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Abstract— Last year’s an interest in microprobe beam lines
has been increased sharply. This is explained by wide applica-
tion region of similar facilities. The probe forming systems for
generation of beams of nanometer size (so-called nanoprobe)
require precise control of the beam characteristics. The height-
ened sensibility to control parameters deviations forces us to
survey very careful mathematical and computer simulation
before any manufacture. The nature of such systems as control
systems leads us forming special methods and technologies for
optimal control problem solution. Moreover, here we owe to
realize a searching of a comprehensive set of performance
criteria, makes detailed predictions on beam characteristics,
possible configuration defects and critical elements, and gives
indications for improvement. A path approaching an optimized
configuration can thus be established based on well-defined
quantitative criteria and special mathematical and computer
models for micro- and nanoprobes as control systems. There
are discussed some practical results.

I. INTRODUCTION

Complexity of the most beam physics problems leads to
the necessity to create effective and adaptive methods for
numerical simulation (computing) including the optimization
procedure. The process of ordering and accumulation of used
knowledge, decomposition of the whole system into a set of
simple subsystems (real and/or virtual) can guarantee good
maintainability, reasonability, and extensibility of designed
codes for the following computing. At this step a designer
forms his understanding of practical problems under study.
Obviously it is necessary to pay attention to classification
and systematization of used knowledge about the problem.
It should be noted that the deep mathematical formalization
helps to create more adequate and effective mathematical
models and tools. As a result of such investigation is a
complex of mathematical models for beam lines under study,
appropriate computer models and a set of special optimiza-
tion methods. These investigating methods and tools must
guarantee an appropriate solutions with necessary effective-
ness and flexibility. Any beam line can be presented as a
control system with a some set of control parameters and
a set of control function. The control parameters describes
such characteristics as drift and magnetic elements lengths,
aperture and diaphragms sizes and so on. The control func-
tions correspond to electromagnetic fields ensure a desired
behavior of the beam. In particular, an essential part of
any control element is fringe fields, which make an impact
on beam characteristics. The complexity of beam dynamics
leads us to necessity of very careful investigation such
dynamical systems with control as beam lines. In the base
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of the suggested approach we put the matrix formalism for
Lie algebraic methods (see, for example, [1]) and a concept
of the LEGO-approach (see [2] and [3]) and can realize this
optimization process [4] for searching of an appropriate set of
optimal solutions. In another words we consider the problem
of global optimization as a problem of search for a set of
optimal solutions. This set gives the necessary information
for a beam line designer for selection of necessary variants
of beam line configurations.

Let us consider basic levels of the modeling process in
more detail [5]. On the first step we have to constrain a
hierarchy of so called approximating models. These models
inherits all essential properties of the system under study.
This inheritance is realized the step-by-step conception [4].
On this step a designer defines a hierarchical sequence of
problems. In particular he has to define necessary dynamical
equations, beam line models and a set of control parameters
and functions. On this step we should define a set of optimal
criteria, which can lead us to the appropriate solution.

The next step is the step of mathematical models, which is
augmented by necessary mathematical attributes and solution
methods. In this paper we constrain our formal picture using
the matrix formalism for Lie algebraic tools. This allows
us to obtain solutions of dynamical motion equations and
formulate practically all optimal demands using uniform
conception. On this step we methodically use computer
algebra methods and tools. In particular, in this case the
designer can formulate both solutions and optimal criteria in
the terms of elements of these block-matrices. The possibility
to find symmetries and invariants admitted by the system
allows us to enhance the effectiveness of our modeling
process.

II. THE MATHEMATICAL BACKGROUNDS

Following to [1] we can write the motion equations for
beam particles in the following form

dX
ds

=
∞∑

k=0

P1k(U; s)X[k], X0 = X(s0), (1)

were X(s) is a current phase vector of a particle (at s
measured along the beam line axis), P1k(B,U; s|s0) are two-
dimensional block-matrices collected all nonlinear effects of
k-th order and B, U(s) are a vector of control parameters
and a vector of control functions. The solution of the Eq. (1)
can be written in the matrix form too

X(U; s|s0) =
∞∑

k=1

R1k(B,U; s|s0)X
[k]
0 . (2)



Here R11(B,U; s|s0) is a matrizant presenting the solution
of the linear approximation model, R1k(B,U; s|s0), k ≥ 2
collect all aberrations of k-th order.

