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Abstract
The paper is devoted to the research of the properties

of stability and asymptotic stability solutions for bilin-
ear system of the differential equations with impulse
actions in the right part of system with delay. The suf-
ficient conditions are received for stability and asymp-
totic stability solutions for system of such differential
equations.
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1 Introduction
The article is dedicated to investigation of nonlin-

ear systems of differential equations with delay and
impulse effects. Such systems having discontinuous
trajectories are found in various technical systems, in
biology and economics [Zavalishchin, Sesekin, 1997;
Miller, Rubinovich, 2013]. Properties of asymptotic
stability for such systems were considered in [Sesekin,
Zhelonkina, 2016]. In this paper the bilinear system
was examined. In this systems right part there is a com-
ponent which contains delay and impulse action which
plays a role of disturbance of the right part. The prop-
erty of asymptotic stability was provided due to asymp-
totic stability of linear part of the system without an
impulse component and without a term containing de-
lay. In this work we assume that the uniform system
with delay without impulse is unstable and property of
stability and asymptotic stability are reached due to im-
pulse effects. Unlike [Sesekin, Zhelonkina, 2016] in
the given paper the generalized effects do not contain a
regular component and are a generalized derivative of
the step function. In the right part of the system there
are incorrect operations of multiplication of discontinu-
ous functions on the generalized function. The decision
is understood also as in [Zavalishchin, Sesekin, 1997;

Sesekin, Fetisova, 2010], pointwise limit of a sequence
of smooth solutions which is generated by a smooth
approximation of the generalized impact if this limit
does not depend on the sequence approximation selec-
tion. Related problems in the formalization of impulse
systems, proposed by A.M. Samoilenko, for systems
without delay were considered in [Samoilenko, Per-
estyuk, 1995] and for systems with delay were stud-
ied in [Cheng, Deng, Wang, 2013]. We note that the
formalization of the solution, which is used in this ar-
ticle, does not allow the dependence of the jump of the
trajectory from the delay [Sesekin, Fetisova, 2010]. In
this case, the dependence on the delay leads to an am-
biguous definition of the jump of the trajectory.

2 The stability of bilinear system with impulse ac-
tions in a system matrix

Consider the system of the differential equations

ẋ(t) = (A+

m∑
i=1

Div̇i(t))x(t) +Aτx(t− τ), (1)

where A, Aτ Di (i ∈ 1,m) — n × n- constant
matrix, vi(t) — vector function components of a
piecewise constant continuous at the left v(t) =
(v1(t), v2(t)..., vm(t))T , {tk}, k = 1, 2, ..., n, ... un-
limited sequence of function v(t) points of discontinu-
ity.
In this case the equation (1) will take a form

ẋ(t) = (A+
∞∑
k=1

m∑
i=1

Di∆vi(tk)δ(t− tk))x(t)

+Aτx(t− τ). (2)



Let the matrices Di (i ∈ 1,m) be mutually commuta-
tive. Then there exists an approximable solution x(t) of
the equation (2), which will satisfy the integral equa-
tion

x(t) = φ(t0) +

∫ t

t0

Ax(ξ)dξ +

∫ t

t0

Aτx(ξ − τ)dξ

+
∑
ti<t

S(ti, x(ti),△v(ti + 0)),

and discontinuity functions are defined by the follow-
ing equations

S(tk, x(tk),△v(tk + 0)) = z(1)− z(0), (3)

ż(ξ) =
m∑
i=1

Diz(ξ)△vj(tk), z(0) = x. (4)

where

∆vi(tk) = vi(tk + 0)− vi(tk).

We assume that functions of bounded variation x(t)
and v(t) are left continuous functions. We note that
the function x(t) on the set (tk, tk+1] is continuous and
satisfies the differential equation

ẋ(t) = Ax(t) +Aτx(t− τ). (5)

Theorem. We will assume that there exists a positive
definite dimensional n× n the matrix P , the matrix

(
PA+ATP − αP PAτ

AT
τ P −βP

)
, (6)

where α and β > 0 are some positive constants, is neg-
ative definite. In addition, we assume that the deriva-
tive, in view of the system (4) of the Lyapunov function

V (x(t)) = xT (t)Px(t), (7)

satisfies the inequality

V̇ (x(ξ)) ≤ −γV (x(ξ), γ > 0 (8)

tk+1 − tk > τ ∀k = 1, 2, .... Let us introduce the
following notation

θk = k ln(e−γ + βτ) + (α+ β)(tk − t0). (9)

If

θk < Q, (10)

where Q is same constant, then the trivial solution of
the system (2) will be stabile and if

lim
k−→∞

θk = −∞, (11)

then the trivial solution of the system (2) will be asymp-
totic stabile.
Proof. The derivative Lyapunov function (7) along to

system (5) on [t0, t1] has an appearance form

V̇ (x(t)) = (Ax(t) +Aτx(t− τ))TPx(t)

+xT (t)P (Ax(t) +Aτx(t− τ)) =

(
x(t)

x(t− τ)

