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Abstract
In this paper we examine stability of Lur’e-type

systems arising as a feedback superpositions of
infinite-dimensional linear blocks, described by integro-
differential Volterra equations, and periodic nonlinear-
ities. Such systems have multiple equilibria, so tradi-
tional methods of stability investigation, defined for sys-
tems with single equilibrium are of no good here. In the
paper traditional Popov method of a priori integral in-
dices is combined with two special techniques: Leonov’s
nonlocal reduction method and the Bakaev-Guzh proce-
dure. As a result new frequency–algebraic stability cri-
teria are established, yielding tightened estimates of sta-
bility domains in the space of the system’s parameters.
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1 Introduction
Many nonlinear systems with periodic nonlinearities

may be obtained by considered as a feedback intercon-
nection of a general linear time-invariant block and a
periodic nonlinearity. Such systems arise as models of
synchronization circuits [Margaris, 2003; Best, 2003;
Leonov et al., 2015]. Because of these applications, a
term “’synchronization system” has been coined to de-
note systems with periodic nonlinearities. Other appli-
cations include electrical machines [Stoker, 1950] and
vibration units [Blekhman, 1988].

Synchronization systems are featured by multiple equi-
libria (both stable and unstable ones). An important
problem related to their dynamics is whether every so-
lution converges to a certain equilibrium, as exemplified
by the model of a mathematical pendulum. Such a prop-
erty of the system is referred to as the gradient-like be-

havior. In phase-locked loops, the gradient-like behavior
corresponds to asymptotic vanishing of the phase error
(phase locking). In this work, we extend the criteria of
gradient-like behavior established in the prior publica-
tions [Leonov et al., 1996; Smirnova and Proskurnikov,
2019; Smirnova and Proskurnikov, 2020].

Standard methods of stability analysis used for sys-
tems with a unique equilibrium are inapplicable to syn-
chronization systems that are featured by multi-stability
effects. Two important techniques proposed for exam-
ination of such systems (in combination with the tra-
ditional Popov and Lyapunov methods of stability the-
ory) in the literature are the Leonov nonlocal reduc-
tion method and the Bakaev-Guzh procedure. Leonov’s
method [Leonov, 1984; Leonov and Smirnova, 1988;
Leonov et al., 1996] employ trajectories of a special
low-order “comparison system” (usually, mathematical
pendulum) in order to design special Lyapunov func-
tions (in the case of a finite-dimensional synchroniza-
tion system) or special integral quadratic constraints (in
case of general Volterra equation). The Bakaev-Guzh
procedure [Bakaev and Guzh, 1965; Perkin et al., 2012;
Smirnova and Proskurnikov, 2019] is a special trick that
allows one to consider only nonlinearities with zero av-
erage value over the period.

Each of these two techniques has its own advantages
and can be combined with the Popov method of a pri-
ory integral indices [Rasvan, 2006]; such a combina-
tion leads to efficient frequency-algebraic stability cri-
teria [Leonov et al., 1996; Smirnova and Proskurnikov,
2019]. The resulting criteria have been tested on special
synchronization systems [Smirnova and Proskurnikov,
2019; Smirnova and Proskurnikov, 2021; Smirnova
et al., 2021; Smirnova et al., 2022]; the estimates of
stability domains in the space of system’s parameters
appear to be rather tight. These becomes even tighter
if one combines the two approaches; such “universal”
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stability criteria, employing both the Leonov and the
Bakaev-Guzh techniques have been derived in our recent
paper [Smirnova and Proskurnikov, 2020].

More specific: what is the difference with previous
work? It is insufficient to say that we have an ex-
tension. In this paper we further develop the meth-
ods of [Smirnova and Proskurnikov, 2020] and ob-
tain the generalization of frequency-algebraic criteria
for Lagrange stability (every solution of the system is
bounded), which together with dichotomy theorems (ev-
ery bounded solution converges) provides the gradient-
like behavior. The resulting stability criterion is applied
to a phase-locked loop with a proportional integrating
filter. It is shown that the criterion gives rather good es-
timate for genuine stability domain.

