ON INVARIANTS BY FEEDBACK OF A FAMILY OF LINEAR DYNAMICAL SYSTEMS

R. Marta García Fernández
Department Mathematics
University of León
Spain
marta.garcia@unileon.es

Miguel V. Carriegos
Department Mathematics
University of León
Spain
miguel.carriegos@unileon.es

Abstract

In this paper we try the problem to provide a set of invariants for pointwise feedback equivalence of linear systems. This relation has sense in the case of rings of real continuous functions defined on a compact topological space. We study, in general, the n-dimensional case.

Key words

Feedback classification. Systems over commutative rings. Controllability.

1 Introduction

Let consider the family systems:

$$
\Sigma(\lambda)=\left\{\begin{array}{l}
\dot{x}=A(\lambda) x(t)+B(\lambda) u(t) \tag{1}\\
y(t)=C(\lambda) x(t)
\end{array}\right.
$$

where $A(\lambda), B(\lambda)$ and $C(\lambda)$ are matrices with elements in the set of continuous functions of a compact topological space Λ in \mathbb{R}, denoted by $C(\Lambda, \mathbb{R})$.
It is well known that if the matrices have constant coefficients then there is a canonical form for Σ (Brunovsky's canonical form [Brunovsky, 1970]).

2 Feedback classification problem

Throughout this paper R denotes a commutative ring with unit element. We consider an m-input, n dimensional linear dynamical system $\Sigma=(A, B)$ over R, where A and B are $n \times n$ and $n \times m$ matrices with entries in R respectively. Let's assume the system is reachable (i. e. the columns of the $n \times n m$ block matrix $A * B=\left(B, A B, \ldots, A^{n-1} B\right)$ generates $\left.R^{n}\right)$. $\Sigma^{\prime}=\left(A^{\prime}, B^{\prime}\right)$ is feedback equivalent to Σ when Σ can be transformed to Σ^{\prime} by one element of the feedback group $\mathbb{F}_{n m}(R)$ and we will note this by $\Sigma \sim \Sigma$. For the reader's convenience we recall that $\mathbb{F}_{n m}(R)$ is the generated group by the following three types of transformations:
(1) $A \longrightarrow A^{\prime}=P A P^{-1}, B \longrightarrow B^{\prime}=P B$ for some invertible matrix P. The transformation is a consequence of a change of base in R^{n}, the state module.
(2) $A \longrightarrow A, B \longrightarrow B^{\prime}=B Q$ for some invertible matrix Q. The transformation is a consequence of change of base in R^{m}, the input module.
(3) $A \longrightarrow A^{\prime}=A+B K, B \longrightarrow B$ for some $m \times n$ matrix K which is called a feedback matrix.

The feedback classification problem is what is known as a wild problem and is open in the general case. However in some cases it is posible to obtain a solution. When R is a field the problem is known as classical case and a classical result of Brunovsky [Brunovsky, 1970] characterizes the class of equivalence of Σ by the action of the feedback group as follows.

Theorem 1. Let $\Sigma=(A, B)$ be a reachable linear dynamical system of size (m, n) (i.e. m-input, n dimensional) over a field $R=K$. Then there exist positive integers $\kappa_{1} \geq \kappa_{2} \geq \cdots \geq \kappa_{s}$ uniquely determined by Σ with $n=\kappa_{1}+\kappa_{2}+\cdots+\kappa_{s}$, such that Σ is feedback equivalent to the system $\Sigma_{\kappa}=\left(A_{\kappa}, B_{\kappa}\right)$ where A_{κ} is the block matrix

$$
A_{\kappa}=\left(\begin{array}{llll}
A_{\kappa_{1}} & 0 & \cdots & 0 \\
0 & A_{\kappa_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A_{\kappa_{s}}
\end{array}\right),
$$

with $A_{\kappa_{i}}$ the $\kappa_{i} \times \kappa_{i}$ matrix

$$
A_{\kappa_{i}}=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\underline{x}+N_{i-1}^{\Sigma} \rightarrow F \underline{x}+N_{i}^{\Sigma}
$$

The integers $\kappa=\left\{\kappa_{1}, \kappa_{2}, \ldots, \kappa_{s}\right\}$ are called the Kronecker indices of Σ. They are a complete set of invariants for Σ by the action of the feedback group.

