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Abstract
In the increasing traffic scenario and the presence of

automated four-wheeler vehicle-like situations, we need
to consider the possible safe driving for the two-wheelers
also. As two-wheelers need manual balances, embed-
ding the autopilot systems is a tougher task. To re-
solve this issue, we attempt to address this problem
with probability spaces. Then, these classical probabil-
ity spaces are promoted into quantum probability spaces.
The quantum computing aspects such as quantum gates
are embedded in the analysis of the quantum probability
space. With those quantum computing protocols, various
traffic scenarios are calculated, such as the probability of
accidents and the avoidance probability of accidents. A
set of mathematical lemmas with certain conditions and
their proof for mapping classical to quantum probability
space and the singularities in this quantum probability
space are also discussed in this work.

Key words
Quantum computing application, classical probability,

quantum probability space, two-wheeler traffic safety,
accident risk modeling, Usable quantum computer

1 Introduction
Urbanization and economic growth have substantial in-

crease in the number of vehicles on roads, with two-
wheelers face the steepest incline. These vehicles, due
to their smaller size, reduced stability, and direct expo-
sure of riders to external hazards, are highly prone to
accidents. The increased density of two-wheelers in var-
ious regions has amplified the traffic concerns, particu-
larly the risk of collisions. As a result, the development

of effective collision avoidance systems (CAS) has be-
come the need of the hour.

Conventional CAS models focus on calculating safe
distances based on parameters such as vehicle velocity,
driver reaction time, and braking capabilities [Hasarinda
et al., 2023; Luo et al., 2022; Wu and Fu, 2023; Shen
et al., 2020]. These approaches, however, used to con-
sider that vehicles move independently and at constant
speeds, that leads to safe distances to be calculated in
isolation.

While these assumptions might rely for four-wheelers,
they address the dynamics of two-wheelers limitedly.
Two-wheelers consist unique behaviors such as lat-
eral movements and higher maneuverability, which can
highly affect safe distances. Additionally, real-world
traffic scenarios are rarely static, with sudden braking,
acceleration, and random maneuvers being a regular oc-
currence. Classical CAS models often neglect the com-
plex interdependencies that arise in peak traffic condi-
tions, where vehicle interactions are neither isolated nor
straightforward.

Recent advancements in automated driving systems
have introduced improved models that integrate machine
learning and real-time data analysis to predict and dimin-
ish accidents [Girija and Divya, 2024; Debbarma et al.,
2024; Arjaria et al., 2023]. These methods poweered
by behavioral data from surrounding vehicles to calcu-
late safe distances dynamically, to provide a promis-
ing improvement over traditional models. However, de-
spite their potential, these systems remain constrained by
the classical probabilistic frameworks within the regime
they operate. Such frameworks are limited in capturing
the detailed interdependencies and probabilistic states
inherent in dense traffic scenarios, especially in two-
wheelers. To address these issues, this paper explores the
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integration of quantum probability spaces and quantum
computing as a novel approach to increase the predictive
accuracy and applicability of CAS for two-wheelers in
complex traffic environments.

The existing direction of research on CAS has several
critical gaps that need to be addressed to improve traffic
safety for two-wheeler vehicles. In the existing classi-
cal probablistic modeling of traffic prediction, one major
gap is the lack of consideration for quantum probablistic
space, which would offer more detailed information re-
lated to the vehicle dynamics. In dense traffic scenarios,
the probable state of one vehicle can influence the prob-
able state of another. This will lead to complex probab-
listic space, about which the classical models struggle to
predict accurately.

The transition from classical probability space to quan-
tum probability space, which is discussed in this paper,
is not just a theoretical enhancement but also a practical
one. The power of quantum computing algorithms will
support the processing of complex, multidimensional in-
teractions in traffic scenarios far beyond what classical
systems can do. This paper discussed the possible model
by integrating quantum probability spaces with traffic
data, we can create more accurate and real-time colli-
sion avoidance systems, especially for vulnerable two-
wheelers.

The mathematical analysis will help to build bet-
ter traffic analysis systems. Earlier multiagent sys-
tems like traffic systems are discussed mathematically
in [Garcı́a Planas, 2023]. The multiple classical sys-
tems with interactions can be seen as a social interac-
tions model based on the Langevin equation reported in
[Petukhov, 2019].

Various methods are attempting to solve classical prob-
lems using the quantum mechanical approach. For ex-
ample travvelling salesman problem [Melnikov et al.,
]. Quantum computing has numerous proposed applica-
tions [Cho et al., 2021]. It has been used in quantum ma-
chine learning [Sharma and Renugadevi, 2024] , medical
applications [Flöther, 2023] and quantum cryptography
[Easttom, 2022] etc., The present work utilizes quantum
computing solutions for the two-wheeler traffic manage-
ment scenario.

The present work attempts to address existing research
gaps by proposing a novel approach that integrates quan-
tum computing aspects [Nielsen and Chuang, 2010;
Wilde, 2013] into the simulation of safe distances for
two-wheelers. In addition to the quantum probability
framework, this paper also proposes a quantum circuit
model that simulates the interactions between vehicles in
a traffic scenario. By considering each vehicle’s evolu-
tion state as a qubit and using quantum gates to simulate
interactions, this model provides a different method for
analyzing and predicting road accident probabilities.

This paper is structured as follows: Section 2 outlines
the problem statement and a comprehensive review of
the existing literature. Section 3 details the theoretical

framework of the proposed approach, including its math-
ematical foundation and assumptions. Sections 4 delve
into the novel application of quantum probability spaces.
Sections 5 and 6 discuss the transitions from classical
to quantum probability space. Section 7 underlines the
novel lemmas and theorems for this research work. Sec-
tion 8 discusses the quantum computing circuits for the
bike accident problem. Section 9 and 10 addresses ge-
ometric spaces and the accident happening scenareo in
dense streets woth density matrix and singularities. Sec-
tion 11 discusses the intersting results and discussion of
this work.

2 Problem Statememt
In the scenareo of heavy traffic there are various mod-

els available that discuss the possible avoidance of acci-
dents in road traffic. One of the solutions suggested is
automated cars [Nyholm and Smids, 2020; Pütz et al.,
2019]. The implementation of automated vehicles might
be helpful. But for case two wheelers, the automation re-
quires lots of research on the modification of its design.
We narrow down the problem as the avoidance of acci-
dents technology, supposed to be implemented in bikes
with existing technology, as well as the solution must be
like an add-on instead of completely changing the design
of the bike. Due to the complexity and unpredictability
of traffic scenarios that involve two-wheelers, particu-
larly in dense urban environments, existing methods of
modeling and predicting safe distances may fall short.

Classical models, including both deterministic and
stochastic approaches, have been widely used to discuss
the traffic dynamics. While deterministic models de-
pend on fixed parameters and predefined relationships,
stochastic methods incorporate randomness and condi-
tional probabilities. However, both approaches face lim-
itations when applied to dense traffic scenarios that con-
sists of a large number of interacting bikes. These limi-
tations include the computational complexity of explain-
ing all possible interactions and the need for explicit as-
sumptions about probabilities. To address these chal-
lenges, the present study explores a quantum probability
framework, which gives a more efficient and adaptable
approach to explain the interdependencies.

This limitation lets everyone think of a more advanced
approach that can account for the uncertainties and in-
teractions within such systems. To address these chal-
lenges, we propose implementation of quantum comput-
ing principles, especially quantum probability spaces, to
calculate and predict safe distances for bikes. Unlike
classical probability, which treats the possible events as
independent and definite, the discussed quantum proba-
bility allows for the consideration of superposition and
entanglement and shows the true complexity of interac-
tions in a multi-bike system in such probability space.
By mapping the classical bike dynamics problem into the
quantum probability space, we can understand better the
probabilistic nature of accidents and interactions. This
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mapping offers a more nuanced and more accurate so-
lution for accident avoidance in two-wheeler traffic sce-
narios. Regarding this problem, we create a safer dis-
tance solution from the bike. Within this distance from
the bike, in which the biker can ride without facing acci-
dents. The same solution is extended to the multiple bike
system. The solutions are then projected to the classical
probability space and the quantum probability space. In
those quantum probability scenarios, the quantum com-
puting solutions are analyzed by constructing quantum
computing circuits. The longitudinal safe distances and
lateral safe distances for each sought-after bike system,
such as one bike system, two bike systems, and three
bike systems, are calculated.

The quantum formulation discussed in this study is
stochastic, that reflects the probabilistic nature of quan-
tum mechanics. It explains the traffic dynamics by repre-
senting the system’s state as a superposition of possible
outcomes, with probabilities determined by the squared
magnitudes of quantum amplitudes. This stochastic
framework shows the uncertainty and complexity of
dense traffic scenarios, which may not be fully addressed
by deterministic approaches.