2 Problem setup
Consider the infinite-dimensional synchronization sys-

tem described by integro-differential Volterra equation

σ̇(t) = b(t) + ρφ(σ(t− h))−
t∫

0

γ(t− τ)φ(σ(τ)) dτ.

(1)
Here h ≥ 0 ; φ : R → R; γ, b : [0,+∞) → R. The
solution of (1) is uniquely determined by the initial con-
dition

σ(t)|t∈[−h,0] = σ0(t) ∈ C[−h, 0] (2)

with

σ(0 + 0) = σ0(0). (3)

We adopt the following assumptions.
A1) The function b(t) is continuous, the function γ(·)

is piece–wise continuous and b(t) → 0 as t → ∞.
A2) The linear part of (1) is stable:

γ(t)ert, b(t)ert ∈ L2[0,+∞) (r > 0). (4)

A3) The function φ(σ) is C1-smooth and ∆–
periodic. It has two simple zeros 0 ≤ σ1 < σ2 < ∆
with φ′(σ1) > 0, φ′(σ2) < 0. Without loss of generality
we assume that ∫ ∆

0

φ(ζ) dζ ≤ 0. (5)

Equation (1) describes a special case of Lur’e system,
which is interconnection of the infinite-dimensional lin-
ear system and the periodic nonlinearity. Such system is
often called synchronization system.

The most significant asymptotic property of any syn-
chronization system is its gradient–like behavior. Sys-
tem (1) is said to be gradient–like if every its solution
converges to an equilibrium:

σ̇(t) −−−→
t→∞

0, σ(t) −−−→
t→∞

σeq, φ(σeq) = 0. (6)

To guarantee the gradient–like behavior of synchro-
nization system (1) there exists a number of theorems
formulated in terms of the transfer function of its linear
part from the input φ(σ) to the output (−σ̇):

K(p) = −ρe−ph +

∫ ∞

0

γ(t)e−pt dt (p ∈ C) (7)

(see [Smirnova and Proskurnikov, 2019; Smirnova and
Proskurnikov, 2020] and references therein). These the-
orems have the form of frequency-algebraic criteria,
containing frequency inequalities with a number of vary-
ing parameters and algebraic restrictions on these param-
eters.

The frequency-algebraic criteria provide the estimates
of stability domains for synchronization systems. The
goal of this paper is to obtain new criteria which give the
opportunity to refine such estimates.

3 Lagrange stability
In this paper we divide the stability investigation of

synchronization systems into two parts. First we shall es-
tablish the conditions for Lagrange stability of synchro-
nization system, i.e. for the boundedness of its every so-
lution. Then we shall go on with the frequency-algebraic
conditions of gradient-like behavior for bounded solu-
tions of (1). We exploit here the Popov method of a pri-
ori integral indices [Rasvan, 2006] traditionally used for
Volterra equations. To prove Lagrange stability we use
the nonlocal reduction technique [Leonov et al., 1996]
which prescribes to inject into Popov functionals trajec-
tories of Lagrange stable comparison system of low or-
der.

We shall need a second oder comparison system

ż = −az − φ(σ) (a > 0),
σ̇ = z,

(8)

which has been exhaustively investigated (see [Leonov
et al., 1996] and references therein). Equation (8) has
Lyapunov stable equilibria (0, σ1+∆k) and saddle-point
equilibria (0, σ2+∆k) (k = 0,±1, . . .). It has a bifurca-
tion value acr such that if a > acr every solution of (8)
converges to some equilibrium.

In this case the first order equation

F (σ)
dF

dσ
+aF (σ)+φ(σ) = 0 (F (σ) = σ̇ = z), (9)

associated with (8), has solutions Fk(σ) (k ∈ Z) such
that

Fk(σ2 +∆k) = 0, Fk(σ) ̸= 0 ∀σ ̸= σ2 +∆k,

Fk(σ) −−−−−→
σ−→∓∞

±∞.

(10)
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Figure 1. The separatrices of a saddle and the solution F0(σ)

The solution Fk(σ) is produced by two separatrices
which “go in” the point (σ2 +∆k, 0) (see Fig. 1).