Proof. See [Brunovsky, 1970].
Information over the feedback classification theorem can be found in [Kalman, 1972; Wonham and Morse, 1972]. $\Sigma_{\kappa}=\left(A_{\kappa}, B_{\kappa}\right)$ is called Brunovsky's form associated to κ. In general, if R is an arbitrary commutative ring and $\Sigma=(A, B)$ is an m-input n-dimensional system over R, Σ is not feedback equivalent to a system $\Sigma_{\kappa}=\left(A_{\kappa}, B_{\kappa}\right)$ when A_{κ} and B_{κ} are matrices as in the above theorem. An example it is shown in [Hermida-Alonso, Pérez and Sánchez-Giralda, 1995].

3 Sets of invariants over a ring

Let $\Sigma=(A, B)$ be a linear dynamical system of size (m, n) over R. We introduce some notation. N_{i}^{Σ} denotes the submodule of R generated by the columns of the $n \times i m$ matrix

$$
(A * B)_{i}=\left(B, A B, \ldots, A^{i-1} B\right)
$$

and we denote by M_{i}^{Σ} the submodule

$$
M_{i}^{\Sigma}=R^{n} / N_{i}^{\Sigma}
$$

for $1 \leq i \leq n$.
The following result contains the main properties of these modules.

Proposition 1. Let $\Sigma=(A, B)$ be a linear dynamical system of size (m, n) over a ring R. Then
(i) $(0) \subseteq N_{0}^{\Sigma} \subseteq N_{1}^{\Sigma} \subseteq \ldots \subseteq N_{n}^{\Sigma}$.
(ii) The canonical homomorphism

$$
\varphi_{i}: N_{i}^{\Sigma} / N_{i-1}^{\Sigma} \rightarrow N_{i+1}^{\Sigma} / N_{i}^{\Sigma}
$$

is surjective for $1 \leq i \leq n-1$.
(iii) If Σ is feedback equivalent to Σ^{\prime} then N_{i}^{Σ} and M_{i}^{Σ} are isomorphic to $N_{i}^{\Sigma^{\prime}}$ and $M_{i}^{\Sigma^{\prime}}$ respectly, for $1 \leq$ $i \leq n$.
(iv) If Σ is a reachable system of simple input n dimensional then the modules $\left\{N_{i}^{\Sigma}\right\}_{1 \leq i \leq n}$ and $\left\{M_{i}^{\Sigma}\right\}_{1 \leq i \leq n}$ are free.
(v) If Σ is a brunovsky system then the modules $\left\{N_{i}^{\Sigma}\right\}_{1 \leq i \leq n}$ and $\left\{M_{i}^{\Sigma}\right\}_{1 \leq i \leq n}$ are free.

Proof. See [Hermida-Alonso, Pérez and SánchezGiralda, 1996].

As consequence when $R=\mathbb{R}$ we have the following result.

Corollary 1. Let $\Sigma=(A, B)$ be a reachable linear dynamical system of size (m, n) over \mathbb{R}. Then the feedback equivalence class of Σ is characterized for each one of the following sets:
(i) The Kronecker's indices $\left\{\kappa_{i}\right\}_{1 \leq i \leq s}$.
(ii) $\left\{\operatorname{rank}_{\mathbb{R}} N_{i}^{\Sigma}\right\}_{1 \leq i \leq n}$.
(iii) $\left\{\operatorname{rank}_{\mathbb{R}} N_{i}^{\Sigma} / N_{i-1}^{\Sigma}\right\}_{1 \leq i \leq n}$.

Proof. See [Hermida-Alonso, Pérez and SánchezGiralda, 1996].

Let $M=\left(a_{i j}\right)$ be an $n \times m$ matrix with entries in R and let i be a nonnegative integer. The $i-$ th determinantal ideal of M, denoted by $\mathcal{U}_{i}(M)$, is the ideal of R generated by all the $i \times i$ minors of M. By construction we have

$$
R=\mathcal{U}_{0}(M) \supseteq \mathcal{U}_{1}(M) \supseteq \ldots \supseteq \mathcal{U}_{i}(M) \supseteq \ldots
$$

and $\mathcal{U}_{i}(M)=0$ for $i>\min \{m, n\}$. The rank of M, denoted by $\operatorname{rank}_{R}(M)$, is the largest i such that $\mathcal{U}_{i}(M) \neq 0$. Then Σ is reachable if and only if $\mathcal{U}_{n}(A * B)=R$.

Proposition 2. Let $R=K$ be a field and $\Sigma=(A, B)$ a reachable linear dynamical system of size (m, n) over R. We put $\sigma_{i}^{\Sigma}=\operatorname{dim}_{K} M_{i}^{\Sigma}$ for $1 \leq i \leq n$. Then $\left\{\sigma_{i}^{\Sigma}\right\}_{1 \leq i \leq n}$ is a complete set of invariants of the class of equivalence of Σ (i.e. Σ is feedback equivalent to Σ^{\prime} if and only if $\sigma_{i}^{\Sigma}=\sigma_{i}^{\Sigma^{\prime}}$ for all i with $1 \leq i \leq n$).

