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Abstract 
In this article dynamics of original mobile micro-robots 

are developed. Vibration-driven robots use ideas of moving 
as periodical motion by vibration of internal masses or 
shape changing. Such kind of robots is especially useful for 
medical applications designed for the motion through rather 
narrow channels and realization stop-start regimes of the 
robot body with small length of step. 
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1    Introduction 

Vibration-driven mobile robots can move in 
various environments without wheels, caterpillars or 
legs. The propulsion of the robot is provided due to 
vibration of internal masses inside the robot and the 
interaction of the robot’s body with the environment. 
The robot can move without separation from the 
supporting surface (Fig. 1) or hop (Fig. 2). On these 
figures we use following indication:1- robot body; 2- 
environment of robot; 3- supporting surface, 4- 
trajectory; Fz ,Fx – forces appearing as a result of 
motion of internal masses; Rz ,Rx – interaction forces 
between robot body and supporting surface; V- 
velocity of robot body. 

 

 
 

Figure 1. Motion of the vibration-driven robot without separation 
from the surface. 

 
Figure 2. Hopping motion of the vibration-driven robot 

 
Describing robots consist of a body with movable 

internal masses inside. The forces of interaction of 
the internal masses with the body and friction forces 
applied to the body by the environment enable the 
robot to move. Some aspects of the dynamics of 
motion of a body with an internal mass in a resisting 
medium and control of such a motion have been 
studied in different scientific papers. It has been 
indicated in that an asymmetry in the friction forces 
acting in the forward and backward directions is 
necessary for mobile vibration-driven robots. The 
most interesting idea for realization of high speed 
motion is idea of hopping robots. 

 
 

Figure 3. Classification of the Vibration –Driven Robots 
1 – internal movable masses, 2 – robot body, 3 – supporting 

surface 
 
This asymmetry of friction can be provided by 

anisotropy in the coefficient of friction (for example, 
due to a special coating of the contact surface), an 
asymmetry in the motion of the internal mass in the 



horizontal direction or the asymmetry of the normal 
pressure due to the vertical motion of the internal 
mass.  
Control of the direction and speed of the motion is 
provided by the regulation of the amplitude and the 
phase shift of the horizontal and vertical vibration 
excitation forces. 

Classification of vibration – driven robots (see 
fig.3) is considered with point of view of dimensional 
of space where the robot and his parts moves.  

In simplest case the robot moves in one- 
dimensional space or line (1-D). In this case 
displacement of the robot can be provided by motion 
of internal vibrating masses. In more complicate case 
the motion of robot is considered in two - 
dimensional space (2-D). This displacement may be 
realized with mobile internal masses moving with 
accordance of planar trajectory. The most 
complicated is motion of robot in three -dimensional 
(3-D) space. As it was in previous cases the motion 
of robot body can get by use of mobile internal 
masses that move in special tubes or rotate. In this 
paper we will consider 2-D robots.  

 
2    Dynamic model of sliding robot. 

The dynamical model of the vibration-driven robot 
with two internal masses, one of which moves in the 
horizontal direction and the other in the vertical 
direction, is schematically shown on fig. 4 [8, 9].  
 

 
Figure 4. Dynamic model of the robot moving along a horizontal 

surface. 
 

This model is represented by a body of mass m  

moving along a horizontal line OX  under the action 

of the forces xΦ  and yΦ  caused by the motion of 

the internal masses relative to the robot's body and 
the environment resistance force (not shown in the 
figure). Mass m  is equal to the total mass of the 

robot's body and the internal masses, 1x m ξΦ = − ɺɺ , 

where 1m  and ξɺɺ  are the magnitude of the 

horizontally moving mass and the acceleration of this 

mass relative to the body, and 
2y m ηΦ = ɺɺ , where 2m  

and ηɺɺ are the magnitude and acceleration of the 

vertically moving mass. 

We assume the excitation horizontal force xΦ  and 

yΦ  to be harmonic and shifted in phase by the 

angle 0ϕ  relative to one another, 

sinx xF tωΦ = ⋅ , ( )0siny yF tω ϕΦ = ⋅ + . 

The supporting surface acts on the body with 

forces of dry friction, fΦ , and viscous friction, vΦ . 

The analytical expressions for these forces have the 
form: 

sgn , 0f f N x xεΦ = − ⋅ ⋅ ⋅ ≠ɺ ɺ , 

v xε µΦ = − ⋅ ⋅ ɺ , 
where f  and µ  are the coefficients of dry and 

viscous friction, respectively, N  is the normal 

pressure force, and 1ε << .  
The purpose of this paper is to establish basic 

qualitative features of the dynamic behavior of 
vibration-driven robots and to investigate the 
possibilities for the control of such robots. To reach 
this goal, it could be helpful to have analytical 
relations, even for simplified cases. To do this end, 
we assume the friction forces to be small value, 
which is reflected in the small parameter ε  occurring 
in the expressions for these forces. 