Introduce the constants

µ1
∆
= inf

σ∈[0,∆)
φ′(σ); µ2

∆
= sup

σ∈[0,∆)

φ′(σ) (µ1µ2 < 0)

(11)
and the function

Φ(σ)
∆
=

√
(1− α−1

1 φ′(σ))(1− α−1
2 φ′(σ)) (12)

with α1 ≤ µ1, α2 ≥ µ2.
Theorem 1. Suppose there exist ε > 0, τ ≥ 0, δ >

0,κ ∈ [0, 1], λ ∈ (0, r
2 ) α1 ≤ µ1, α2 ≥ µ2 such that the

following conditions are true:

1)

π(ω, λ)
∆
= Re{K(ıω − λ)− τ(K(ıω − λ)+

+α−1
1 (ıω − λ))∗(K(ıω − λ) + α−1

2 (ıω − λ))}−
−ε|K(ıω − λ)|2 − δ ≥ 0, ∀ω ≥ 0,

(13)
where the symbol (∗) means the complex conjugation;

2)

4λεδ > (1− κ)2ν2λ+ a2crκδ (14)

with

ν = ν(τ1)
∆
=

∫ ∆

0

φ(σ)dσ∫ ∆

0

|φ(σ)|
√
1 +

τ1
ε
Φ2(σ) dσ

, (15)

where τ1 ∈ [0, τ ] and is such that

|ν(0)|
√
1 +

τ1
ε

max
σ∈[0,∆)

Φ2(σ) ≤ 1. (16)

Then (1) is Lagrange stable.

Proof. We use the standard scheme of Popov’s
method [Smirnova and Proskurnikov, 2019]. Let σ(t) be
an arbitrary solution of (1), η(t) = φ(σ(t)). Determine
the functions (T > 0):

v(t)
∆
=


0, if t < 0,

t, if t ∈ [0, 1],

1, if t > 1;

(17)

ηT (t)
∆
=

{
v(t)η(t), if t ≤ T,

0, if t > T ;
(18)

ζT (t)
∆
= ρηT (t− h)−

∫ t

0
γ(t− τ)ηT (τ) dτ. (19)

Functions ηT are continuous only if σ(T ) = σi +∆k
where k ∈ Z, σi ∈ [0,∆) (i = 1, 2) is a zero of φ(σ).
Otherwise they have a gap for t = T . We consider only
continuous ηT . For these it is obvious that

ηT , η̇T , ζT ∈ L1[0,+∞) ∩ L2[0,+∞). (20)

Note that for t ∈ [0, T ]

ζT (t) = σ̇(t) + bT (t), (21)

where

bT (t)e
rt ∈ L2[0,+∞). (22)

Let [f ]µ(t) ∆
= f(t)eµt (µ ∈ R).

Then

[ζT ]
λ(t) = ρeλh[ηT ]

λ(t−h)−
∫ t

0

[γ]λ(t−τ)[ηT ]
λ(τ) dτ.

(23)
Denote the set of all σ2 +∆k (k ∈ Z) by S. Let

Σ
∆
= {T : T > 0, σ(T ) ∈ S}. (24)

If Σ is bounded then the function σ(t) is bounded as
well.

Suppose Σ is not bounded. For T ∈ Σ consider the
functionals

RT
∆
=

∞∫
0

{[ηT ]λ[ζT ]λ + ε([ζT ]
λ)2 + δ([ηT ]

λ)2+

+τ([ζT ]
λ − α−1

1 ηT,λ)([ζT ]
λ − α−1

2 ηT,λ)} dt
(25)

where

ηT,λ(t)
∆
=

d

dt
([ηT ]

λ)− λ[ηT ]
λ (t ̸= 0, T ). (26)

Notice that

F([ζT ]
λ)(ıω) = −K(ıω − λ)F([ηT ]

λ)(ıω), (27)
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F(
d

dt
[ηT ]

λ) = ıωF[ηT ]
λ(ıω), (28)

where F(f)(ıω) stands for Fourier–transform of function
f .