Proof. See [Carriegos, Hermida-Alonso and SánchezGiralda, 1998].

Denote by

$$
\psi_{M}: R^{m} \longrightarrow R^{n}
$$

the homomorphism of free R-modules defined respect to the standard basis by the matrix M. Consider $\operatorname{Coker} \psi_{M}$ and the following exact sequence

$$
R^{m} \quad \xrightarrow{M} \quad R^{n} \quad \xrightarrow{\psi_{M}} \quad \text { Coker }_{M} \quad \longrightarrow \quad 0
$$

We have the following property:
Lemma 1. If $R=K$ is a field then

$$
\operatorname{dim}_{R}\left(\operatorname{Coker} \psi_{M}\right)=n-\sup \left\{j: \mathcal{U}_{j}(M) \neq 0\right\}
$$

Proof. See [Northcott, 1976], ch. 1,3.
By Proposition 2 and Lemma 1 feedback relation is characterized by the determinantal ideals of the matrix $A * B$ in the following form.

Corollary 2. Let $\Sigma=(A, B)$ and $\Sigma^{\prime}=\left(A^{\prime}, B^{\prime}\right)$ be two linear dynamical systems of size (m, n) over R. If Σ is reachable, then following conditions are equivalent.
(i) Σ is feedback equivalent Σ^{\prime}.
(ii) $\mathcal{U}_{j}\left((A * B)_{i}\right)=\mathcal{U}_{j}\left(\left(A^{\prime} * B^{\prime}\right)_{i}\right)$ for $1 \leq i \leq$ $n, 1 \leq j \leq n$ where

$$
\begin{aligned}
& (A * B)_{i}=\left(B, A B, \ldots, A^{i-1} B\right) \\
& \left(A^{\prime} * B^{\prime}\right)_{i}=\left(B^{\prime}, A^{\prime} B^{\prime}, \ldots, A^{\prime i-1} B^{\prime}\right) .
\end{aligned}
$$

Proof. See [Carriegos, Hermida-Alonso and SánchezGiralda, 1998].

The importance of these invariants is that they behave well for base change, something that it does not happen with the set $\left\{\operatorname{rank}_{R} N_{i}^{\Sigma}\right\}_{1 \leq i \leq n}$.

4 Continuous families of linear systems

Let Λ a compact topological space and let $R=$ $C(\Lambda, \mathbb{R})$ be the continuous real functions defined over Λ. Let $\Sigma=(A, B)$ and $\Sigma^{\prime}=\left(A^{\prime}, B^{\prime}\right)$ be two linear dynamical systems over $R=C(\Lambda, \mathbb{R})$. We denote $\Sigma(\lambda)=(A(\lambda), B(\lambda))$ the valuation at λ of the Σ. We say Σ and Σ^{\prime} are pointwise feedback equivalents if the systems $\Sigma(\lambda)=(A(\lambda), B(\lambda))$ and $\Sigma^{\prime}(\lambda)=$ $\left(A^{\prime}(\lambda), B^{\prime}(\lambda)\right)$ over \mathbb{R} are feedback equivalents for all $\lambda \in \Lambda$.
Reachability in the ring $R=C(\Lambda, \mathbb{R})$ is shown in the following result.

Theorem 2. Let Λ a compact topological space and $\Sigma=(A, B)$ be a reachable linear dynamical system of size (m, n) over $R=C(\Lambda, \mathbb{R})$. Then the following conditions are equivalents.
(i) Σ is reachable over $C(\Lambda, \mathbb{R})$.
(ii) $\Sigma(\lambda)$ is reachable over \mathbb{R}, for all $\lambda \in \Lambda$.

Proof. See [García-Fernández, 2005] p. 56.

Since the system $\Sigma(\lambda)$ is a system s over the field \mathbb{R} is necessary to know what a set of invariants. In this line, we give the following result. But first we recall some definitions. Let n a positive integer and $\kappa=$ $\left\{\kappa_{1}, \kappa_{2}, \ldots, \kappa_{s}\right\}$ a partition of $\mathrm{n}\left(n=\kappa_{1}+\kappa_{2}+\cdots+\kappa_{s}\right.$ with $\kappa_{1} \geq \kappa_{2} \geq \cdots \geq \kappa_{s}$). We'll call conjugate partition of κ to the partition $\eta=\left\{n_{1}, n_{2}, \ldots, n_{p}\right\}$ (with $n_{1} \geq n_{2} \geq \cdots \geq n_{p}$) of n where n_{i}, is the number of κ_{j} bigger or equal than i. We denote \mathcal{P}_{n} the set of partitions of n. The application $\kappa \rightarrow \eta$ is a biyection in the set of partitions of n, see [Biggs, 2002].

