence over $\mathbb{R},$ then

$$\Sigma(\lambda) \sim \Sigma'(\lambda)$$

for all λ of Λ .

For general reading on the subject, see [Carriegos, Hermida-Alonso and Sánchez-Giralda, 1998].

5 Conclusion

The problem of obtain a set of invariants for poinwise feedback equivalence over $R = C(\Lambda, \mathbb{R})$ has been considered. Some questions must be the subject of future research.

Question 1. *The question of reducing the number of invariants*

$$\{Z\left(\mathcal{U}_{j}\left((A*B)_{i}\right)\right)\}_{1\leq i\leq n,1\leq j\leq n}$$

Question 2. Given a set of closed sets over a compact Λ ,

$$F_1 \supseteq F_2 \supseteq \ldots \supseteq F_s$$

Is it possible to find a system Σ *over* $C(\Lambda, \mathbb{R})$ *where*

$$Z(\mathcal{U}_j((A*B)_i^{\Sigma})) = F_k?$$

Question 3. To extend results to the ring $C^k(\Lambda, \mathbb{R})$ where Λ is a differentiable manifold.

Question 4. To extend results to the ring of holomorphic functions $H(\Omega)$ where $\Omega \subseteq \mathbb{C}$.

References

Atiyah, M.F., Macdonald, I.G. (1969). *Introduction to Commutative Algebra. Addison-Wesley*.

Biggs, N.L. (2002). Discrete Mathematics. In *Partitions of a positive integer*. Oxford University Press. pp. 376-388.

Brewer, J.W., Bunce, J.W. and Van Vleck, F.S. (1986). *Linear Systems over Commutative Rings*. Marcel-Dekker. New York.

Brunovsky, P.A. (1970). A Classification of Linear Controllable Systems. *Kybernetika*, (3), pp. 173-187. Carriegos, M., Hermida-Alonso, J.A. and Sánchez-Giralda, T. (1998). The pointwise feedback relation for linear dynamical systems. *Linear algebra appl.*, (279), pp. 119-134.

García-Fernández, R.M. (2005). Formas Canónicas y Clasificación por Feedback de Sistemas Lineales sobre Anillos Conmutativos. Doctoral Thesis. University of Valladolid.

Hermida-Alonso, J.A., Pérez, M.P. and Sánchez-Giralda, T.(1996). Brunovsky's Canonical Form for Linear Dynamical Systems over Commutative Rings. *Linear algebra appl.*, (233), pp. 131-147.

Hermida-Alonso, J.A., Pérez, M.P. and Sánchez-Giralda, T. (1995). Feedback invariants for linear Dynamical Systems over a Principal Ideal Domain. *Linear algebra appl.*, (218), pp. 29-45.

Hermida-Alonso, J.A. and Sánchez-Giralda, T. (1986). Linear Equations over Commutative Rings and Determinantal Ideals. *J. Algebra*, 99(1), pp.72-79. Kalman, R.E. (1972). Kronecker Invariants and Feedback. In *L. Weiss, Editor, Ordinary Differential Equations*. Academic Press. New York. pp. 459-471.

Northcott, D.G. (1976). *Finite Free Resolutions*. Cambridge University Press.

Wonham, W.A., and Morse, A.S. (1972). Feedback Invariants of Linear Multivariable Systems. *Automatica*, 8, pp.33-100.