Then in virtue of Plancherel theorem one has

RT = − 1

2π

∫ +∞

−∞
π(ω, λ)|F([ηT ]λ)(ıω)|2 dω. (29)

It follows from (13) that

RT ≤ 0 ∀T ∈ Σ. (30)

On the other hand

RT ≥ R1T
∆
=

T∫
0

{ηvζT + εζ2T + δ(vη)2+

+τ(ζT − α−1
1

d

dt
(vη))(ζT − α−1

2

d

dt
(vη))}e2λt dt.

(31)
In virtue of (21), (22) one has

R1T = IT + I1T (T ∈ Σ), (32)

where

IT =
T∫
0

{δ(φ(σ(t)))2 + εσ̇2(t) + σ̇(t)φ(σ(t))+

+τ σ̇2(t)Φ2(σ(t)}e2λt dt
(33)

and the integrals I1T are uniformly bounded:

|I1T | ≤ C (T ∈ Σ), (34)

where C does not depend on T .
Then relations (32), (30) and (34) imply that

IT ≤ C (T ∈ Σ), (35)

where C does not depend on T .
Consider condition 2) of Theorem 1.
Let κ > 0. Denoting

ε2
∆
=

(1− κ)2

4δ
ν2, ε1

∆
= ε− ε2, (36)

one obtains from (14) that

4λε1 > a2crκ. (37)

According to (36) one has

IT ≥ J1T + J2T , (38)

where

J1T
∆
=

T∫
0

{(1− κ)φ(σ(t))σ̇(t) + τ1σ̇
2(t)Φ2(σ(t))+

ε2σ̇
2(t) + δφ2(σ(t))}e2λt dt,

(39)

J2T
∆
=

T∫
0

{κφ(σ(t))σ̇(t) + ε1σ̇
2(t)}e2λt dt. (40)

Consider the functional J1T . In order to get uniform
estimate we apply the Bakaev–Guzh procedure [Leonov
et al., 1996] which singles out from φ(σ) the function
with the zero mean integral value on the period. We in-
troduce:

P (σ) =

√
1 +

τ1
ε
Φ2(σ), (41)

Ψ(σ) = φ(σ)− ν|φ(σ)|P (σ). (42)

As ε2 < ε we obtain from (39)

J1T >

T∫
0

{(1− κ)ν|φ(σ(t))|σ̇(t)P (σ(t))+

+ε2P
2(σ(t))σ̇2(t) + δφ2(σ(t))}e2λt dt+

+(1− κ)
T∫

0

Ψ(σ(t))σ̇(t)e2λt dt.

(43)

The first addend in the right–hand part of (43) is non-
negative in virtue of (36). Consider the second addend:

T∫
0

Ψ(σ(t))σ̇(t)e2λt dt = e2λT
σ(T )∫

σ(T0)

Ψ(ζ) dζ, (44)

where T0 ∈ [0, T ]. The functions Ψ(σ) and φ(σ) have
the same zeros. It is obvious that∫ ∆

0

Ψ(ζ) dζ = 0. (45)

It follows from (5), (16), and (45) that∫ σ(T )

σ(T0)

Ψ(ζ) dζ ≥ 0 (T ∈ Σ). (46)

As a result we conclude that

J1T > 0 (T ∈ Σ). (47)

Then we have from (35) and (38) that

J2T < C (T ∈ Σ), (48)

where C does not depend on T .
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We shall apply the nonlocal reduction technique now.
Consider the equation

F (σ)
dF (σ)

dσ
+ 2

√
λε1
κ

F (σ) + φ(σ) = 0. (49)

It follows from (37) that (49) has solutions Fk(σ) with
the properties (10). Note that F̂k =

√κ
2 Fk is a solution

of the equation

F̂ (σ)F̂ ′(σ) +
√
2λε1F̂ +

κ
2
φ(σ) = 0. (50)

Inject F̂k into J2T :

J2T =

T∫
0

{κφ(σ(t))σ̇(t) + ε1σ̇
2(t)+

+2F̂ ′
k(σ(t))F̂k(σ(t))σ̇(t) + 2λF̂ 2

k (σ(t))}e2λt dt−

−F̂ 2
k (σ(T ))e

2λT + F̂ 2
k (σ(0)).