A. Control Vector Presentation

As mentioned above we have two control vectors: the
first vector is the vector of control parameters B, and
the second — the vector of control functions describing
electromagnetic field along the beam line axis. Let us define
this vector in more detail. The first group of parameters
defines the geometrical parameters of the beam line —
Bgeom, the second — the beam phase portrait characteristics
Bbeam. The control vector-function U(s) one can substitute
for a vector of control parameters Bforce — parametric
descriptions of the control functions U(s) (describing the
deflecting and focusing forces acting in the beam line). This
substitution should consider an approximating presentation
for the electromagnetic field distribution using a special
set of approximating function (see, for example, [6]). This
approach allow beam line designers to select appropriate
field distribution for the purpose of achievement of desired
results. The similar proceeding allows us to formulate the
problem of optimal control theory as a problem of nonlinear
programming, which can be written in the form

inf F(Y), dimF = r, dimY = n,

H(Y) = 0, dimH = m ≤ n,

G(Y) ≤ 0, dimG = p,

(3)

where r is a number of optimal criteria, F — a vector
optimal criterion, the vector function H describes equal-
ity restrictions and the vector function G — inequality
restrictions for the vector of control parameters Y =
{Bgeom,Bbeam,Bfield}T. As an example, we describe the
method of replacement of control function U with a vector of
control parameters Bfield. In the beam line theory the usual
form of description for control field distribution functions
there are used so-called square form functions (piecewise
constant functions). In this case of piecewise presentation the
vector Afield corresponds to “lengths and heights of steps” for
an applicable square form function Ufield(s) — a component
of the control vector Ufield(s).

It should be noted that the corresponding selection of
approximating functions has to satisfy to some special con-
ditions guarantee the physical constraints. On the next step
the designer can select functions which permit symbolic
solutions of linearized motion equations (for example, sin,
cos, Airy’s functions) in general or using polynomials (for
example, for sextupole lenses)

dX
ds

= P11(U; s)X, X0 = X(s0), (4)

B. A Dynamical Model

It should be note that the block-matrices R1k(s|s0) in the
(2) can be evaluated for auxiliary kinds of dependencies
P1k(s|s0) on s using the Magnus representation for a Lie
map [5], generated by (4). Unfortunately only for a small set

of functional dependencies of P11(s) from s one can eval-
uate matrices R11. Fortunately there is a set of appropriate
functions for which we can do it. Moreover these functions
can be chosen as a basis for control field approximation
(see, i. e. [6]). The set of these functions must be reduced,
because for the nonlinear aberrations, described by (2), we
must evaluate the nonlinear aberration matrices according to
the following formulae

R1k(s|s0) =

s∫

s0

R11(s|τ)P1k(τ)Rkk(τ |s0)dτ, (5)

where Rkk =
(
R11

)[k] is the Kronecker k-power of a
matrix R11. The equalities can be also used in the case
of approximation of control functions with polynomials
(in the case of spline-approximation approach). For these
cases we should use the coefficients of the corresponding
approximation functions as components of the control vector
Afield [6].

The evolution beam particles can be written not only in
the form of linear and nonlinear motion equation (2) or (3)
in the form of (2).

For the linear approximating model using (1) we can write
the following equation for a single particle for the linear
approximating model:

X(s) = R11(Bgeom,Bfield; s|s0)X0(Bbeam). (6)

Taking into account (6) we can write for N beam particles
the following equality:

MN (s) = R11(Bgeom,Bfield; s|s0)MN
0 (Bbeam), (7)

MN
0 = {X1

0, . . . ,X
N
0 }, Xk

0 ∈ M0, ∀k = 1, N,

where M0 is an initial set occupied by beam particles at the
initial moment s0, the matrix MN (s) describes the particle
distribution at the moment s for N particles. This set can
be presented using distribution function f(X, s) or so called
envelope matrix S. This matrix can be evaluated in the form

S(s) = A−1(s),

where A(s) is a form matrix for an ellipsoid X∗AX ≤ 1
approximating the set M(s), or

Srms(s) =
∫

M(s)

f(X, s)XX∗dX.