3 Safer Distances
Building on the challenges identified in Section 2, we

propose a novel framework with the advantage of quan-
tum probability spaces to address the limitations of clas-
sical models. For the bike which travels in a traffic,
we can calculate the safer distances with the mathemat-
ical perspectives. The safer distances can be coined as
x1(v,m), x2(v,m), y1(v,m), and y2(v,m), which cor-
responds to the distances in front, back, and sides of the
bike. The following assumptions can be introduced to
find out the solution of safer distances. As the velocity
of the bike increases, the required safe distances x1 and
x2 will also increase. This assumption is considered due
to the fact that higher velocities will require more time
and distance to stop or avoid obstacles. Similarly, for y1
and y2, higher velocity consequences for a greater po-
tential for lateral movement due to swerving or slipping.
Hence we assume that the safer distance is a function
of velovity. As the mass increases, the inertia of the
bike increases. This change will make the bike harder to
stop or change the moving direction. Hence, higher mass
would require larger safety distances such as x1, x2, y1,
and y2. For the case of safety distances, there may be
other negligible parameters such as reaction time, road
conditions, and tire grip. The safe distance function is
then calculated as,

x1(v,m) = k1 · va ·mb (1)
x2(v,m) = k2 · vc ·md (2)
y1(v,m) = k3 · ve ·mf (3)
y2(v,m) = k4 · vg ·mh (4)

Here, k1, k2, k3, k4 are constants that can be related to

the specific characteristics of the bike, such as the brak-
ing system and design. a, b, c, d, e, f, g, h are the expo-
nents that describe how strongly each factor affects the
safe distance function. Let’s determine the exponents for
x1(v,m) and x2(v,m). The distance required to stop
the bike is proportional to the velocity squared, as well
as proportional to mass due to the fact that greater the
mass of the bike requires more momentum for the bike
to be stopped. In the lateral distance, which depends
on how the bike might swerve or drift, the influence of
mass might be less direct, so for that case we can assume
a weaker dependence on mass. Hence we can assume,

a = 2, b = 1 c = 2, d = 1 (5)
e = 2, f = 0.5 g = 2, h = 0.5 (6)

The longitudinal distances x1 and x2 are strongly in-
fluenced by velocity due to the quadratic dependence of
stopping distance on speed. This is consistent with the
equation for stopping distance:

dstopping ∝ v2. (7)

Hence, the velocity exponents a and c are taken as 2.
The linear dependence of longitudinal stopping dis-

tance on mass reflects the relationship between momen-
tum and mass (p = mv) as well as the energy required
to stop the vehicle. This results the choice of b = 1 and
d = 1.”

Lateral distances y1 and y2 also show a quadratic de-
pendence on velocity. As velocity become higher and
that increases the risk of lateral drift or swerving. The
values e = 2 and g = 2 align with this observation.

As inertia plays a less dominant role in side-to-side
motion compared to forward or backward motion, the in-
fluence of mass on lateral distances is weaker than in the
longitudinal direction, A fractional value (f = h = 0.5)
represents this reduced dependence.

3.1 y < x
As α and β are less than 1, y1 and y2 will be less

than x1 and x2. This results in the lateral distances being
smaller than the longitudinal distances. With the condi-
tion y < x, longitudinal distances are obtained as,

x1(v,m) = x2(v,m) = k1 · v2 ·m (8)
x2(v,m) = k2 · v2 ·m (9)

Lateral distances are obtained as,

y1(v,m) = α · k1 · v2 ·m0.5 with α < 1 (10)
y2(v,m) = β · k2 · v2 ·m0.5 with β < 1 (11)

These safety distances are the functions of velocity and
ensure that the lateral safe distances are smaller than the
longitudinal ones.
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3.2 2 Bike case
While expanding the scenario for the bike system, the

interaction between the two vehicles in terms of safer
distance is also to be considered. The difference in the
velocities between the two bikes will affect the calcu-
lated safe distances. If the bikes are moving at different
velocities, the longitudinal distances x1 and x2 have to
be considered for the possibility of one bike catching up
to or being overtaken by the other. The lateral distances
y1 and y2 should be higher to avoid side collisions, es-
pecially when both bikes travel close. We can denote the
parameters for the first bike as v1, m1, and for the sec-
ond bike as v2, m2. The safer distances will then depend
on the parameters of both bikes.

Longitudinal Safe Distances
The Lateral Safe Distances are calculated for the two
bike systems as, For the front ir rear Bike a (relative to
Bike b),

x
(a)
i (va,ma, vb,mb) = ki ·(va+vb)2 ·(ma+mb) (12)

Here, xi(a) are the longitudinal distances for Bike a con-
cerning Bike b with a, b ∈ {1, 2}. Also i ∈ {1, 2}
Lateral Safe Distances
similarly the lateral distances are calculated for the be-
low conditions. For the left of Bike a (relative to Bike
b),

y
(a)
i (va,ma, v2,m2) = α ·k1 ·(v1+v2)2 ·(m0.5

1 +m0.5
2 )
(13)

We can find out that, the presence of a second bike in-
creases the required safe distances due to the need to
avoid possible collisions. Also, we can understand the
existence of possible symmetry in the safe distances,
which means the safe distance from Bike 1 to Bike 2
is the same as from Bike 2 to Bike 1. As the condition
y < x holds, the lateral distances will remain smaller
than the longitudinal ones.

3.3 3 Bikes scenareo
In most traffic, the 3-bike system often results in more

accidents. To avoid that, we can expand the two-bike
accidental avoidance scenario into three-bike scenarios.
The safe distance problem can be solved for both same-
direction and opposite-direction scenarios. Initially, we
focused on three bikes in the same direction. Let us con-
sider these three bikes a, b, c have velocities va, vb, vc
and masses ma, mb, mc.

Longitudinal Safe Distances
For Bike a travels relative to Bikes b and c,

x
(a)
i = ki ·(va +max(vb, vc))

2 ·(ma+mb+mc) (14)

Where a, b, c corresponds to bikes 1, 2, 3 respectively
and i reprecents the ith bike’s perspective of the accident
about to occur.

Lateral Safe Distances
For Bike a travels relative to Bikes b and c:

y
(a)
i = α·ka·(va +max(vb, vc))

2·
(
m0.5

1 +m0.5
2 +m0.5

3

)
(15)

y
(a)
j = β·kb·(va +max(vb, vc))

2·
(
m0.5

1 +m0.5
2 +m0.5

3

)
(16)

Here i&j reprecents the i, jth bike’s perspective of the
accident about to occur.

3.4 Three bikes in opposite directions
Then the safe distance calculations can be extended for

opposite directions of the three-bike system. When three
bikes in a road are traveling in opposite directions, the
safe distances, especially the lateral distances, are im-
portant to avoid head-on or side-swipe collisions. It is
safer to consider that for bikes traveling in opposite di-
rections, the effective velocity determining the safe dis-
tances is the sum of the individual velocities.

Longitudinal Safe Distances
For opposite directions, the terms longitudinal distances
preserve enough space for bikes to avoid a head-on col-
lision. The following scenarios can be considered for
that distance. If Bike a and Bike b are relative to each
other in opposite directions, the longitudinal distance is
determined as,

x
(a)
i = ki · (va + vb)

2 · (ma +mb) (17)

Lateral Safe Distances
Lateral safe distances are supposed to be notably in-
creased to avoid collisions when bikes are nearby but
moving in opposite directions. For this case, we can con-
sider the following scenarios. If Bike amoves relative to
Bike b in the opposite direction, then

y
(a)
i = α · ki · (va + vb)

2 ·
(
m0.5
a +m0.5

b

)
(18)

y
(a)
j = β · kj · (va + vb)

2 ·
(
m0.5
a +m0.5

b

)
(19)

The equations for xji where i, j ∈ 1, 2, 3 look sim-
ilar because they are based on the same fundamentals
that govern the interaction between the velocities and
masses of two moving bikes. In these equations, the
variables are considered to show the relative velocity
and combined mass of the bikes in each scenario. In
these equations, whether the bikes are moving in oppo-
site directions or the same direction, the equations in-
clude the sum of the velocities of the bikes will be like
(v1 + v2)

2, (v1 + v3)
2, (v2 + v3)

2

This indicates the relative motion between the bikes.
When bikes move in opposite directions, the sum of their
velocities determines how rapidly they approach each
other, which consequences the longitudinal distance be-
tween them.
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3.5 Safety velocity
For these safer distances, we can calculate the safety

velocity as an addition. To calculate the safety velocity
we need to consider the functional relationship between
velocity, safety distance, and the physical parameters of
the bikes. The safety velocity vs is the maximum veloc-
ity at which a motorcycle can travel while maintaining a
safe distance from other bikes or obstacles. Safety Ve-
locity for a single bike vs1 is related to the safety dis-
tance x1 and x2 and other physical parameters such as
reaction time tr, braking distance db, and deceleration a.
Then the safety velocity for a single bike can be calcu-
lated using the relation,

x1 = vs1tr +
v2s1
2a

(20)

here vs1 is the safety velocity for single bike, tr is the
reaction time of the rider and a is deceleration rate.

The safe stopping distance for a bike is affetced by
several factors, such as the rider’s reaction time, brak-
ing capacity, and deceleration rate. The relationship be-
tween these parameters leads to derive equation 20. The
equation is derived using the basic principles of kinemat-
ics, with the combination of reaction and braking dis-
tances. This is introduced to compute the safety velocity
required for collision avoidance.

Solving equation 20, for safety velocity term leads to

vs1 =
−tra+

√
(tra)2 + 2ax1
1

(21)

The equation 21 gives the safety velocity for a single
bike which depends upon the reaction time, deceleration,
and safety distance. To find the safety velocity between
the two bikes, we need to consider the interaction be-
tween the two bikes. let vs1 and vs2 are safety velocities
of them. If the bikes are traveling in the same direc-
tion, then the safety distance x12 between them will be
enough to avoid a possible collision. If both bikes are in
the same direction, the safety distance x12 between Bike
1 and Bike 2 can be written as,

x12 = vs1tr +
v2s1
2a

− vs2tr −
v2s2
2a

(22)

Then the safety velocities should satisfy the following
conditions for Bike 1 and Bike 2 not to collide

vs1 > vs2 (23)

If both bikes move in opposite directions the safety dis-
tance x12 will be

x12 = (vs1 + vs2)tr +
v2s1
2a

+
v2s2
2a

(24)

For a required safety distance x12, we can solve for
vs1 and vs2. If the bikes are identical, then we can fix
vs1 = vs2, then equation is written as,

vs =
−2tra+

√
(2tra)2 + 4ax12
2

(25)

3.6 Dealing the exponents
The safe distance equation can be formed as,

dsafe = kvαmβ (26)

Here, dsafe is the safe distance, v is the velocity of the
two-wheeler, m is the mass of the vehicle (or combined
mass of the rider and vehicle) k is a constant, α and β are
the exponents for velocity and mass, respectively. The
velocity term vα in the equation shows how changes in
velocity affect the required safe distance. Safe distance
increases as the velocity of the bike increases because
the stopping distance depends on both the reaction time
of the rider and the braking capacity of the two-wheeler.
A higher exponent α indicates a stronger dependence of
the equation on velocity. Even small changes in velocity
will result in larger changes in the safe distance. If veloc-
ity doubles, more than double the stopping distance is re-
quired. Hence an exponent α greater than 1 is necessary
to exist. The mass termmβ explains the fact that heavier
vehicles will have greater momentum and thus require
more force as well as more distance to stop safely. Also,
it shows that the effect of mass is nonlinear. The expo-
nent β shows the relationship for how much more stop-
ping distance is required as mass increases. Also, it is
important to consider that doubling the mass might not
double the stopping distance. The friction and the brak-
ing system’s efficiency may induce nonlinear effects on
how rapidly a vehicle can stop.