(51)
Transform J2T :

J2T = J0T − F̂ 2
k (σ(T )))e

2λT + F̂ 2
k (σ(0)), (52)

where

J0T =

T∫
0

{[
√
ε1σ̇(t) +

1

2
√
ε1

(
κφ(σ(t))+

+2F̂k(σ(t))F̂
′
k(σ(t))

)]2
− 1

4ε1

(
κφ(σ(t))+

+2F̂k(σ(t))F̂
′
k(σ(t))

)2

+ 2λF̂ 2
k (σ(t))

}
e2λt dt.

(53)

Notice that

J0T ≥
T∫

0

{
2λF̂ 2

k (σ(t))−
1

4ε1
(κφ(σ(t))+

+2F̂k(σ(t))F̂
′
k(σ(t)))

2
}
e2λt dt =

=

T∫
0

{[√
2λ F̂k(σ(t))−

κ
2
√
ε1

φ(σ(t))−

− 1
√
ε1

F̂k(σ(t))F̂
′
k(σ(t))

][√
2λF̂k(σ(t))+

+
κ

2
√
ε1

φ(σ(t)) +
1

√
ε1

F̂k(σ(t))F̂
′
k(σ(t))

]}
e2λt dt.

(54)
Since F̂k is a solution of (50) the integral in right–hand

part of (54) is equal to zero. So

J2T ≥ −F̂ 2
k (σ(T ))e

2λT + F̂ 2
k (σ(0)). (55)

Then it follows from (55) and (48) that

F̂ 2
k (σ(t))e

2λt ≥ F̂ 2
k (σ(0))− C (56)

for σ(t) = σ2 +∆l (l, k ∈ Z).
Let us exploit the properties (10) of functions Fk(σ).

We choose the number k0 ∈ N so large that

σ2 −∆k0 < σ(0) < σ2 +∆k0, (57)

and

F̂ 2
±k0

(σ(0)) > C. (58)

The inequalities (56) and (58) imply that

Fk0
(σ2 +∆l) ̸= 0 (l ∈ Z). (59)

Thus

σ2 −∆k0 < σ(t) < σ2 +∆k0. (60)

Consider now the case κ = 0. The inequality (14)
takes the form

4εδ > ν2. (61)

It this case we return to (33) and use the following rela-
tions:

IT ≥
T∫

0

{
φ(σ(t))σ̇(t) + τ1σ̇

2(t)Φ2σ(t)+

+εσ̇2(t) + δφ2(σ(t))
}
e2λt dt =

=

T∫
0

{
εP 2(σ(t))σ̇2(t) + δφ2(σ(t))+

+ν|φ(σ(t))|σ̇(t)P (σ(t))
}
e2λt dt+

+

T∫
0

Ψ(σ(t))σ̇(t)e2λt dt.

(62)

The estimates (35) and (46) imply that

T∫
0

{εP 2(σ(t))σ̇2(t) + δφ2(σ(t))+

+ν|φ(σ(t))|P (σ(t))}e2λt dt ≤ C (T ∈ Σ),

(63)

where C does not depend on T . In virtue of (61) it fol-
lows from (63) that for T ∈ Σ

T∫
0

φ2(σ(t))e2λt dt < C0 (64)

where C0 does not depend on T . Since Σ is not bounded
the estimate (64) is valid for all T > 1 which implies
that

φ(σ(t)) → 0 as t → +∞, (65)

whence [Leonov et al., 1996]

σ(t) → q as t → +∞, (66)

where φ(q) = 0.
Theorem 1 is proved. □
Theorem 1 is a generalization of a frequency-algebraic

criterion demonstrated in [Smirnova and Proskurnikov,
2020].
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4 Gradient–like behavior
The Lagrange stability does not guarantee the conver-

gence of solutions. That is why it is often considered to-
gether with the dichotomy property: every solution of (1)
is either unbounded or converges.

In particular the following dichotomy criterion is valid.
Theorem 2. [Leonov et al., 1996] Suppose for ε >

0, δ > 0, τ ≥ 0 the frequency condition π(ω, 0) ≥
0,∀ω ≥ 0 is true.

Then every bounded solution of (1) converges.

Meanwhile for certain values of varying parameters the
conditions of Theorem 1 guarantee the gradient–like be-
havior.