The evolution of f(X, s) and σ-matrices (II-B) and (II-B)
can be written in according the corresponding equalities [6].
For σ-matrix S evolution one can write:

S(s) = S11(s) =
∞∑

l=1

∞∑

j=1

R1l(s|s0)Slj
0

(
R1j(s|s0)

)∗
,

where

Sik
0 =

∫

M0

f0(X)X[i]
(
X[k]

)∗
dX, f0 = f(X, s0).



For distribution function we have [7]:

f(X, s) =
∞∑

k=0

F∗k X[k], f0(X) =
∞∑

k=0

(
F0

k

)∗
X[k], (8)

where

F0 = F0
0, Fk =

k∑

l=1

(
Tkl

)∗
F0

l , k ≥ 1. (9)

Here Tik (i ≤ k, k ≥ 2) can be evaluated under the
generalized Gauss’s algorithm:

T11 =
(
R11

)−1
, Tkk =

(
Rkk

)−1
=

(
R11

)−[k]
, (10)

and

Tik = −Tii
k∑

j=i+1

RijTjk, i < k, Tik ≡ O, i > k. (11)

C. Optimization Criteria

In the previous subsection we consider the basic equalities
in accordance with which dynamical beam evolution is prop-
agated. The matrix formalism allows designers to formulate
his criteria in terms of elements of introduced matrices. Let
us describe some of them for the problem of focusing system
design (here we base on high precision focusing systems with
additional demands, see, for example, [6], [7]). Let us discuss
some of these demands, which play one of the main role in a
focusing system design. As a simplest model of such system
we consider the system presented on Fig. 1, where a is a
“pre-distance”, g — a “working space”. A collimating system
can be consisted from several diaphragms, and a focusing
system consists from several quadrupole lenses or solenoids,
separated by drifts and a target system with sensors. This
system can also (if it is necessary) enclose a deflecting
system, which plays a role of scanning system.

Fig. 1. The preliminary scheme for a focusing beam line

One of the standard demands is the so called condition —
focusing “point-to-point”. Here we mean that a point-source
has to give the point-like image on the target of the beam
line. This condition is similarly to the corresponding demand
in the light optics. In the terms of elements of the matrizant
R11(s|s0) this condition can be written in the form

r12 = r34 = 0. (12)

The equalities (12) can be solved relative to one of drift
lengths. Usually this does for so called the length of working
space g (see Fig. 1).

The second part of focusing criteria can be chosen in the
following form

inf
parameters set

(
r2
11 + r2

33

)
. (13)

Analogue approach can be applied to other demands on
our focusing system and, if it is necessary, for the scan-
ning system. Let us consider (as an example of additional
constraint) the invariance requirement for beam image. In
another words here we mean the following condition: a
round portrait of the initial beam image in the configuration
space must get over a round portrait for a final image on
the target. The focusing system for four quadrupoles with
similar condition is well known as “russian quadruplet”, but
similar condition (it is very popular among physicists) can be
generalized for any case of a focusing system configuration
[5]. This demand can be presented in the following way

k(s) = −k(st − s), m11 = m22, (14)

where [s0, st] is the full interval of our system, and mik are
elements of the matrizant M11, where

R11
full = R11(st|s0) = LgM11La. (15)

Here La and Lg are matrizants for drifts with lengths equal
to a and g accordingly. The condition (14) leads us to the
following equality for the full matrizant

R11
full =

(
R11

x O
O R11

y

)
, R11

x = R11
y . (16)

As we mention above the length parameter g can be
evaluated using (12). In this case we obtain the value g
as a fractional rational function from mik and a. So we
convert one of optimal conditions to the inequality constraint
gtechn ≤ g ≤ gmax, where gmax is a maximal value of the
working space defined by the total system length Ltot.