In classical dynamics, stopping distance dstop is often
derived as [Leff and Mallinckrodt, 1993; Awrejcewicz,
2012]:

dstop =
v2

2a
(27)

where a is the deceleration,
The braking force Fbrake can be obtained as,

Fbrake = µmg (28)

where µ is the friction coefficient.
m is the mass, and g is the gravitational acceleration.

The deceleration a then becomes,

a =
Fbrake

m
= µg (29)

Substituting equation 29 into 27 gives,

dstop =
v2

2µg
(30)
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This solution suggests a velocity exponent of α = 2.
Consideration of the rider’s reaction time or non-ideal
braking conditions may induce more nonlinear solutions.
The exponents a, b, c, d, e, f , g, and h in the safe dis-
tance equations are the critical aspects of modeling the
accidental behavior. These exponents are initially based
on basic assumptions about how velocity and mass influ-
ence safe distances.

In Lateral safe distances, a weaker velocity depen-
dence is assumed with e = 2 but a reduced mass expo-
nent f = 0.5 indicates the less direct effect of mass on
lateral swerving than stopping. The exponents for mass
(b, d, f , and h) indicate the relationship between a two-
wheeler’s mass and its inertia. A heavier vehicle needs
more force (and distance) to stop or maneuver. The ex-
ponents b = 1 and d = 1 for longitudinal distances show
a linearity with mass, while the exponents f = 0.5 and
h = 0.5 for lateral distances suggest that mass has a less
direct impact on side-to-side movement.

Having established the theoretical framework, we next
review foundational concepts of probability spaces to set
the stage for the proposed quantum extension in the sec-
tions 4 and 5

4 Probability Space
Even though safer distances are been derived, in order

to obtain the probability of accidents and their possible
avoidance, the problem yet to be promoted into the prob-
ability space. The safer distances for three bikes (B1, B2,
B3) are written as X(i)

1 and X(i)
2 They are the longitudi-

nal safe distances (front and rear) for bike i and Y (i)
1 and

Y
(i)
2 are the lateral safe distances (left and right) for bike
i.

The probability space is represented as the possible
safe distances overlapping, which could lead to an in-
creased risk of an accident. We can define random vari-
ables D(i,j)

x and D(i,j)
y that represent the distances be-

tween the bikes i and j in the longitudinal and lateral di-
rections respectively. The probability of an accident due
to the overlap of safer distances can be described as the
probability that the actual distances between the bikes i
and j are less than the required safe distances.

For bikes i and j, the longitudinal overlap probability
is determined as,

P (i,j)
acc (x) = P

(
D(i,j)
x < X

(i)
1 +X

(j)
2

)
(31)

here D(i,j)
x is the actual longitudinal distance between

bikes i and j.
Similarly, lateral overlap probability is determined as,

P (i,j)
acc (y) = P

(
D(i,j)
y < Y

(i)
1 + Y

(j)
2

)
(32)

here D(i,j)
y is the actual lateral distance between bikes i

and j.
For the three bikes case, the overall probability for an

accident to occur is the probability that any pair of bikes

i and j would cause a dangerous overlap. For the simpler
case, we can assume the events of overlap between dif-
ferent pairs are independent. The total probability of an
accident can be calculated with the union of the pairwise
overlaps.

P (total)
acc = 1−

∏
i<j

(
1− P (i,j)

acc (x)
)
×
(
1− P (i,j)

acc (y)
)

(33)
Here P (i,j)

acc (x) and P
(i,j)
acc (y) are the probabilities of

longitudinal and lateral overlaps for each pair of bikes
(i, j). By assuming the distances D(i,j)

x and D(i,j)
y are

random variables and they follow normal distributions,
they can be written as,

D(i,j)
x ∼ N (µ(i,j)

x , σ(i,j)
x ) (34)

D(i,j)
y ∼ N (µ(i,j)

y , σ(i,j)
y ) (35)

Where µ(i,j)
x and µ(i,j)

y are the expected distances be-
tween the bikes in the longitudinal and lateral directions,
respectively. σ(i,j)

x , σ(i,j)
y are the corresponding standard

deviations.
The probability of overlap, which expresses the proba-

bility of an accident, can be computed using the cumula-
tive distribution function (CDF) of the normal distribu-
tion [Severini, 2005; lodzimierz Bryc, 1995].

P (i,j)
acc (x) = Φ

(
X

(i)
1 +X

(j)
2 − µ

(i,j)
x

σ
(i,j)
x

)
(36)

P (i,j)
acc (y) = Φ

(
Y

(i)
1 + Y

(j)
2 − µ

(i,j)
y

σ
(i,j)
y

)
(37)

Where Φ(·) is the CDF of the standard normal distri-
bution. As we calculated the probability of accidents in
classical probability space, we need to promote it into
quantum probability space in order to construct a more
accurate accidental avoiding algorithm.

5 Promoting Classical Probability Space into Quan-
tum Probability Space

Even though the classical probability space promises
useful solutions, real-world traffic scenarios which con-
sist of multiple bikes been affected by various param-
eters such as sudden changes in speed, unexpected ob-
stacles, and varying road conditions. These introduce
large uncertainties in the classical models and as a re-
sult, require further advanced models. To address these
complexities, we extend our analysis into the realm of
quantum probability spaces.

Unlike classical probability, which treats events as bi-
nary and independent, quantum probability allows for
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more sophisticated modeling of events where multiple
outcomes can coexist in a superposition. This is partic-
ularly relevant for multi-bike systems, where the pres-
ence and actions of one bike can directly influence the
safe distances of others. As per the theorem and proof to
be discussed in Section 7, relevant to the classical quan-
tum probability space, further mapping can be done. The
classical probability of this bike-traveling event can be
mapped into the probability space. In consists of sam-
ple space (Ω), event (F), and probability measure (P ).
The probability measures P are supposed to satisfy non-
negativity, normalization, and additivity axioms [Grin-
stead and Snell, 2012; Pollard, 2002].

To know the exact probabilistic distribution of the bike
dynamics problem, we need to promote it into quantum
probability space. Such promotion must address the fol-
lowing aspects such as Hilbert space H which is anal-
ogous to the sample space Ω, operators, and quantum
states. In general, the probability of a quantum event for
a quantum state ρ is calculated as,

P(P ) = Tr(ρP ) (38)

For example the quantum probability of measuring the
qubit in the state |0⟩ is written as,

P(P0) = Tr(ρP0) = Tr(|ψ⟩⟨ψ||0⟩⟨0|) = |⟨0|ψ⟩|2 = |α|2
(39)

The probability discussed in equation 39 leads to the
measurement of the qubit that will give the output as the
state |0⟩.

5.1 Projected Space
Regrding the projection from classical probabil-

ity space (Ω,F , P ) to quantum probability space
(H,P(H), ρ), we can write

P ({ω1}) = Tr(ρPω1
) = p1, P ({ω2}) = Tr(ρPω2

) = p2
(40)

Initially, the quantum probability space is constructed
for two bike systems. The classical binary probabilities
can be promoted into quantum probability space. In the
classical probability space, we define a binary random
variable A as if A = 1, an accident can occur, which
means overlapping the safer distance. If A = 0 then no
accident occurs.

The classical probabilities can be obtained for these
events as,

P (A = 1) = pacc (41)
P (A = 0) = 1− pacc (42)

where pacc is the classical probability of an accident. In
the quantum probability space, we substituite the clas-
sical probabilities with quantum probability amplitudes.
In general, a quantum system is described by a state vec-
tor |ψ⟩ in a Hilbert space. We can define two quantum

states corresponding to the two possible outcomes for
the events in quantum probability space as, |acc⟩ and
|no acc⟩ as quantum state corresponding to an accident
occurring and quantum state corresponding to no acci-
dent.

The quantum state of the system is a superposition of
these two states are obtained as,

|ψ⟩ = α|acc⟩+ β|no acc⟩ (43)

where α and β are probability amplitudes. For the nor-
malization, the total probability must sum to 1. Hence
the amplitudes satisfy the following relation.

|α|2 + |β|2 = 1 (44)

In the quantum probability space, the probability of an
outcome is derived from the probability of an accident to
occur as,

Pquantum(A = 1) = |α|2 (45)

The probability of no accidents is written as,

Pquantum(A = 0) = |β|2 (46)

Then the normalization condition becomes

|β|2 = 1− |α|2 (47)

To avoid an accident, the quantum probability of the
system is supposed to be in the |no acc⟩ state after mea-
surement

Pquantum(A = 0) = |β|2 = 1− |α|2 (48)

For example, let us assume a simpler state.

|ψ(0)⟩ = 1√
2
|acc⟩+ 1√

2
|no acc⟩ (49)

Here, the amplitudes are written as,

α =
1√
2
, β =

1√
2

(50)

The probabilities of the accident, in the quantum prob-
ability space, is calculated as,

Pquantum(A = 1) =

∣∣∣∣ 1√
2

∣∣∣∣2 =
1

2
(51)

Then probability of no accident is calculated as

Pquantum(A = 0) =

∣∣∣∣ 1√
2

∣∣∣∣2 =
1

2
(52)
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Using this example we can identify that there exists
50% of chance for both accidents to happen and not hap-
pen.