Theorem 3. Suppose all the conditions of Theorem 1
are fulfilled in the case of τ = 0.

Then equation (1) is gradient–like.

Proof. Since τ = 0 the functionals (25) transform into

R1T
∆
=

+∞∫
0

{[ηT ]λ(t)[ζT ]λ(t)+

+ε([ζT ]
λ(t))2 + δ([ηT ]

λ)2} dt

(67)

where functions ηT and ζT are defined by (18) and (19).
As R1T do not contain the derivatives η̇T we can use any
ηT with T > 0. In virtue of Plancherel theorem and (13)
with τ = 0 we establish that

R1T ≤ 0, ∀T > 0. (68)

It follows from the relations (18), (19), (21) that

R1T ≥ J3T + J4T (69)

where

J3T =

T∫
0

{η(t)σ̇(t) + εσ̇2(t) + δη2(t)}e2λt dt (70)

and J4T is uniformly bounded. Then (68) and (69) imply
the estimates

J3T ≤ C1, (71)

where C1 does not depend on T .
Consider the functionals

J5T =

T∫
0

{
η(t)σ̇(t) + εσ̇2(t) + δη2(t)

}
dt (T > 0).

(72)
We have

J5T =

T∫
0

{(
η(t)σ̇(t) + εσ̇2(t) + δη2(t)

)
e2λt

}
e−2λt dt.

(73)

Note that

J5T = J3T̂ (74)

with T̂ ∈ [0, T ]. Then

J5T < C1, ∀T > 0. (75)

It is obvious that

J5T =

σ(T )∫
σ(0)

φ(σ) dσ + ε

T∫
0

σ̇2(t) dt+ δ

T∫
0

η2(t) dt

(76)
It follows from Theorem 1 that σ(t) is bounded. Then
we have from (75) that

σ̇(t), φ(σ(t)) ∈ L2[0, +∞). (77)

It is easy to show [Smirnova and Proskurnikov, 2019]
that (77) entails (6). □

Theorem 4. Let h = 0 and the functions γ(t), b(t)
have piece–wise continuous derivatives with

ḃ(t)ert, γ̇(t)ert ∈ L2[0,+∞). (78)

Suppose the conditions of Theorem 1 are fulfilled and
besides

α−1
1 α−1

2 = 0, (79)

ρ(α−1
2 + α−1

1 ) ≤ 0. (80)

Then system (1) is gradient–like.

Proof. Thanks to condition (79) we can get rid of η̇(t) in
functionals (25) and use the functions η(t) and ζ(t) for
all T > 0.

Let α−1
1 = 0. Determine the functions

ζ̄T (t) = ζT (t)− ρηT (t) and consider the functionals

R2T
∆
=

+∞∫
0

{(1 + λτα−1
2 )[ηT ]

λ(t)[ζT ]
λ(t)+

+(τ + ε)([ζT ]
λ(t))2 + δ([ηT ]

λ(t))2+

+τα−1
2 (

d

dt
[ζ̄T ]

λ(t))[ηT ]
λ(t)} dt

(81)

Note that

F(
d

dt
[ζ̄T ]

λ(t))(ıω) = −ıω(K(ıω−λ)+ρ)F([ηT ]
λ)(ıω).

(82)
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Then in view of Plancherel theorem we have

R2T = − 1

2π

+∞∫
∞

Re
{
(1 + λτα−1

2 )K(ıω − λ)−

−δ − (τ + ε)|K(ıω − λ)|2+
+ıωτα−1

2 K(ıω − λ)
}
|F([ηT ]λ)(ıω)|2 dω

(83)

whence in virtue of frequency-domain condition (13) it
follows that

R2T ≤ 0. (84)

On the other hand

R2T ≥ J6T − τα−1
2 ρ

T∫
0

d([ηT ]
λ(t))

dt
[ηT ]

λ(t) dt+ J7T

(85)
where

J6T =

T∫
0

{κ̄η(t)σ̇(t) + εσ̇2(t) + δη2(t)}e2λt dt+

+τ

T∫
0

(σ̇2(t) + (α−1
2 + α−1

1 )σ̈(t)η(t))e2λt dt,

(86)
with κ̄ = 1 + 2λτ(α−1

2 + α−1
1 ) and J7T is uniformly

bounded. The inequalities (84) and (85) imply

J6T ≤ C2, (87)

where C2 does not depend on T .
The case α−1

2 = 0 can be treated in the same way as
the previous one.