Here we should note just usage of matrix formalism
allows us to formulate practically all physical demands as
mathematical object functions and corresponding limitations
in terms of matrix elements of R11. This approach can be
extended and for the case with fringe fields (as an essential
part of any real control element).

The special role for focusing systems for micro-and
nanoprobes play the problem of forming a given particle
distribution function on the target. This problem is solved
using nonlinear control elements, and also can be solved
in terms of elements of our matrix presentation for an
evolution operator of beam particles. In our notations we
mean the matrices R11 and R13, among them the second
matrix plays the main role. Indeed the equalities (8)–(11)
give us to evaluate the metric for convergence of desirable
and resulting on the target distribution functions in terms of
matrix elements of Tik and so Rik, i ≤ k, k ≥ 2.

So our physical optimization problem can be written as the
nonlinear programming problem (3). The described concept
of modeling allows to include and to extract control elements
at all steps of the process using the LEGO-technology [3].
This leads us to the concept of structural optimization,



according to this the designer obtains a possibility to search
not only optimal parameters of the beam line but an optimal
structure of the beam line.

III. GLOBAL OPTIMIZATION FOR BEAM LINE
CONFIGURATION

It is known that practically any problem connected with
searching appropriate variants of beam line configurations
can be formulated as a problem of optimal control theory.
In another words a designer must make a choice anyway,
including selection a geometry configuration, a type of
focusing system (FODO-structure or solenoids sequence),
type and structure of scanning facility (if it is necessary) and
optimize linear and nonlinear parts of the beam line optics.
It is necessary to note that the corresponding optimization
problem is a multi-objective problem. Moreover, some of
these optimal conditions are antagonistic (for example, the
focusing and aperture demands). In some previous papers
the authors suggested the optimization technique based on a
step-by-step procedure [4], [5] for solving similar problems.
Usually this approach leads us to a set of appropriate

Fig. 2. The sequence of optimization steps.

solutions, and demands as a next step a computational
experiments for reduction of this set using some additional
restriction conditions. So on the first step of the optimization
process the designer must obtain a set of control parameters,
which determine some appropriate solutions. Selecting the
corresponding values as starting points he begin to study
these solutions including some more realistic variants of
electromagnetic fields in the control elements. In particular,
here we should mention so called fringe fields as an intrinsic
part of any control element in beam line facilities. Presen-
tation of fringe fields in term of model function from some
appropriate class of function [6] allows the designer not only
to study effects induced by fringe fields, but to optimize their
influence. It should be noted that the fringe field effect for
nonlinear beam dynamic is much complicated as compared
with this effect in the case of linear dynamics. So on this
second step the primary control parameters set is widened at
the expense of parameters for fringe fields model functions.

The straightforward process is usually used on the step of
linear optics design (see Fig. 2). On this step we use so called
structure optimization, which is an automatic synthesis of

beam line components, which guarantee the given properties
of the desired beam line. Thus the structure optimization
means optimization of a goal function (a weighted sum of
partial goal functions) under some constraints, describing
physical and geometrical restrictions. As a result of such
procedure is a set of optimal structures for the beam line. The
dynamical system of our beam line on this first step usually
very simple: the control electromagnetic field is described
by piecewise constant functions and space-charge forces are
neglected. On the second step the designer must include in
optimization process the additional parameters (see the note
on fringe fields model functions) without changing the set of
criteria and basic constraints on the set of control parameters.

A. Nonlinear Optimization

On the next step we should reject those variants, which
are not appropriate in respect to their practical realization. As
an example of similar reason we can indicate the problem
of agreement with tolerance restrictions on all parameters.
The corresponding analysis technique provides the beam line
designer with powerful qualitative and quantitative tools for
lattice studies. On the fourth step of our solution process
the selected structure variants line up in a sequence of the
most-appropriate options. It is necessary to note that on this
step one of important role can play cost parameters. In the
case of improper data we must input correction procedure
and repeat our process of optimal structure selection. Further

Fig. 3. The main steps of nonlinear optimization process



the designer must go on to the next step of nonlinear
optimization process. Indeed the optimization process on
this step is not so straightforward. This process reminds
of the process of predictor–corrector one. In according to
this the designer must correct his optimization process not
only after finishing results receiving. For this purpose he use
special analysis solvers, which help him to select nonlinear
optimization strategy (see Fig. (3)). An additional demands
and control parameters (i. e. for fringe field description) we
must include additional demands that may conflict with each
other. Here we must use a multi-objective optimizer, which
can solve our problem by producing a population of best-
ranked solutions on a multidimensional surface from which
a set of appropriate solutions can be chosen by the designer.