In general, if the initial state is not evenly distributed,
like,

|ψ(0)⟩ = α|acc⟩+ β|no acc⟩ (53)

with α = a+ ib and β = c+ id, then the probability of
an accident in quantum probability space is obtained as,

Pquantum(A = 1) = a2 + b2 (54)

Similarly, the quantum probability of avoiding an acci-
dent is calculated

Pquantum(A = 0) = c2 + d2 (55)

For the quantum probability space, if the two bikes in
the system are in a balanced superposition state, then

|ψ(0)⟩ = 1√
2
|acc⟩+ 1√

2
|no acc⟩ (56)

Here, the amplitudes are written as,

α =
1√
2
, β =

1√
2

(57)

The probability of an accident is calculated as,

Pquantum(A = 1) =

∣∣∣∣ 1√
2

∣∣∣∣2 =
1

2
= 0.5 (58)

The probability of no accident is obtained as

Pquantum(A = 0) =

∣∣∣∣ 1√
2

∣∣∣∣2 =
1

2
= 0.5 (59)

Due to normalization, we can have, a2+b2+c2+d2 =
1. Let us apply these quantum probability space ideas to
the bike kinetics problem.

5.2 Quantum Probability in 3 Bike Scenario
The quantum probability calculation can be applied to

a three-bike scenario. For the three bike systems, B1, B2,
and B3, the quantum probability space has the following
quantum states.

|acc12⟩: Accident between B1 and B2.
|acc13⟩: Accident between B1 and B3.
|acc23⟩: Accident between B2 and B3.
|no acc⟩: No accident between any of the bikes.

The quantum state in this probabilistic space |ψ⟩ can
be considered as a superposition of states as

|ψ⟩ = α12|acc12⟩+α13|acc13⟩+α23|acc23⟩+β|no acc⟩
(60)

where α12, α13, α23, and β are complex probability am-
plitudes. The normalization condition is then written as,

|α12|2 + |α13|2 + |α23|2 + |β|2 = 1 (61)

For each probabilistic event (accident or no accident),
the quantum probability is obtained for an accident be-
tween B1 and B2, an accident between B1 and B3, an
accident between B2 and B3, and no accident are calcu-
lated respectively as,

Pquantum(A12 = 1) = |α12|2 (62)
Pquantum(A13 = 1) = |α13|2 (63)
Pquantum(A23 = 1) = |α23|2 (64)

Pquantum(A = 0) = |β|2 (65)

The quantum amplitudes α12, α13, and α23 can inter-
fere each other due to the quantum superposition. This
interference can be either constructive or destructive,
which will affect the overall quantum probabilities.

If the initial state is not evenly distributed, then there
will be unequal probabilities.

|ψ(0)⟩ = α12|acc12⟩+α13|acc13⟩+α23|acc23⟩+β|no acc⟩
(66)

Here α12 = a + ib, α13 = c + id, α23 = e + if , and
β = g + ih. Then the probabilities can be distinguished
in the following scenario
Probability of Accident between the bikes B1 and B2

Pquantum(A12 = 1) = a2 + b2 (67)

Probability of Accident between the bikes B1 and
B3

Pquantum(A13 = 1) = c2 + d2 (68)

Probability of Accident between the bikes B2 and
B3

Pquantum(A23 = 1) = e2 + f2 (69)

The probability for no accident scenario in quantum
probability space is calculated as,

Pquantum(A = 0) = |β|2 = g2 + h2 (70)

The condition is supposed to be satisfied as,

a2 + b2 + c2 + d2 + e2 + f2 + g2 + h2 = 1 (71)

It is important to consider the output in this quantum
probability space will depend upon the initial quantum
state configuration as well as the quantum interferences.
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5.3 Safety Velocity and Probability Space
Mapping safety velocity into the probability space can

offer a more rigorous framework for assessing the pos-
sibility of accidents. The safety velocity is the quantum
probability space that can be derived with, P (v ≤ vs) for
the probability that the bike is traveling at or below the
safety velocity and P (v > vs) is the probability that the
bike is traveling above the safety velocity. In the quan-
tum probability space, the probability amplitudes αijk
can now be functions of both the distance and the veloc-
ity. For multiple bikes, the quantum state can be written
as,

|ψ⟩ = α000(v1 ≤ vs1, v2 ≤ vs2, v3 ≤ vs3) |000⟩+ . . .

+α111(v1 > vs1, v2 > vs2, v3 > vs3) |111⟩
(72)

Here, each amplitude αijk shows the probability of
certain bikes either exceeding or staying within their cor-
responding safety velocities.

The quantum states in terms of qubits can show a bi-
nary condition (safe/unsafe) for both distance and veloc-
ity in the probability space. In this aspect, a qubit di
represents the safety distance for bike i. Here |0⟩ in-
dicates the distance is safe in probability space and |1⟩
shows the distance is unsafe. Similarly, a qubit vi rep-
resents the safety velocity for bike I , with |0⟩ showing
the velocity is within the safe limit and |1⟩ represents the
velocity exceeding the safe limit. For n bikes, we would
have 2n qubits with n for distances and n for velocities.

The combined quantum state for n bikes in the quan-
tum probability space can be represented as,

|ψ⟩ =
1∑

i,j=0

αij |d1d2 . . . dn⟩ ⊗ |v1v2 . . . vn⟩ (73)

here, d1d2 . . . dn represents the possible distance state,
v1v2 . . . vn represents the possible velocity state and αij
reprecent the probability amplitudes corresponding to
these quantum states.

6 Why Solving with Quantum Probability Space is
Important?

Consider three bikes ( A, B, and C) moving nearby in a
dense traffic environment. If any one bike attempts brak-
ing instantly or faces an obstacle, the probability of an
accident increases for the other bikes due to the limited
reaction time and space to maneuver. In a classical prob-
abilistic approach, consider probabilities P (A), P (B),
and P (C) for each bike to crash.

P (A) = 0.1, P (B) = 0.1, P (C) = 0.1 (74)

In a classical probability space, the total probability of
an accident consisting of any of the three bikes can be
computed by summing the individual probabilities.

P (Accidentclassical) = P (A) + P (B) + P (C)− P (A ∩B)

−P (B ∩ C)− P (A ∩ C) + P (A ∩B ∩ C)
(75)

If the accidents are independent (no correlation be-
tween the bikes), the probability is written as,

P (Accidentclassical) = 0.1 + 0.1 + 0.1 = 0.3 (76)

The classical probability scenario assumes that each
accident event is completely independent, without con-
sidering the increased risk caused by one bike’s crash
influencing the others.

Thus, it underestimates the various possible risks in
dense traffic. In the quantum probability space, indepen-
dent events can be even considered using superposition
and entanglement phenomena. These features of quan-
tum probability space correlate with fine-tuned probabil-
ities of accidents between bikes.

The classical probability space the dependencies can
be discussed through conditional probabilities, which
describe how the likelihood of one event depends on
another. However, this approach becomes increasingly
complex and computationally expensive as the number
of interacting systems increase. In contrast, quantum
probability spaces explain interdependencies through
principles such as superposition and entanglement. This
make quantum probablity space to be esier for comput-
ing complex, dynamic interactions without the need for
explicit conditional definitions. Hence this method of-
fer a more efficient and scalable alternative to classical
methods

The quantum probability framework gives a natural
way to explain complex interactions, especially in sys-
tems with dynamic and multi-agent interactions. Unlike
classical methods, which require detailed definitions for
conditional probabilities or distributions, quantum prob-
abilities encode these relationships detailly through su-
perposition and entanglement. The quantum probablity
space approach has shown numerous advantages in high-
dimensional, dense systems [Melucci, 2018; Ciaglia
et al., 2017]. In quantum probability, each bike’s acci-
dent probability can be represented as a superposition of
accident (|1⟩) and no accident (|0⟩) states. For example,
Bike A’s quantum probability state might be a superpo-
sition of both outcomes as,

|ψA⟩ = αA |0⟩+ βA |1⟩ (77)

Similarly for Bike B and Bike C:

|ψB⟩ = αB |0⟩+ βB |1⟩ , |ψC⟩ = αC |0⟩+ βC |1⟩
(78)
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The total state of the quantum probabilistic system can
be expressed as an entangled state as,

|Ψtotal⟩ = α |000⟩+β |111⟩+γ |110⟩+δ |101⟩+ϵ |011⟩
(79)

In this entangled state shown in equation 79, the out-
come of one bike’s accident ( |1⟩ ) can affect the others,
which shows the correlation between them.

Using the quantum state amplitudes from the entangled
system, the probability of an accident is then calculated
as,

P (Accidentquantum) = |α|2 + |β|2 + 2 · Re(αβ∗) (80)

This quantum probability shows the interdependence
between the bike states. This which would increase the
total accident probability when one bike’s state conse-
quences the others. For example, if α and β are non-
zero and the interference term is positive, the total ac-
cident probability will be higher than the simple sum of
individual classical accident probabilities.

The application of quantum probabilities to traffic
modeling is a new area of study. While preliminary re-
sults demonstrate numerous advantages, further research
and numerical validation are needed to fully assess its
applicability across different traffic scenarios.

7 Mathematical Discussion on Probability Spaces
We now present the mathematical formulations devel-

oped as part of this research, including new lemmas and
a theorem that explain the transition from classical to
quantum probability spaces.