Introduce the functional

J8T
∆
=

T∫
0

{κ̄η(t)σ̇(t) + εσ̇2(t) + δη2(t)+

+τ(σ̇2(t) + (α−1
1 + α−1

2 )σ̈(t)η(t))} dt.

(88)

J8T = J6T̂ (89)

where T̂ ∈ [0, T ]. Then

J8T < C2 ∀T > 0. (90)

From (88) we have

J8T = κ̄
σ(T )∫

σ(0)

φ(σ) dσ + ε

T∫
0

σ̇2(t) dt+ δ

T∫
0

η̇2(t) dt+

+τ

T∫
0

(σ̇2(t)− (α−1
1 + α−1

2 )σ̇(t)η̇(t)) dt+

+τ(α−1
1 + α−1

2 ))(σ̇(T )η(T )− σ̇(0)η(0)).
(91)

Notice that in virtue of (11)

σ̇2(t)− (α−1
1 + α−1

2 )σ̇(t)η̇(t) =

= σ̇2(t)(1− (α−1
1 + α−1

2 )dφdσ ) ≥ 0.

Since every solution σ(t) is bounded on [0,+∞), the
relations (91) and (90) imply that the relations (77) are
valid. Thus the theorem is proved. □

5 Stability of the phase-locked loop with a propor-
tional integrating filter

In this section, we use the results of the previous ones
to obtain estimates of pull-in range for phase-locked loop
(PLL) with a proportional integrating filter (PIF).

The minimal structure of a PLL circuit is shown in
Fig. 2 and comprises the phase detector (comparator),
the low-pass loop filter and the voltage control oscillator
(VCO), which has to be synchronized with the reference
oscillatory signal.

The pull-in range characterizes capturing capabilities
of the PLL. It is defined mathematically [Leonov et al.,
2015] as the deviation between the reference and con-
trolled oscillators’ frequencies, for which phase locking
is guaranteed. Mathematically, phase locking is equiva-
lent to gradient-like behavior of the system, i.e., conver-
gence of each solution to one of the equilibria.

Figure 2. The minimal structure of a PLL circuit

We consider the PLL with PIF which is often described
by the second order system{

ż = − 1
T z − (1−m)φ,

σ̇ = z − Tmφ
(T > 0, m ∈ (0, 1)),

(92)
where φ(σ) describes the phase detector.

Let

φ(σ) = sin(σ)− β (β ∈ (0, 1)). (93)

It is obvious that (92) is easily reduced to integro-
differential equation (1) with

K(p) = T
Tmp+ 1

Tp+ 1
. (94)
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Figure 3. The stability domain of PLL with PIF (the area under the
red (upper) line) and its estimate (the area under the blue (lower) line)

The stability domain of synchronization system (93),
(94) in the plain {T 2, β} has been investigated for m =
0.2. For PLL with PIF we compare here the genuine
stability domain and its estimate supplied by frequency-
algebraic criteria.

In order to obtain the genuine stability domain we use
the qualitative analysis of (92) [Leonov et al., 1996].

The system has stable equilibriums {σeq1 =
arcsinβ + 2πk (k ∈ Z); zeq1 = 0} and saddle points
{σeq2 = π−arcsinβ+2πk (k ∈ Z); zeq2 = 0}. Three
types of asymptotic behavior are possible here:

i) The system is gradient-like (the phase portrait on the
plane {σ, z} is analogous to one on Fig. 1).

ii) The system has one stable limit cycle of the second
kind:

∃ θ > 0, I ∈ N : z(t+ θ) = z(t), σ(θ) = σ(t) + 2πI,

in the half plane z > 0.
iii) The system has two limit cycles of the second kind

in the half plane z > 0. The lower cycle is unstable and
the upper one is stable.