)T

×
(
PA+ATP PAτ

AT
τ P 0

)(
x(t)

x(t− τ)

)
(12)

Adding and subtracting in the right part (12)
αxT (t)Px(t) and xT (t− τ)Qx(t− τ) we receive

V̇ (x(t)) =

(
x(t)

x(t− τ)

)T (
PA+ATP − αP PAτ

AT
τ P −βP

)

×
(

x(t)
x(t− τ)

)
+ αxT (t)Px(t)

+βxT (t− τ)Px(t− τ) (13)

Considering that the matrix (6) is negative, from (13)
we have:

V̇ (x(t)) ≤ αV (x(t)) + βV (x(t− τ)). (14)

Increasing the right part in (14), we obtain

V̇ (x(t)) ≤ αV (x(t)) + β sup
ξ∈[t−τ,t]

V (x(ξ)) (15)

Applying an assessment of differential inequality from
[Alwan, Liu, 2013] to (15) we receive the inequality

V (x(t)) ≤ sup
ζ∈[t0−τ,t0]

V (x(ζ))e(α+β)(t−t0). (16)



Then (16) leads to the following inequality

V (x(t1)) ≤ Me(α+β)(t1−t0), (17)

where

M = sup
ζ∈[t0−τ,t0]

V (x(ζ)) = sup
ζ∈[t0−τ,t0]

φT (ζ)Pφ(ζ).

Let the value of V (tk) be known. Then after the action
of the impulse according to (8) we will to have

V (x(tk + 0)) ≤ V (x(tk))e
−γ . (18)

Now we will estimate V (t) on the interval (tk, tk + τ ].
On this interval the differential inequality (14) is also
satisfied.
After the integration procedure we receive

V (x(t)) ≤ V (x(tk + 0))

+α

∫ t

tk

V (x(s)) ds+ β

∫ t

tk

V (x(s− τ)) ds. (19)

The value V (x(s − τ)) does not exceed V (tk) with
s ∈ [tk, tk+τ ] (see Figure 1). Then from the inequality

Figure 1.

(19) we obtain

V (x(t)) ≤ V (x(tk + 0)) + βτV (x(tk))

+α

∫ t

tk

V (x(s)) ds.

Considering (18), from the last inequality we have

V (x(t)) ≤ V (x(tk))(e
−γ + βτ) + α

∫ t

tk

V (x(s)) ds.

Applying Gronwall’s inequality [Bellman, 1963] to this
inequality we receive

V (x(t)) ≤ V (x(tk))(e
−γ + βτ)eα(t−tk).

Hence

V (x(tk + τ)) ≤ V (x(tk))(e
−γ + βτ)eατ . (20)

Now we will estimate V (x(t)) on the interval [tk +
τ, tk+1]. For this purpose we will use inequality (15)
again. Applying Lemma 1 from [Alwan, Liu, 2013] to
(15) on the interval [tk + τ, tk+1] we receive

V (x(t)) ≤ sup
ζ∈[tk,tk+τ ]

V (x(ζ))e(α+β)(t−tk−τ).

Considering that V (x(t)) increases on the interval
[tk, tk + τ ], the previous inequality can be written as

V (x(t)) ≤ V (x(tk + τ))e(α+β)(t−tk−τ). (21)

Considering (20) from (21) we get

V (x(tk+1)) ≤ V (x(tk))(e
−γ + βτ)

×e(α+β)(tk+1−tk)−βτ . (22)

In accordance with (17) and (22) the following inequal-
ity holds

V (x(tk)) ≤ M(e−γ+βτ)k−1e(α+β)(tk+1−tk)−βτ(k−1).

The last inequality can be written as follows

V (x(tk)) ≤ Me(k−1)(ln(e−γ+βτ)−βτ)+(α+β)(tk−t0).

From this inequality follow statements of the theorem
(10) and (11) .
Example.
Consider the differential equation

ẋ(t) = x(t) + bx(t− τ)

+

∞∑
k=1

ck∆vkx(t)δ(t− k). tk = k. (23)

Let V (x(t)) = px2(t). Then for the system

ẋ(t) = x(t) + bx(t− τ)



V̇ (x(t)) =

(
x(t)

x(t− τ)

)T (
2p− αp bp

bp −βp

)

×
(

x(t)
x(t− τ)

)
+ px2(t) + βpx2(t− τ) (24)

The matrix

(
2− α b
b −β

)

will be negative definite according to the Hurwitz crite-
rion if △1 = 2−α < 0, △2 = αβ−2β− b2 > 0. Let
α = 2.1, β = τ = 0.1, b = 0.05. Then the Hurwitz
criterion will be satisfied. The derivative in view of the
system (4) of the Lyapunov function V = px2 will be

V̇ (x(s)) = 2ck∆vkV (x(s)), −γ = 2ck∆vk. (25)

The expression (9) for this example has the form

θk = k ln(e−γ + 0, 01) + 2, 2k.

So when −γ ≤ ln 0, 1 the trivial solution of the system
(23) will be asymptotic stabile. The last inequality can
always be ensured by the choice of ∆vk (see (25)).
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