As the interaction happens within the probability
space, the outcome only accounts for two possible states.
We can interpret this into quantum probability space as,

R = W(ψ) (81)

Where W is the projected quantum space from clas-
sical probability space. The transition from a classi-
cal probability problem to a quantum probability prob-
lem requires a transformation of the original problem
into one that can be addressed using quantum comput-
ing techniques.

For mathematical considerations lets consider classical
probability space (Ω,F , P ) with, Ω as the sample space,
F ⊆ 2Ω as the event space and P : F → [0, 1] as the
probability measure which satisfies P (Ω) = 1. For a
classical system with n possible states, the number of
possible outcomes should be xn, where x is the number
of possible outcomes for each state. Similarly, we can
consider a Hilbert space H with H as an x-dimensional
complex vector space and the quantum state of the sys-
tem as represented by a density operator ρ on H which
satisfies Tr(ρ) = 1. With these considerations, we can
construct the following lemmas.

7.1 Lemma 1
For any classical system with n possible states, each

with x outcomes, the corresponding quantum state can
be constructed in an x-dimensional Hilbert space H. For
every classical probability distribution P over n the clas-
sical states can be mapped to a quantum density operator
ρ provided the following conditions are satisfied.

Non-negativity Condition: The classical probabilities
Pi must be non-negative such as Pi ≥ 0 for all i.
Normalization Condition: The sum of all classical
probabilities must be equal to one, such as

∑xn

i=1 Pi = 1.
Orthogonality Condition: The classical states must
correspond to orthogonal quantum states in H.

7.1.1 Proof for Lemma 1 For each classical state
ωi ∈ Ω, associate a quantum basis state |ψi⟩ in H.
Hence,

P (ωi) = |⟨ψi|ψi⟩|2 (82)

Considering that the classical probabilities satisfy the
normalization and non-negativity conditions, the quan-
tum state corresponding to the classical distribution is
written as,

ρ =

xn∑
i=1

P (ωi)|ψi⟩⟨ψi| (83)

This density operator ρ is supposed to satisfy the quan-
tum normalization condition Tr(ρ) = 1, which will com-
plete the proof.

7.2 Lemma 2
For the probabilistic outcomes of the classical system

to be accurately mapped in the quantum space, the quan-
tum states |ψi⟩ should be able to form superpositions and
entanglement by satisfying the following conditions.

Superposition Condition: Any classical mixed state
must correspond to a superposition of quantum states.
Entanglement Condition: If the classical states are not
independent, the corresponding quantum states must ex-
hibit quantum entanglement.

7.2.1 Proof for Lemma 2 lets consider two classi-
cal states ωi and ωj with corresponding quantum states
|ψi⟩ and |ψj⟩. A classical mixed state ωk = αωi + βωj
(where α + β = 1) corresponds to the quantum state is
calculated as,

|ψk⟩ = α|ψi⟩+ β|ψj⟩ (84)

The quantum state |ψk⟩ is a superposition of |ψi⟩ and
|ψj⟩, which satisfies the superposition condition.
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Figure 1. evolution of all three bikes dynamics in the quantum prob-
ability space, shown as quantum circuit

For entanglement, let us consider two classical subsys-
tems ωA and ωB . The corresponding quantum subsys-
tems are |ψA⟩ and |ψB⟩. If ωA and ωB are not indepen-
dent, their combination state in the quantum space must
be entangled.

|ψAB⟩ ≠ |ψA⟩ ⊗ |ψB⟩ (85)

Instead, it must satisfy:

|ψAB⟩ =
∑
i,j

αij |ψiA⟩ ⊗ |ψjB⟩ (86)

where
∑
i,j |αij |2 = 1, that provides the entanglement

condition.

7.3 Theorem
Let (Ω,F , P ) be a classical probabilistic space with

xn possible outcomes. There exists a mapping ϕ :
(Ω,F , P ) → (H, ρ) to a quantum probabilistic space
(H, ρ) if and only if the following conditions are satis-
fied:

The classical probabilities P (ω) should satisfy non-
negativity and normalization.
The quantum states corresponding to each classical
probabilistic outcome are supposed to be orthogonal
and can form superpositions.
The quantum states should possess entanglement if
the classical states exhibit dependencies.

7.3.1 Proof of Theorem Given the conditions
driven by Lemmas 1 and 2, the mapping ϕ can be done
on each classical state ωi ∈ Ω with a quantum state
|ψi⟩ ∈ H such that,

ϕ(ωi) = |ψi⟩ and ϕ(P (ωi)) = |⟨ψi|ψi⟩|2 (87)

The resulting quantum state ρ is expressed as,

ρ =

xn∑
i=1

P (ωi)|ψi⟩⟨ψi| (88)

This proof satisfies the quantum normalization condition
Tr(ρ) = 1. The superposition and entanglement proper-
ties ensure that the quantum space exposes the full prob-
abilistic structure of the classical space, and this com-
pletes the proof.

8 Quantum Computing Circuits
We can promote the three-bike classical probability

space into a quantum probability space we can use three
qubits, and we can map the possible quantum states asso-
ciated with accidents or no accidents onto qubits states.
The classical probability space can be mapped with the
possible accident and no accident scenario as qubit’s two
possible states. As with classical probability space, we
can represent each bike’s accident scenario in quantum
probability space using qubits as |0⟩ for no accident for
the corresponding bike pairs, and |1⟩, for the possible
accident for the corresponding bike pairs. For the bike
scenario, in quantum probability space, the qubit states
represent the accidents between bike pairs. These quan-
tum circuits are made run in the IBM quantum comput-
ing backend [Javadi-Abhari et al., 2024].

The state of the system is written as a superposition of
the above-suggested states.

|ψ⟩ = α000 |000⟩+ α001|001⟩+ α010|010⟩+ α011 |011⟩
+α100 |100⟩+ α101 |101⟩+ α110 |110⟩+ α111 |111⟩

(89)

where each αijk represents the probability amplitude of
the corresponding state |ijk⟩, with i, j, k ∈ {0, 1}.

We can use quantum gates to create a circuit to analyze
the probabilities in this quantum probability space. To
map the classical unpredictiblity in the kinetics of bikes
on the road, to the quantum probability space, the quan-
tum superposition phenomenon can be employed. Hence
to ensure a uniform superposition across all states, the
Hadamard gates can be applied on each qubit. The cor-
responding quantum computing circuit is constructed.

The corresponding quantum computing circuit is con-
structed as shown in figure 1.

The quantum circuit given here is to model the acci-
dent probabilities in a three-bike system using qubits. By
mapping each accident scenario in the quantum proba-
bility space into qubits and introducing them with quan-
tum gates, we can explore all of the possible scenarios in
terms of quantum computing solutions. The Hadamard
gates applied to each qubit ensures all of them in an equal
superposition of |0⟩ and |1⟩, and this creates uniform dis-
tribution over all possible outcomes |000⟩, |001⟩, |010⟩,
|011⟩, |100⟩, |101⟩, |110⟩, and |111⟩.

After applying the Hadamard gates in the constructed
quantum circuit, the qubits are measured. The collapse
of superposition leads to the state being in one of the
eight possible states. The measurement outcomes corre-
sponding to different accident scenarios are listed as,

|000⟩: No accidents between bikes.
|001⟩: Accident between bikes B2 and B3.
|010⟩: Accident between bikes B1 and B3.
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Figure 3. Accident avoidance circuit

Figure 4. 6 bikes accident scenario

Figure 2. The safety velocity in quantum probability space - the
quantum circuit

|011⟩: Accidents between bikes B1-B3 and B2-B3.
|100⟩: Accident between bikes B1 and B2.
|101⟩: Accidents between bikes B1-B2 and B2-B3.
|110⟩: Accidents between bikes B1-B2 and B1-B3.
|111⟩: Accidents between all pairs if bikes (B1-B2,
B1-B3, and B2-B3).

In the qubit space each measurement result |ijk⟩ corre-
sponds to a particular accident scenario. The probability
of observing a specific state |ijk⟩ is calculated as |αijk|2.
The Hadamard gates let all outcomes be equally proba-
ble, and each with a probability of 1

8 . The results for the
circuit explained in figure 1 are discussed in the results
section of this same paper.

8.1 Safety Velocity Circuit
In the constructed circuit shown in figure 2, the

Hadamard gates are applied for each qubit in a super-
position, to represent all possible states (safe/unsafe dis-
tances and velocities). The 4 qubits are defined here for
the corresponding two velocities and distances each. The
controlled-NOT Gates link the velocity qubits to the dis-
tance qubits, which shows how an unsafe velocity could
increase the risk of an unsafe distance. The Toffoli gate

represents more complex interactions where the com-
bined effect of unsafe distance and velocity on one bike
might influence the state of another. As the circuit is
made run in the quantum computer, the measurement re-
sults show the probabilities of different scenarios such
as |00⟩ |00⟩ corresponds to both bikes being in safe dis-
tances and velocities and |01⟩ |11⟩ correspond to Bike 1
is in a a safe distance, but Bike 2 has both unsafe distance
and velocity. Other probabilities show possible interac-
tions between distance and velocity.

8.2 Avoidance of Accidents
In the quantum circuit shown in figure 3, the possible

avoidance of accidents in the view of the quantum circuit
is derived. Here the ‘ry(pi/8)‘ gates are applied to each
qubit and placed into a superposition, which is slightly
biased towards the |0⟩ state. As discussed earlier, |0⟩ can
be interpreted as a ”no accident” state, while |1⟩ could be
interpreted as an ”accident” state. By using θ = π/8 in
the ry gates, the qubits can be biased slightly towards
the |0⟩ state without fully collapsing them into it.

The cx gates are introduced in the circuit in order to
create entanglement between the qubits. This entangle-
ment attempts to simulate the interactions between the
bikes in the quantum probability space. If one bike
(qubit) is more probability to be in an accident, then it
increases the probability that the others will also be in an
accident. The sequence of ‘cx‘ gates entangles all three
qubits, which creates a correlation between their states.
This helps to simulate the ”no accident” state |0⟩ across
all qubits.