Taking into account the expression for the normal 
pressure force, one can express the dry friction force 
as follows: 

( ) ( )0sin sgn ,f yf mg F t x F x tε ω ϕ ε Φ = − ⋅ + ⋅ + = − ⋅  ɺ ɺ , 

if 0x ≠ɺ . 

On this stage we assume that ymg F≥  and that 

the robot does not separate from the surface. The 
equation of motion in this case has the form 

( )sin , 0xmx F t x F x tω εµ ε− + + =ɺɺ ɺ ɺ . (1) 

Denote x V=ɺ and make the change of variables 

cosxF
u V t

m
ω

ω
= + , (2) 

to reduce Eq. (1) to a standard form: 
 

1
cos cos , ,x xF F

u u F u t t
m m m m

µε ϕ ϕ ϕ ω
ω ω

    = − ⋅ − + − =    
    

ɺ
(3) 

3 Numerical simulations 
The results of the numerical simulation of the 

motion of the robot are shown in Figs. 5 and 6. The 
simulation involved the solution of the differential 
equations (1) and (3) subjected to the initial 
conditions (0) 0x = , (0) 0x =ɺ , and (0) 0u = . The 

calculations were performed for 0.1,m =  9.81g = , 

2xF = , 0.9yF = , 20ω =  and various values of the 

friction coefficients fε  and εµ . Here and in what 

follows, all quantities are measured in SI units. 
Figure 5 presents the time history of the velocity 

V  obtained by solving numerically the exact 
equation of motion (Eq. (1)) with 0.5fε =  and 

0.2εµ = . Figure 2 corresponds to different values 

of the phase shift angle 0ϕ : 0 / 2ϕ π=  for Fig. 2a 

and 0 5 / 6ϕ π=  for Fig. 2b. Note that the maximum 

average velocity in this case is not attained at 

0 / 2ϕ π= , in contrast to the result of the 



asymptotic analysis. This disagreement is due to the 
fact that the friction coefficients 0.5fε =  and 

0.2εµ =  are not small enough and the asymptotic 

approximation has a noticeable error. 
 

 
a) b) 

Figure 5. Time history of the total velocity V at 0.5fε =  and 

0.2εµ =  

a: 
0 / 2ϕ π= , average velocity is 0.327;  

b: 
0 5 /6ϕ π= , average velocity is 0.454 

 
Figure 6 plots the average velocity of the robot 

V  versus the phase shift angle 0ϕ  for various fε  

and εµ . Curves 1, 2, and 3 are correspond to 

( 0.05fε = , 0.02εµ = ), ( 0.05fε = , 0.2εµ = ), and 

( 0.05fε = , 0.02εµ = ), respectively.  

 

 
Figure 6. Average velocity of the robot versus the phase  

shift angle 0ϕ  

 

 
Figure 7. Time history of the slow component of the velocity u  

 

Figure 7 shows the time history of the velocity 
of the average motion u  obtained by solving 
numerically the averaged equation of (3) for 

0.5fε =  and 0.2εµ = . The value of the steady 

velocity su  obtained by solving the transcendental 

equation is 0.48su = m/s 

Robots equipped with two-coordinate vibration 
exciters can move even in the absence of an 
asymmetry in the friction or vibration characteristics. 
The reverse in the direction of motion is provided by 
changing the phase difference between the vertical 
and horizontal excitation vibrations. 

 

 
 

Figure 8. Scheme of sliding robot with internal rotating mass 

(angle 0ϕ equal 900 ). 

Fig.8 shows the scheme of sliding robot with two 
internal rotating masses. In this case angle0ϕ equal 

900. Prototype of robot consists of robot body 1; 
electromotor frames 2; electro motors 3; encoder 4 
and rotating masses 5.  
 

4 Hopping vibration – driven robot 
On this stage we assume how the robot can 

separate from the supporting surface. If shows 
previous analysis robot body has maximum velocity 

for angle 0ϕ equal 900. Therefore we will consider 

hopping robot for this case. It means that internal 
mass is rotating around central point of robot body. 
Calculating scheme of the hopping robot on the fig.9 
is shown.  
 

 
Figure 9. Calculating scheme of the hopping robot 
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5 Mathematical model of hopping robot 
 
The motion of vibrating driven hopping robot 

can be described by system of differential equations. 
In a case when y>0, pressure force of supporting 
surface equal zero (N=0) and motion can be 
described by following equations:  





−=
=

,

,

mgФym

Фxm

y

x

ɺɺ

ɺɺ
                                              (4) 

where m – full mass of vibration - driven robot;  

,1 кmmm +=   

m1 –mass of rotating body; 
mк –mass of robot body. 
 