Theorem 3. Let $\Sigma=(A, B)$ and $\Sigma^{\prime}=\left(A^{\prime}, B^{\prime}\right)$ be two reachable linear dynamical systems of size (m, n) over $R=C(\Lambda, \mathbb{R})$. For $\lambda_{0} \in \Lambda$, the following conditions are equivalent.
(i) $\Sigma\left(\lambda_{0}\right) \sim \Sigma_{\kappa}$ where $\Sigma_{\kappa}=\left(A_{\kappa}, B_{\kappa}\right)$ is the Brunovsky's linear form associated to the Kronecker's indices $\kappa=\left\{\kappa_{1}, \kappa_{2}, \ldots, \kappa_{s}\right\}$.
(ii) Let $\eta=\left\{n_{1}, n_{2}, \ldots, n_{p}\right\}$ be the conjugate partition of κ. Then

$$
\operatorname{dim}_{\mathbb{R}}\left(N_{i}^{\Sigma\left(\lambda_{0}\right)}\right)=n_{1}+n_{2}+\ldots+n_{i} ; \quad 1 \leq i \leq p
$$

Proof. See [García-Fernández, 2005].
In order to prove our main result we need to remark usual notation of ideal of zeros of a function. Let \mathfrak{a} be an ideal of $R=C(\Lambda, \mathbb{R})$. We denote by $Z(\mathfrak{a})$ the set

$$
Z(\mathfrak{a})=\{\lambda \in \Lambda / f(\lambda)=0 \quad \text { for all } f \in \mathfrak{a}\}
$$

Lemma 2. Let be \mathfrak{a} and \mathfrak{b} two finite generated ideals of $C(\Lambda, \mathbb{R})$. Then
(i) There is $a \in \mathfrak{a}$ with

$$
Z(\mathfrak{a})=Z(a) .
$$

(ii) If $\mathfrak{a} \subseteq \mathfrak{b}$ then we can choose $a \in \mathfrak{a}$ and $b \in \mathfrak{b}$ with $a=\lambda b$ where

$$
Z(\mathfrak{a})=Z(a) \supseteq Z(b)=Z(\mathfrak{b}) .
$$

Proof. See [García-Fernández, 2005] p. 54.
If $R=C(\Lambda, \mathbb{R})$ is a ring continuous functions of a compact topological space Λ in \mathbb{R}, then the pointwise feedback relation is characterized by the invariant sets

$$
\left\{Z\left(\mathcal{U}_{j}\left((A * B)_{i}\right)\right)\right\}_{1 \leq i \leq n, 1 \leq j \leq n}
$$

in the following form.
Theorem 4. Let be $\Sigma=(A, B)$ and $\Sigma^{\prime}=\left(A^{\prime}, B^{\prime}\right)$ two reachable linear dynamical systems of size (m, n) over $R=C(\Lambda, \mathbb{R})$. Then the following statements are equivalent.
(i) $\Sigma(\lambda)$ is feedback equivalent to $\Sigma^{\prime}(\lambda)$ for all $\lambda \in$ Λ.
(ii) $Z\left(\mathcal{U}_{j}\left((A * B)_{i}\right)\right)=Z\left(\mathcal{U}_{j}\left(\left(A^{\prime} * B^{\prime}\right)_{i}\right)\right)$ for $1 \leq$ $i \leq n, 1 \leq j \leq n$.

Proof. (i) \Rightarrow (ii) As $\Sigma(\lambda) \sim \Sigma^{\prime}(\lambda)$ for all $\lambda \in \Lambda$, we have by Corollary 2

$$
\mathcal{U}_{j}\left((A(\lambda) * B(\lambda))_{i}\right)=\mathcal{U}_{j}\left(\left(A^{\prime}(\lambda) * B^{\prime}(\lambda)\right)_{i}\right)
$$

for $1 \leq i \leq n, 1 \leq j \leq n$ and for all $\lambda \in \Lambda$. It follows that

$$
Z\left(\mathcal{U}_{j}\left((A * B)_{i}\right)\right)=Z\left(\mathcal{U}_{j}\left(\left(A^{\prime} * B^{\prime}\right)_{i}\right)\right) .
$$