The second set of ‘ry(−pi/8)‘ gates in the same circuit
serves to counteract some of the bias introduced by the
first set of ‘ry‘ gates. As the qubits are set to entangled,
this operation helps to preserve the ”no accident” state
across the entire quantum probability space. The mea-
surements collapse the qubits states into either |0⟩ or |1⟩,
with the entire circuit planned to increase the probability
that all qubits will collapse into the |0⟩ state, represent-
ing no accidents for any of the bikes.

The derived circuit avoids accidents in the quantum
probability space by creating a quantum state where the
probability of all qubits being in |0⟩ . As the initial
‘ry(pi/8)‘ gates introduce a small bias towards the |0⟩
state, the ‘cx‘ gates create dependencies between the
bikes, and the final ‘ry(−pi/8)‘ gates adjust the super-
position created earlier, the quantum gates circuit results
in |000⟩ as the higher probability. Hence it provides
avoidance of accidents probability in quantum informa-
tion space. Here the table 1 explains the possible out-
come of this accident avoidance scenario.

8.3 6 Bikes- Complex Accident Scenario
For a high-traffic road, the 6-bike scenario can be

considered and the corresponding quantum probability
space is mapped with the quantum circuits represented
in the figure 4.
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ine Quantum State Bike Accident Scenario

ine |000⟩ All bikes are safe.

ine |001⟩ Bike 3 is at risk.

ine |010⟩ Bike 2 is at risk.

ine |011⟩ Bikes 2 and 3 are at risk.

ine |100⟩ Bike 1 is at risk.

ine |101⟩ Bikes 1 and 3 are at risk.

ine |110⟩ Bikes 1 and 2 are at risk.

ine |111⟩ All bikes are at risk.

ine

Table 1. Mapping of Quantum States to Bike Accident Scenarios

In this quantum circuit, the quantum probabilities will
be affected by the quantum superposition and entangle-
ment created by the Hadamard and controlled-Z gates.
The Hadamard gates keep the system in a superposition
of all possible states, but the subsequent entanglement
from the CZ gates pushes the probabilities toward certain
outputs. These outputs are determined by how strongly
the corresponding qubits are entangled with each other.
In this quantum circuit, the CZ gates introduce phase
shifts depending on the state of other qubits.

9 Geometry in Probability Space
The classical probability distribution over n outcomes

can be represented as a point in an (n − 1)-dimensional
simplex. For two outputs (such as interact and not in-
teract), the classical probability space (p, 1 − p) can be
visualized as a line segment between the points (1, 0)
and (0, 1). In general, the set of all possible probability
distributions over n outputs is a geometric object called
a simplex in Rn−1.

For a classical probability distribution P =
(p1, p2, . . . , pn), the Fisher information metric gij
is written as [Ma and Wang, 2009]

gij =

∫
1

P (x; θ)

∂P (x; θ)

∂θi

∂P (x; θ)

∂θj
dx (90)

where θ = (θ1, θ2, . . . , θn) are parameters of the proba-
bility distribution.

In the simple case of two outcomes p and 1 − p, the
Fisher information reduces as,

g(p) =
1

p(1− p)
(91)

This metric introduces a notion of distance between dif-
ferent probability distributions, leading to a curved ge-
ometry.

In the quantum information perspective, the state of a
qubit can be represented as a point on the Bloch sphere,

which is a unit sphere in R3 [Hu et al., 2024]. The gen-
eral pure state of a qubit |ψ⟩ = α|0⟩+β|1⟩ can be written
as:

|ψ⟩ = cos

(
θ

2

)
|0⟩+ eiϕ sin

(
θ

2

)
|1⟩ (92)

The parameters θ and ϕ correspond to the spherical co-
ordinates on the Bloch sphere, with θ represents the lat-
itude and ϕ reprecents the longitude. The Bloch sphere
provides a geometric representation of all possible pure
states of a qubit.

The Fubini-Study metric [Cheng, 2010; Jin and Rubin-
stein, 2024] defines a distance between quantum states
as,

ds2 = 1− |⟨ψ|ϕ⟩|2 (93)

This metric in equation 93 gives a Riemannian structure
to the space of quantum states. For mixed states, the
space of quantum states can be written with the Bures
metric, which is related to the quantum Fisher informa-
tion. The Bures distance [Marian et al., 2003; Yuan and
Fung, 2017] between two quantum states ρ1 and ρ2 is
written as,

DB(ρ1, ρ2) =

√
2

(
1− Tr

(√√
ρ1ρ2

√
ρ1

))
(94)

The geometry provided by the Fisher information met-
ric generally has a non-zero curvature in classical prob-
ability space. For two output states, this curvature is re-
lated to how sensitive the system is to changes in the
probability p. The curvature of the quantum probability
space can be computed using the quantized metric ten-
sor. On the Bloch sphere, pure states are represented by
points on a curved 2D surface, and the curvature shows
the global structure of quantum probability space. For
mixed states, the curvature can be associated with the
Bures metric, which determines how the quantum states
are different from each other.

10 Density Matrix and Singularities
In classical probability, spaces are usually described

using standard probability measures over a σ-algebra
[Villegas, 1964; Gaudard and Hadwin, 1989]. To pro-
mote the classical probability space into quantum prob-
ability space, an instantaneous transition is required to
do a framework where probabilities are represented by
density operators on a Hilbert space, and events are rep-
resented by projection operators. This quantum frame-
work allows for discussions of curvature in terms of
quantum state space geometry. The geometry of quan-
tum states, used to discuss from information geometry
[Amari, 2016], can be described using the Fubini-Study
metric [Grabowska et al., 2019] or Bures metric [Byrd
and Slater, 2001] on the space of density matrices.
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We can consider a three-qubit system with the output
state ”010”. This represents the quantum state where
the first qubit is in the state |0⟩, the second qubit is in
the state |1⟩, and the third qubit is in the state |0⟩. In the
quantum probability space, the state |010⟩ can be written
as,

|010⟩ = |0⟩ ⊗ |1⟩ ⊗ |0⟩ (95)

In general the density matrix ρ for a pure quantum state
|ψ> is constructed as,

ρ = |ψ⟩ ⟨ψ| (96)

For the considered state |010⟩, the density matrix ρ010 is
constructed as,

ρ010 = |010⟩ ⟨010| (97)

The density matrix for the state |010⟩ is written as,

ρ010 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(98)

The density matrix has only one non-zero eigenvalue
(1), which corresponds to the pure state |010>. Since
state ρ010 has eigenvalues {1, 0, 0, 0, 0, 0, 0, 0}, it is un-
derstood as rank-deficient (rank 1). This rank deficiency
leads to a degeneracy in the density matrix, which will
lead to singularities in the information space.

The von Neumann entropy S(ρ) is written as,

S(ρ) = −Tr(ρ log ρ) (99)

For a pure state such as |010>, the von Neumann en-
tropy is said to be zero because ρ log ρ will only have a
contribution from the zero eigenvalues.

S(ρ010) = −(1 · log 1 + 0 · log 0 + · · · ) = 0 (100)

For this situation where eigenvalues approach zero
continuously, the log 0 term becomes critical, and it will
lead to singularities. The von Neumann entropy is sup-
posed to be zero for pure states but can diverge for states
near the boundary between pure and mixed states.

If we consider a family of density matrices transition-
ing from a pure state like |010> to a mixed state, singu-
larities can appear where the state transitions occur. In

the information space if a state moves away from |010⟩
and starts to mix with other states, then the eigenval-
ues of the density matrix start to change, and near-zero
eigenvalues can also cause abrupt changes in entropy or
fidelity. This will show off the singularities.

Similarly for |111⟩, the density matrix is calculated as,

ρ111 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1


(101)

The density matrix ρ111 has the eigenvalues as,
{0, 0, 0, 0, 0, 0, 0, 1}. Similar for the state |010⟩ for state
|111⟩, also the entropy is zero because it has only non-
zero eigenvalue which is 1. Then von Neumann entropy
for |111⟩ is calculated as,

S(ρ111) = −(1 · log 1 + 0 · log 0 + · · · ) = 0 (102)

If the system is not a pure state, then singularities can
arise here when any eigenvalues approach zero. This will
lead to possible terms like log 0, which will behave as a
singularity. The quantum relative entropy between two
density matrices ρ and σ is calculated as,

S(ρ∥σ) = Tr(ρ(log ρ− log σ)) (103)

If σ has the eigenvalues that approach zero, then log σ
can diverge, which will lead to possible singularities.
Similarly, if ρ has eigenvalues that approach zero and
that are not matched by σ, then singularities can arise.
The fidelity F (ρ, σ) between two density matrices ρ and
σ [Friedland et al., 2022; Gilyén and Poremba, 2022] is
obtained as,

F (ρ, σ) =

(
Tr
(√√

ρσ
√
ρ

))2

(104)

If either ρ or σ has eigenvalues approaching zero, the
fidelity solution may consist of square roots of nearly
zero or zero eigenvalues, which will possibly lead to sin-
gularities. As with the |010⟩ state, the density matrix
ρ111 is rank-deficient with most eigenvalues zero. Singu-
larities occur in information measures when eigenvalues
are zero or nearly zero. Singularities in this information
space usually occur when the system transits from a pure
state |111⟩ or |010⟩ to a mixed state. This transition may
lead to abrupt changes in measures like relative entropy.
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10.1 Bures Distance
The fidelity can be calculated for the states |010⟩ and

|111⟩ using the relation expressed in equation 104. If
Fidelity ranges from 0 to 1, where 1 indicates that the
states are identical, and 0 indicates that they are orthog-
onal. Also Bures Distance (DB(ρ, σ)) is a metric de-
rived from fidelity and measures the distance between
two quantum states and it is derived as,

DB(ρ, σ) =

√
2− 2

√
F (ρ, σ) (105)

For our problem, we have a three-qubit system in the
pure state |111> which shows highly probable accidents
for all 3 bikes. The density matrix ρ111 for the state
|111> is shown in the equation 101. Initially, we cal-
culate the fidelity of ρ111 with itself as,

F (ρ111, ρ111) =

(
Tr
(√√

ρ111ρ111
√
ρ111

))2

(106)

Since ρ111 is a pure state, the square root of ρ111 is
itself, then

F (ρ111, ρ111) = (Tr(ρ111))
2
= 12 = 1 (107)

Hence, the fidelity between ρ111 and itself is 1, which
indicates that they are identical. The Bures distance be-
tween ρ111 and itself is derived as,

DB(ρ111, ρ111) =

√
2− 2

√
F (ρ111, ρ111) =

√
2− 2 · 1 = 0

(108)
This distance is predicted because the Bures distance

between a state and itself is always zero [Forrester and
Kieburg, 2016; Spehner and Orszag, 2013; Kurzyński,
2021]. To identify singularities in this information space,
let us consider a different state, |000⟩, which corresponds
to a no-accident scenario.

