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Abstract
In this paper a hybrid control design for motion

systems is proposed that aims at improved distur-
bance rejection under equal noise response. Typically
performance-relevant frequency contributions in the er-
ror response are up-scaled through linear filtering, sub-
jected to a nonlinear weighting, that is, inducing extra
controller gain when large enough and otherwise ne-
glected, and subsequently down-scaled as to maintain
closed-loop stability. At a wafer stage of an industrial
wafer scanner such a strategy is demonstrated to im-
prove low-frequent disturbance suppression while lim-
iting the amplification of high-frequent noise.

Key words
Absolute Stability, Inherent Design Limitations, Lya-

punov Stability, Nonlinear Control, Wafer Scanners.

1 Introduction
Over the past decades the semiconductor industry

faced a constant miniaturization but growing complex-
ity of its integrated circuits (ICs). The chip dimen-
sions shrink while their functional abilities expand.
To cope with such miniaturization, positioning sys-
tems incorporated in industrial wafer scanners highly
evolved in terms of (electro-)mechanics, optics, and
sensors. The usage of intelligent control strategies such
as learning (Heertjes and Tso, 2007; Misha, Coaplen,
and Tomizuka, 2007), nonlinear (Heertjes and Van de
Wouw, 2006), adaptive, or multi-variable control (Van
de Wal,et al., 2002) cannot fall behind.
In terms of intelligent control, a hybrid control de-

sign is proposed for motion systems in general but
high-speed (wafer) stages in particular. The design
aims at improved disturbance rejection under equal
noise response. Key is the introduction of a nonlin-
ear controller gain used to adapt the inherent trade-off
between disturbance rejection and measurement noise
sensitivity (Freudenberg,et al., 2003). If the response

contains frequency contributions sufficiently below the
controller bandwidth then servo performance benefits
from increased controller gain. Contrarily, beyond the
bandwidth an increased gain often induces the amplifi-
cation of high-frequent noise.

By monitoring the signals at hand and act accord-
ingly, the choice for a nonlinear controller such as
used in (Heertjes,et al., 2005) can significantly im-
prove upon servo performance. In a similar control
setting, a performance-based nonlinear filtering strat-
egy is proposed in which we distinguish three steps. In
the first step, performance-relevant frequency content,
if present in the servo error signals, is up-scaled using
a linear bandpass filter operation. In the second step,
an amplitude-based deadzone operation is performed,
which can be seen as a (weighted) selection between
applying extra feedback or not. In the third step, the
bandpass filter operation is inverted as to preserve sta-
bility of the underlying nonlinear closed-loop system.

The resulting hybrid control design combines three
functions: monitoring by lifting the frequency con-
tent of interest temporarily from the error signals at
hand, selection by (nonlinear) weighting of the lifted
error signals, and loop shaping to keep the closed-
loop stability result valid. Different from this loop
shaping, the monitoring function, for example, is long
used in the field of audio applications, see, for exam-
ple, (Schafer, Oppenheim, and Stockham, 1968). Also,
the selection function is known (Aangenent, Van de
Molengraft, and Steinbuch, 2005; Beak, Chung, and
Tomizuka, 2006; Armstrong,et al., 2006). The com-
bination, however, is unknown to the authors.

This paper is organized as follows. In Section 2, the
hybrid control design is presented in the context of mo-
tion systems. This includes an absolute stability argu-
ment. In Section 3, the dynamics and control of wafer
scanners is discussed, which serves as an experimental
benchmark. In Section 4 performance is assessed on
a wafer stage of a wafer scanner. In Section 5, a brief
summary of the main conclusions is given.



2 Hybrid Control Design
In presenting a hybrid control design for motion sys-

tems, we distinguish between a nominal linear control
design and an extra nonlinear controller. The nominal
design aims at both robust stability and performance.
The extra nonlinear controller is used to improve
upon the low-frequency disturbance rejection prop-
erties without transmitting too much high-frequency
noise. That is, on the occurrence of performance-
limiting oscillations, the linear controller is given ex-
tra controller gain. Because of the incidental nature in
which these oscillations are assumed to occur, the am-
plification of noise (mostly under low-gain feedback)
is kept limited. In this context, we refer to hybrid con-
trol as the (continuous) switching between the dynam-
ics corresponding to the nominal control design and the
dynamics induced by the extra nonlinear controller.
A schematics of a nominal controlled motion system

is depicted in the block diagram of Figure 1. Given
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Figure 1. Schematics of a nominal controlled motion system.