B. A Concept of Hierarchical Sequence of Approximation
Models

The above pointed approach is based on a concept of
hierarchical sequence of approximation models [4], which
can be built for an investigated beam line. Starting from lin-
ear dynamical model the designer must step-by-step include
more and more complex effects. Here the main problem is to
select the successive steps for similar process. Unfortunately
here there can not suggest the universal procedure. We can
be guided by our previous experience and, if it is possible,
some experimental data.

C. An Optimal Solution Strategy

Above described problems can be solved using the matrix
formalism for beam dynamic description on the one hand
and a combination of different kind of solvers for nonlinear
programming problems on the other hand. The previous
papers (see references to this paper) we use such methods as
a stochastic search (Monte-Carlo methods) on the initial step
of the problem solution, direct methods without derivatives
evaluation (in our case we use Himmelblau [8]). As we
discussed above the traditional processes of designing and
tuning any beam line then it is very difficult to model optimal
structure taking into account all sufficient conditions of the
different nature. Indeed often found solutions through trial
and error and the designer can not chose the appropriate
solutions. Her we describe a strategy of optimal solutions
search, which was approved for different kind of beam line
structures and destinations. In contrast to some published
papers devoted to similar problems (see,for example, [9])
we search a set of optimal solutions according to the step-
by-step concepts of optimization process [4]. For this goal
we separate our problem on several stages: from linear
approximation with piecewise constant distribution of the
control field up to nonlinear approximation with variant
fringe field distribution models. Let us point reasons of this
suggested approach to beam line design process:
– a very nonlinear problem (even for linear approximation
for beam dynamics) and many local optimums;
– a multi objective problem (typically the designer works to
optimize more than one property simultaneously);
– the designer would like to find the optimal tradeoff. These

reasons leads us to need usage of efficient and robust meth-
ods, which can “work” with many parameters and search
for multi-objectives. A combination of above mentioned
methods and multi-objective genetic algorithms (see, for
example, [10]) allows us to obtain very close solutions.
Moreover this permitted to obtain not only desirable results
for required parameters, but and very important information
about admissible tolerances for control parameters.

In the whole described approach can be formalized by the
following algorithm.
Step 0 A quasi admissible set B0

fin ⊃ Bfin is constructed
(according to the investigator’s experience).
Step 1 A selected optimization method (see above) is used for
optimal solution searching on the set: Bopt

0 ∈ Bfin ⊂ B0
fin.

Step 2 According to some strategy the new admissible set
B1

fin is constructed.
Step 3 The optimization problem is solved on the set B1

fin.
Step 4 This process is continued according described proce-
dure by proceeding to the second Step.
. . .
Step N The whole optimization process if finished under the
following condition implementation

BN
fin = Bfin.

The optimal solution obtained Bfin ∈ Bfin is treated as
required optimal solution.

As we mentioned above suggested optimization process
allows getting the tolerance information automatically, and
the designer can interrupt the optimal solutions searching
on the suitable step, if he obtains the desired tolerance
information.

IV. CONCLUSION

The discussed approach to global optimization based on
the matrix formalism for Lie algebraic tools and LEGO-
technology (both for description and solution levels) allows
to create effective and comfortable computer tools both for
beam dynamics and for optimization process. On the every
step of the optimization process the designer obtains all
necessary information for experimental verification (if it is
possible) or computational experiments using alternative nu-
merical methods and programm tools (for example, MAD X).
The optimization process is controlled by the designer and
permits to obtain useful additional information (i. e. tolerance
estimations for control parameters). Described approach was
tested on some different problems of beam physics and
demonstrated undoubted effectiveness (see, [4]–[7], [10]).
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