ρ000 = ⟨000| |000⟩ =



1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(109)

The fidelity F (ρ111, ρ000) is obtained as,

F (ρ111, ρ000) =

(
Tr
(√√

ρ111ρ000
√
ρ111

))2

(110)

Since ρ111 and ρ000 are orthogonal states their inner
product is supposed to be zero.

√
ρ111ρ000

√
ρ111 = 0 (111)

So,

F (ρ111, ρ000) = (Tr(0))2 = 0 (112)

The Bures distance is then becomes,

DB(ρ111, ρ000) =

√
2− 2

√
F (ρ111, ρ000)

=
√
2− 2 · 0 =

√
2 ≈ 1.414

(113)

For the |111⟩ state and the orthogonal |000⟩ state, the
fidelity looks zero, and the Bures distance is calculated
as

√
2. These values indicate a possible maximal sep-

aration between the orthogonal quantum states. Singu-
larities in this considered information space occur due to
zero or near-zero eigenvalues and orthogonality between
states, as well as abrupt changes in the state structure.

10.2 Transition From No Accident to Full Accident
Scenareo

We can consider the transition from |000⟩ (no accident
scenareo) to |111⟩ (all accidents scenareo). The density
matrix is obtained from the equations 109 and 101 for no
accident and full accident scenario correspondingly.For
the transition from |000⟩ to |111⟩, the system could be in
a superposition of these quantum states. In general, the
superposition state is represented as:

|ψ⟩ = α |000⟩+ β |111⟩ (114)

where α and β are complex coefficients with |α|2 +
|β|2 = 1.

The corresponding density matrix then becomes,

ρψ = |ψ⟩⟨ψ| = α2ρ000+β
2ρ111+αβ

∗ |000⟩ ⟨111|+α∗β |111⟩ ⟨000|
(115)

The equation 115 is expanded as

ρψ =



α2 0 0 0 0 0 0 αβ∗

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
α∗β 0 0 0 0 0 0 β2


(116)

For this matrix in equation 115, the eigenvalues will be

λ =
1

2

(
1±

√
1− 4|αβ|2

)
(117)
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The remaining eigenvalues are used to be 0.
As |α| changes from 1 (for |000⟩) to 0 (for |111⟩), and

also, |β| changes from 0 to 1, the eigenvalues evolve
smoothly between these two states. However, if |α| and
|β| reach values that let 4|αβ| close to 1, it would result
in a scenario where the two eigenvalues merge, which
leads to the emergence of the critical point where singu-
larities might emerge.

The von Neumann entropy for the mixed state ρψ is
written as,

S(ρψ) = −
∑
i

λi log(λi) (118)

where λi are the eigenvalues.
For the transition between |000⟩ and |111⟩, the entropy

used to be zero at the pure states (when |α| = 1 or |β| =
1). Meanwhile, in the intermediate states, the entropy
will be non-zero. Also the enrtopy reaches the maximum
when |α| = |β| = 1√

2
.

Hence,

λ1,2 =
1

2

(
1±

√
1− 4|αβ|2

)
(119)

The two eigenvalues λ1 and λ2 merge when:

1− 4|αβ|2 = 0 ⇒ |αβ| = 1

2
(120)

This condition is met when both α and β have magni-
tudes such that 4|αβ|2 = 1, leading to:

λ1,2 =
1

2
(121)

In the superposition state, if α and β are such that
4|αβ| approaches 1, the entropy calculation may become
sensitive, potentially leading to numerical instability and
singularities in the information space.

The eigenvalues λi for different values of p are shown
in table 122. It shows that the eigenvalues λi change
smoothly as p varies from 0 to 1. It can be noted that λ1
and λ8 switch roles as the dominant eigenvalues.

inep λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8
ine1 1 0 0 0 0 0 0 0
0.9899 0.9899 0 0 0 0 0 0 0.0101
0.9798 0.9798 0 0 0 0 0 0 0.0202
0.9697 0.9697 0 0 0 0 0 0 0.0303

...
...

...
...

...
...

...
...

...
0.0303 0.0303 0 0 0 0 0 0 0.9697
0.0202 0.0202 0 0 0 0 0 0 0.9798
0.0101 0.0101 0 0 0 0 0 0 0.9899

0 0 0 0 0 0 0 0 1
ine

(122)

Similarly von Neumann Entropy S(ρ) for different val-
ues of p is shown in table 123. This shows the von Neu-
mann entropy S(ρ) is zero at p = 0 and p = 1, which
represent the pure states, and reaches its maximum at
p = 0.5, representing maximum uncertainty in the quan-
tum state.

inep S(ρ)
ine1 0
0.9899 −0.0565
0.9798 −0.0988
0.9697 −0.1358

...
...

0.0303 −0.1358
0.0202 −0.0988
0.0101 −0.0565

0 0
ine

(123)

10.2.1 Finding Singularities Singularities in this
transition occur when the eigenvalues approach zero or
the matrix transits from a pure state to a mixed state.

For the eigenvalues λ1 and λ2 the Von Neumann
evtropy is found to be

S(ρψ) = −λ1 log(λ1)− λ2 log(λ2) (124)

As λ2 approaches zero, the term λ2 log(λ2) becomes
chaotic. As log(0) is undefined, this can lead to a sin-
gularity.

The mixed state can be introduced as,

ρmixed = p |000⟩ ⟨000|+ (1− p) |111⟩ ⟨111| (125)

The eigenvalues of this mixed state are λ1 = p and
λ2 = 1 − p. If p becomes either 0 or 1, one of the
eigenvalues becomes zero. This will lead to singularities
in the entropy aspect.

10.2.2 Regularization In general, Regularization
is a technique used to stabilize a system by preventing
problematic conditions, such as eigenvalues of a density
matrix approaching zero, which can lead to singularities
[Kakade et al., 2012; Mahoney and Orecchia, 2010]. The
key idea is to introduce a small perturbation to the sys-
tem that ensures all eigenvalues remain positive, thereby
avoiding undefined or infinite results in quantum mea-
sures like entropy.

From the density matrix equation 115 and the corre-
sponding eigenvalues, the evolution of the states towards
the singularity can be prevented by introducing the reg-
ularization parameter ϵ > 0

The modified density matrix with regularization pa-
rameter can be written as,

ρ′ψ = ρψ + ϵI (126)
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Figure 5. The quantum computing probabilities for each scenario of
the accident

Figure 6. The quantum probability space for the safety velocity

ine State Probability (%) Interpretation

ine |000⟩ 12.30 There is approximately a
12.30% chance that none of
the bikes will experience an
accident, which shows that
this scenario is slightly less
likely than some others.

ine |001⟩ 12.70 Bike 3 has a slightly higher
chance of meeting an acci-
dent while Bikes 1 and 2
remain safe. This scenario
has a 12.70% probability,
which is slightly more than
the state |000⟩.

ine |010⟩ 14.06 Bike 2 is the most possi-
bility to meet an accident
compared to the others, as
this scenario has the highest
probability at 14.06%.

ine |011⟩ 10.84 This scenario, shows the
quantum probability space
for both Bikes 2 and 3 have
accidents while Bike 1 does
not, is less probable than
others, with a probability of
10.84%.

ine |100⟩ 11.23 Bike 1 has an 11.23% prob-
ability of meeting an acci-
dent, while the other two
bikes remain safe.

ine |101⟩ 9.67 There is a 9.67% chance that
Bikes 1 and 3 will experi-
ence accidents, the lowest
probability scenario in this
analysis.

ine |110⟩ 13.77 Bikes 1 and 2 have a com-
bined accident probability
of 13.77%, that suggests a
moderate likelihood of this
event.

ine |111⟩ 15.23 This is the distinct scenario,
with a 15.23% probabil-
ity, that suggests a slightly
higher chance that all three
bikes will experience ac-
cidents simultaneously as
per the quantum probability
space.

ine

Table 2. Probability and Interpretation of Different Accident Scenar-
ios for Three Bikes as shown in figure 5

Figure 7. Saferiding -accident avoiding probability

ρ′ψ =



α2 + ϵ 0 0 0 0 0 0 αβ∗

0 ϵ 0 0 0 0 0 0
0 0 ϵ 0 0 0 0 0
0 0 0 ϵ 0 0 0 0
0 0 0 0 ϵ 0 0 0
0 0 0 0 0 ϵ 0 0
0 0 0 0 0 0 ϵ 0
α∗β 0 0 0 0 0 0 β2 + ϵ


(127)

Where I is the identity matrix. The eigenvalues of ρ′ψ
are modified due to the applied regularization. Hence the
eigenvalues are rewritten as

λ′1,2 =
1

2

(
1 + 2ϵ±

√
(1− 2ϵ)2 − 4|αβ|2

)
(128)

In the equation 128 even if |αβ| approaches 1
2 , the term

ϵ holds that λ′2 does not approach zero. The presence of
ϵ lets the eigenvalues avoid facing the singularities.
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Figure 8. 6 bike accident result

The regularization phenomenon ensures the stability
of the quantum probabilistic space system by maintain-
ing non-zero eigenvalues. The regularization prevents
the quantum measures from attaining undefined or infi-
nite values. The regularization scheme will also support
the system to be more resistant to small perturbations or
noise. It will help the system to remain robust against
minor fluctuations in sensor data or traffic conditions.
The ϵ should be small enough not to alter the physical
characteristics of the quantum probabilistic space, but
large enough to prevent singularities. If ϵ is small then it
will provide minimal impact on the system, even though
it will be sufficient to prevent zero eigenvalues. Also if ϵ
is larger it will offer more smoothing, which may reduce
the model’s sensitivity to real changes.