The stability of the system can be demonstrated by the
analysis of two separatrices of a saddle (σeq2, 0) which
adjoin to it with z(t) > 0 in its vicinity. The separa-
trix z = F (σ) which “enters” (σeq2, 0) oughts to tend
to +∞ as σ → −∞ and the separatrix z = F̃ (σ)
which “goes out” from (σeq2, 0) oughts to vanish for
σ < σeq2 + 2π. The numerical analysis of the two sep-
aratrices gave the opportunity to obtain the stability do-
main of (92) on the plain {T 2, β}. Its frontier is shown
in Fig. 3 by the red (upper) line. The stability domain is
situated under the frontier.

The estimate of the stability domain was obtained
here by Theorem 1 and Theorem 2 with α1 = µ1 =
−1, α2 = µ2 = 1. Frequency-domain condition 1) of
Theorem 1 takes the form

τT 2y2 + y(T 3m+ τT 2λ+ τP 2 − (ε+ τ)T 4m2−
−δT ) + (τλ2P 2 + TRP − (ε+ τ)T 2R2−
−δP 2) ≥ 0, ∀y ≥ 0

(95)

with

P = 1− Tλ,R = 1− Tmλ. (96)

The varying parameters

τ ≥ 0, ε > 0, δ > 0, λ ∈ (0;
1

2T
),

satisfy the algebraic condition

4λεδ − (1− κ)2ν2(τ1)λ− a2cr(β)κδ > 0 (97)

where

|ν(x)| =

∣∣∣∣
2π∫
0

(sinσ − β) dσ

∣∣∣∣
2π∫
0

∣∣∣ sin γ − β
∣∣∣√(1 +

x

ε
sin2 σ) dσ

with κ ∈ [0, 1], τ1 ∈ [0, τ ] and

τ1 ≤ ε(ν−2(0)− 1). (98)

For any β the value of acr was established by numer-
ical analysis of separatrices of system (8) (analogous to
the analysis done for the stable case of system (92)).
Thus we obtained the curve acr = acr(β).

Then for a couple (T 2;β) inequalities (95), (97) were
verified for various permissible values of varying param-
eters.

We scan the interval (0, 1
2T ) for λ to analyse the con-

ditions of Theorem 1.
It is clear that in case when

λP > TR (99)

and either

P 2 + T 2λ− T 4m2 > 0 (100)

or

|T 2λ+ P 2 − T 4m2| < 2T
√
λ2P 2 − T 2R2 (101)

one can provide that all the conditions of Theorem 1 are
fulfilled by choosing the value of τ big enough.

Otherwise the coefficients of quadratic trinomial
in (95) and its discriminant determine the upper lim-
its for permissible τ, ε, δ. Scanning with small steps
the intervals for τ, ε, δ,κ we verify the conditions (95)
and (97).

As soon as for a set of varying parameters the inequal-
ities (95), (97) proved to be valid the Lagrange stability
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of (92) was fixed. Obviously, if λ = 0 the condition (95)
is valid for ε, τ, δ small enough. Then it follows from
Theorem 2 that any Lagrange stable system (92) is a
gradient-like one. The frontier for the estimating stabil-
ity domain is drawn in Fig. 3 by the blue (lower) line.
The domain is situated under the frontier.

Thus Theorem 1 and Theorem 2 give for mathemati-
cal modell (92) rather good estimate of pull-in range for
any value of T 2. It should be also mentioned that the
estimate of the pull-in range obtained by Theorem 1 and
Theorem 2 coordinates with the results of numerical sim-
ulation of a concrete PLL given in [Leonov et al., 2015]
in Fig 9. The hidden oscillations, found in [Leonov et al.,
2015] appear beyond the estimate of pull-in range.

6 Conclusion
In the paper we go on with investigation of asymp-

totic behavior of infinite-dimensional synchronization
systems described by integro-differential Volterra equa-
tions. Combining basic techniques applied for sta-
bility analysis of synchronization systems we demon-
strate frequency-domain criteria for gradient-like behav-
ior. New criteria give the opportunity to improve esti-
mates of stability regions in the space of system param-
eters. They can also be used to improve the tools for
estimating of cycle-slipping developed in [Perkin et al.,
2013].
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