(ii) \Rightarrow (i) Conversely if

$$
Z\left(\mathcal{U}_{j}\left((A * B)_{i}\right)\right)=Z\left(\mathcal{U}_{j}\left(\left(A^{\prime} * B^{\prime}\right)_{i}\right)\right)
$$

for $1 \leq i \leq n, 1 \leq j \leq n$ we have

$$
\operatorname{rank}_{\mathbb{R}}\left(\mathcal{U}_{j}\left((A(\lambda) * B(\lambda))_{i}\right)\right)=
$$

$$
\operatorname{rank}_{\mathbb{R}}\left(\mathcal{U}_{j}\left(\left(A^{\prime}(\lambda) * B^{\prime}(\lambda)\right)_{i}\right)\right)
$$

for $1 \leq i \leq n$ and for all $\lambda \in \Lambda$ or equivalent

$$
\operatorname{dim}_{\mathbb{R}}\left(N_{i}^{\Sigma(\lambda)}\right)=\operatorname{dim}_{\mathbb{R}}\left(N_{i}^{\Sigma^{\prime}(\lambda)}\right)
$$

for $1 \leq i \leq n$ and for all $\lambda \in \Lambda$. by Corollary 1

$$
\left\{\operatorname{dim}_{\mathbb{R}}\left(N_{i}^{\Sigma(\lambda)}\right)\right\}_{1 \leq i \leq n}
$$

is a complete set of invariants for the feedback equivalence over \mathbb{R}, then

$$
\Sigma(\lambda) \sim \Sigma^{\prime}(\lambda)
$$

for all λ of Λ.
For general reading on the subject, see [Carriegos, Hermida-Alonso and Sánchez-Giralda, 1998].

5 Conclusion

The problem of obtain a set of invariants for poinwise feedback equivalence over $R=C(\Lambda, \mathbb{R})$ has been considered. Some questions must be the subject of future research.

Question 1. The question of reducing the number of invariants

$$
\left\{Z\left(\mathcal{U}_{j}\left((A * B)_{i}\right)\right)\right\}_{1 \leq i \leq n, 1 \leq j \leq n}
$$

Question 2. Given a set of closed sets over a compact Λ,

$$
F_{1} \supseteq F_{2} \supseteq \ldots \supseteq F_{s}
$$

Is it possible to find a system Σ over $C(\Lambda, \mathbb{R})$ where

$$
Z\left(\mathcal{U}_{j}\left((A * B)_{i}^{\Sigma}\right)\right)=F_{k} ?
$$

Question 3. To extend results to the ring $C^{k}(\Lambda, \mathbb{R})$ where Λ is a differentiable manifold.

Question 4. To extend results to the ring of holomorphic functions $H(\Omega)$ where $\Omega \subseteq \mathbb{C}$.

References

Atiyah, M.F., Macdonald, I.G. (1969). Introduction to Commutative Algebra. Addison-Wesley.
Biggs, N.L. (2002). Discrete Mathematics. In Partitions of a positive integer. Oxford University Press. pp. 376-388.
Brewer, J.W., Bunce, J.W. and Van Vleck, F.S. (1986).
Linear Systems over Commutative Rings. MarcelDekker. New York.
Brunovsky, P.A. (1970). A Classification of Linear Controllable Systems. Kybernetika, (3), pp. 173-187.
Carriegos, M., Hermida-Alonso, J.A. and SánchezGiralda, T. (1998). The pointwise feedback relation for linear dynamical systems. Linear algebra appl., (279), pp. 119-134.

García-Fernández, R.M. (2005). Formas Canónicas y Clasificación por Feedback de Sistemas Lineales sobre Anillos Conmutativos. Doctoral Thesis. University of Valladolid.
Hermida-Alonso, J.A., Pérez, M.P. and SánchezGiralda, T.(1996). Brunovsky's Canonical Form for Linear Dynamical Systems over Commutative Rings. Linear algebra appl. ,(233), pp. 131-147.
Hermida-Alonso, J.A., Pérez, M.P. and SánchezGiralda, T. (1995). Feedback invariants for linear Dynamical Systems over a Principal Ideal Domain. Linear algebra appl., (218), pp. 29-45.
Hermida-Alonso, J.A. and Sánchez-Giralda, T. (1986). Linear Equations over Commutative Rings and Determinantal Ideals. J. Algebra, 99(1), pp.72-79. Kalman, R.E. (1972). Kronecker Invariants and Feedback. In L. Weiss, Editor, Ordinary Differential Equations. Academic Press. New York. pp. 459-471.
Northcott, D.G. (1976). Finite Free Resolutions. Cambridge University Press.
Wonham, W.A., and Morse, A.S. (1972). Feedback Invariants of Linear Multivariable Systems. Automatica, 8, pp.33-100.