10.3 Why Singularities Are Important?
In the quantum probability space, a singularity repre-

sents a blind spot that could be unable to process traffic
information. For the case of bike safety in terms of quan-
tum probability space, singularities represent situations
where the calculations cannot effectively predict an ac-
cident. For instance, if the quantum probabilistic space
encounters a singularity, it might fail to address certain
factors like sudden braking, weather changes, or driver
behavior, which leads to an unpredictable or inaccurate
prediction. This aspect means that the system ”misses”
a high-risk traffic situation or gives unreliable accident
probability outcomes.

11 Results and Discussion
In figure 6, probabilities in the quantum probability

space for each accident scenario within the three-bike
system are shown. Each qubit in this space shows the
safe or unsafe condition of a bike.

For a six-bike accident scenario, the quantum probabil-
ities are discussed in the image 8. In this scenario of six
bikes case, the higher probability states are supposed to
be |000010⟩ , |000100⟩ , |010000⟩ , |001000⟩ , |100000⟩.
These quantum probability states correspond to scenar-
ios where a single bike engages in an accident while
all other bikes remain safe. From these states, we can
identify that these states likely have higher probabilities
because, If certain bikes travel in riskier environments
(e.g., closer to intersections, less maneuverable), they
could have a higher chance of ending up in an accident-
prone state.

There are few quantum states which have moderate ac-
cident probability such as |000011⟩ , |000110⟩ , 001100.

These quantum states involve possible accidents engag-
ing scenarios with two bikes simultaneously, while the
other bikes remain safe. These moderate-probability
states in the quantum probability space suggest that there
might be some correlation or entanglement between spe-
cific quantum states of bikes. Such correlation can be
mapped back to the classical probabilistic space again.
In a quantum probability space, if the state of one bike
is in an accident-prone state, another nearby bike (or one
with a strong interaction) is also likely to be in a similar
state. There is a specific state that says |000000⟩ as an
accident scenario. This quantum state usually has a high
probability in a stable system which indicates the overall
safety of the bikes in the quantum probability space.

For accident avoidance scenareo the results are shown
in table 3 .

ine Basis States Probability

ine |000⟩ (No Accidents) 88.96484%

ine |001⟩ (Accident on Bike 3) 1.85547%

ine |010⟩ (Accident on Bike 2) 0.78125%

ine |011⟩ (Accident on Bikes 2 and 3) 4.19922%

ine |100⟩ (Accident on Bike 1) 0.19531%

ine |101⟩ (Accident on Bikes 1 and 3) 0%

ine |110⟩ (Accident on Bikes 1 and 2) 3.61328%

ine |111⟩ (Accidents on all three bikes) 0.39063%

ine

Table 3. Probability distribution for different accident scenarios in a
three-bike quantum circuit.

For safe travel on the road, the least accident scenario
has to happen. The constructed quantum circuit in the
image 3, is expected to give the probablities correspond-
ing to this scenario. The results are shown in the im-
age 7. The circuit successfully implements its primary
goal of minimizing the quantum probability of accidents,
with the no-accident state ket000 being the most prob-
able outcome (nearly 89%). Even though the quantum
circuit still allows for a small quantum probability of ac-
cidents, within a few states such as |011⟩ and |110⟩. The
interesting fact is that the quantum state |101⟩ did not
occur eventually, which shows that few accident config-
urations are effectively suppressed by the quantum cir-
cuit. The physical interpretation of this circuit may be
discussed in the extended aspect of this paper.

The quantum circuits derived here showcase the fea-
sibility of applying quantum computing to real-world
problems such as traffic safety scenarios. The quantum
circuit outputs, which are shown as state vectors, indi-
cate that quantum computing can effectively model and
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predict complex, multi-variable traffic situations. The re-
sults suggest that quantum circuits can be implemented
to assess accident risks and decision-making in real time,
and this will provide an effective tool for traffic manage-
ment systems. These derived quantum probabilistic out-
comes can help to develop the algorithms for automated
traffic control systems for the wheeler system.

While compared to classical probability models, the
quantum approach shows an advantage in handling the
complexities of multi-bike interactions in terms of the
quantum probability space. The consideration of super-
position and entanglement provides a nuanced possible
risk assessment, especially in scenarios where multiple
outputs exit simultaneously. However, the practical im-
plementation of quantum systems remains a challenge,
as discussed in the previous sections. The results from
this study highlight the ability of quantum computing in
traffic safety but also point to the need for further re-
search and development to address the technological and
infrastructural barriers.

Quantum computing implementation may offer faster
information processing regarding complex scenarios,
which will allow real-time adjustments to traffic safety
measures. For example, a successful quantum algorithm
might predict a possible collision between multiple bikes
and it can provide warnings or automatic interventions
within a little time and even it would behave like a clas-
sical system. Within these solutions, the possible pro-
totype may be constructed as a wearable gadget, which
can be placed as an add-on in either helmet or even
in the handlebar of the two-wheeler. For developing
such prototypes one can even consider Raspberry Pi like
single board computer based sensor embedded systems
[Natarajan et al., 2017; Shriethar et al., 2022]. The so-
lutions discussed here, promote the classical probability
space into quantum probability space and analyze it with
a quantum computer algorithm. This can be one of the
possible real-world applications of quantum computers.

12 Conclusion
To stress the safest driving, the safe distances and safe

velocity scenario with two bikes are discussed and in-
fluences of the combined effects of their velocities and
masses are also considered for this calculation. The de-
rived functions take into account the relative velocities
and masses of both bikes, ensuring that the necessary
safety margins are maintained to prevent collisions. For
the derived functions the constants such as k1, k2, α, β
needed to be adjusted based on empirical data or spe-
cific bike characteristics. The constants k1, k2, k3, k4
are planned to be determined empirically based on spe-
cific bike characteristics and road conditions in the future
works. The total probability of an accident in a three-
bike system can be computed by evaluating the overlap
probabilities in both the longitudinal and lateral direc-
tions for each pair of bikes and then combining these
probabilities to calculate the total risk.

This mathematical model provided here discusses the
quantum probabilistic treatement of safety in dynamic
environments where multiple bikes interact, taking into
account variations in velocity, mass, and the uncertain-
ties in actual distances between bikes. Regarding the
quantum probability spac the approaches discussed here
can be extended to more bikes by adding more qubits.
This kind of extension will increase the complexity of
the controlled operations to account for interactions be-
tween n-number of bikes. In classical probability, the
accident probabilities are added up independently, which
underestimates the actual risk in dense traffic. Whereas
in quantum probability space, the interdependencies be-
tween bikes are calculated by using entanglement and
superposition, which provides a more solid and accu-
rate prediction of accidents in such scenarios. Singu-
larities in the information space of the discussed quan-
tum probability model arise due to the eigenstructure of
the density matrix, especially when eigenvalues are zero
or near zero. These singularities are closely related to
the entropy measures, relative entropy, and fidelity cal-
culations. They occur when the system transitions be-
tween pure and mixed states or when there is a signifi-
cant change in the quantum state geometry.

Classical methods handle the interaction between bikes
as a static pairwise problem. Quantum probality space
method represent multi-system interactions, where the
state of one bike affect others probabilistically through
entanglement. Quantum systems help to build real-time
adjustments in probability space as the state of the sys-
tem evolves. This method also captures the sudden
changes (e.g., braking or maneuvering) more accurately
than pre-assigned distributions in classical models.

For example in the case of three bikes interacting in
dense traffic, the quantum probability model predicted
a 20% higher risk of accidents due to indirect correla-
tions (entanglement) compared to classical models. Ear-
lier the classical models might not predict risks by as-
suming independent probabilities. This demonstrates the
quantum model’s ability to explain hidden dependencies,
which are critical for designing more accurate collision
avoidance systems.

Future research could also expand into discussing
more complex traffic environments, such as interactions
between different types of vehicles (e.g., cars, buses,
pedestrians) and varying road conditions (e.g., weather,
road quality). Incorporating real-world traffic data into
the discussed quantum probably space may refine the ac-
curacy of the predictions. By implementing data from
motion sensors, GPS, and vehicle communication sys-
tems, the quantum circuits could be trained to perform
better. However, the practical implementation of this
quantum probability space approach also has some chal-
lenges. The present scenario quantum computing tech-
nology, requires high costs and complex infrastructure
which poses barriers to widespread adoption of the dis-
cussed model. In addition to that, the integration of
quantum computing systems with the existing classical
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traffic safety mechanisms will require careful consider-
ation of data compatibility, computational synchroniza-
tion, and regulatory compliance. Even though there will
be plenty of benefits that will arise from applying quan-
tum computing protocols in the existing classical system.
This will be one of the real-time applications of quantum
computing technologies.
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