Force Ф, acting on the robot body, is determined as 

,2
1 rmФ ω=    (5) 

where  ω – frequency of rotation of internal moss; 
 r – distance between centers of masses; 
Projections of force Ф can be defined in a next 
form:  





⋅=
⋅=

,sin

,cos

ϕ
ϕ

ФФ

ФФ

y

х    (6) 

φ – angle between vector Ф and axis Ох. 
Angle φ is function of the time  

,ψωϕ += t     (7) 
ψ –shift phase angle, defining by initial position of 
internal rotating mass. 
 
In simplest case, each step begins with such 
conditions: 
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When y=0, the motion of considering system 
describing by differential equations: 





−=
+=

,

,

y

ТРx

ФmgN

FФxm ɺɺ
  (7) 

Where FТР – dry friction force: 
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(8) 

f –friction coefficient; N-normal pressure force, F0 – 
summ of external forces. 

 
The results of numerical solution of equations 

(4) and (8) are introduced on the figures in a form of 
time history of coordinates x and y and trajectories of 
central point of robot body. For solution of these 
equations special calculating algorithm was 
developed. Analysis of the results shows the shape of 
the trajectory of hopping motion depended on 
frequency and relation m1r/m. Figures 13-15 illustrate 
completely different trajectories of robot body. Fig.16 

introduce diagram of regimes of hopping motion of 
robot body. It is defined at least three zones providing 
the hopping motion. Zone 1 corresponds to trajectory 
introduced on diagram fig.12. Zone 2 accordingly - 
trajectory introduced on diagram fig.13. Zone 3 - 
trajectory introduced on diagram fig.14. 
 

 
Figure 10. Time history of the coordinate y (frequency 210 1/s). 

 

 
Figure 11. Time history of the coordinate x (frequency 210 1/s). 

 

 
Figure 12. Trajectory of central point of robot body for one 

revolution of internal mass while one hop. 

 



 
Figure 13. Trajectory of central point of robot body for two 

revolutions of internal mass while one hop. 
 

 

 
Figure 14. Trajectory of central point of robot body for three 

revolutions of internal mass while one hop. 
 

 
Figure 15. Trajectory of central point of robot body for fore 

revolutions of internal mass while one hop. 

 
Figure 16. Diagram of different regimes of hopping of robot body 

dependence on frequency and relation m1 r/m. 

 
Figure 17. Diagram of  maximal height of hopping robot 

dependence on frequency and parameter m1 r/m. 

 
Diagram on fig.17 shows dependence on 

maximal height of hopping robot dependence on 
frequency. We defined that height of hopping robot 
increase when frequency goes up. It is interesting that 
maximum average velocity corresponds to frequency 
equal about 260 1/s (see fig. 18).  

It is very important to reduce the vibration level 
transmitted to the equipment of the robot from the 
exciters it is reasonable to place this equipment on a 
special platform, isolated from the vibration-driven 
robot body by a spring-dashpot vibration absorber. 
We have considered viscous - elasticity supporting 
element. Parameters of this element are calculated by 
assistance of finite element method in SolidWorks 
software. Result of deformation calculation is shown 
on fig. 19. Fig. 20 shows the scheme of prototype of 
hopping robot with rotating masses. The robot 
consists of five main part two DC –motors 
maintained in a frame, IR-sensors, vibration absorber 
and control system. 
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Figure 18. Diagram of average velocity of robot body dependence 

on frequency for (m1·r)/m=2,34*10-4. 
 



 
 

Figure 19. Calculation of deformation of viscous - elasticity 
element by FEM method.  

 

 
Figure 20. The scheme of prototype of hopping robot with rotating 

masses. 
1 –robot body, 2 –frame of electrical DC-motor, 3 –rotating 

internal mass, 4 –IR – sensor , 5 – Viscous - elasticity elements, 6 
– video camera, 7-USB – connector.  

 
We have simulated landing process of the robot 

body for different parameters of viscous - elasticity 
elements. Some results on the fig. 21 are shown. This 
diagram introduces acceleration 1 and displacement 
of robot body 2 dependence on time. Our 
investigation has shown that level of acceleration can 
be decreased in many times comparing with landing 
of rigid body.  

 
Fig.21. Diagram of impact acceleration and displacement of robot 

body during landing on the supporting surface  

6. Conclusions 
In this paper original schemes of mobile robots for 
sliding and hoping motion with rotating internal 
masses, were developed. Mathematical models of 1-
D and 2-D vibration-driven robots were presented. 
By analytical method average velocity of robot body 
in different motion regimes were calculated. 
Numerical algorithm for calculation of dynamical 
parameters of motion allowed investigating 
periodical regimes of motion.  
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