a reference commandr, a servo error signale is con-
structed using the relatione = r − y wherey repre-
sents the output of the plantP. The error signale is fed
into a feedback controllerCfb that aims at disturbance
rejection in view of set-point disturbancesr and force
disturbancesf . To obtain sufficient tracking accuracy,
a feedforward controllerCff is added.
Toward improved low-frequency tracking without the

usual amplification of high-frequency noise, the linear
feedback connection in Figure 1 is given an extra non-
linear path, see Figure 2, in which we distinguish three
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Figure 2. Schematics of the overall nonlinear controller.

functions: monitoring, selection, and loop-shaping.
A monitoring function is given to the filter structure
F1 which aims at lifting the (low-)frequency content of
possibly performance limiting oscillations contained in
e. A logical choice for such a filter structure would

typically be a single notch filter operation of the form

F1(s) =
s2 + 2βzωzs + ω2

z

s2 + 2βpωps + ω2
p

, (1)

whereβz > βp representing the dimensionless damp-
ing coefficients andωz = ωp the zero and pole frequen-
cies. Hence narrow-band amplification.
A selection function is given to the (nonlinear)

weighting of the lifted error signals byφ(·). The mem-
oryless operationφ(·) is given by a deadzone nonlin-
earity of the form

φ(e1) =







0, if |e1| ≤ δ,

1 −
δ

|e1|
, if |e1| > δ,

(2)

with δ a deadzone length.φ(·) is sector-bounded in
the sense that0 ≤ φ(·) ≤ 1. If performance-limiting
oscillations are sufficiently present in the lifted error
responsee1, then extra controller gain is induced. Con-
trarily, if e1 does not contain such oscillations, then no
extra gain is induced thus avoiding the extra amplifica-
tion of noise by feedback.
A loop shaping function is given to the filter structure
F2, see (Heertjes,et al., 2005), from which we adopt

F2(s)

= α ·
s2 + 2βzωzs + ωz

2

s2 + 2βpωps + ωp
2
·

ωlp
2

s2 + 2βlpωlps + ωlp
2
,

(3)

with α a stability-limited extra gain ratio,ωz = ωp the
zero and pole breakpoints of a notch filter,βz < βp the
corresponding dimensionless damping coefficients,ωlp

the breakpoint of a second-order low-pass filter andβlp

its dimensionless damping coefficient.
Closed-loop stability of the hybrid controlled dynam-

ics is sufficiently guaranteed using the following result.

Theorem 2.1. Assume the strictly proper systemP in
Figure 1 that is stabilized – under bounded distur-
bancesr and f – by Cfb which is strictly proper and
Hurwitz. Also assumeF1 and F2 in Figure 2 to be
stable and proper. Then any controller of the form
(1 + F1φ(·)F−1

1 F2)Cfb with 0 ≤ φ(·) ≤ 1 stabilizes
P if

ℜ
{

F−1
1 (jω)F2(jω) Sc (jω)F1(jω)

}

=

ℜ{F2(jω) Sc (jω)} ≥ −1, (4)

with

Sc (jω) =
Cfb(jω)P(jω)

1 + Cfb(jω)P(jω)
. (5)



For a proof we refer to the results in (Heertjes,et
al., 2005) which are derived from absolute stability the-
ory (Yakubovich, Leonov, and Gelig, 2004). Since the
application ofF1 with its exact inverseF−1

1 is invari-
ant under the result in (4), it provides us with the means
to discriminate between performance-limiting oscilla-
tions and not on the basis of the frequency content
of these oscillations. As such, a strictly performance-
based filter operation is obtained to effectively deal
with such oscillations. This will be demonstrated on
a wafer stage of a wafer scanner.

3 Dynamics and Control of Wafer Scanners
A schematic representation of a wafer scanner is

shown in Figure 3. Light from a laser passes a reti-
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Figure 3. Schematic of a wafer scanner.

cle – a quartz plate containing the image – through a
lens, which reduces the desired image by a factor of
four, and onto a wafer. The latter is represented by a
silicon disk of 300 mm in diameter. Both reticle and
wafer are part of two separate motion controlled sub-
systems: the reticle stage and the wafer stage each em-
ploying a dual-stroke strategy. A long-stroke is used
for fast large-range motions whereas a short-stroke is
used for accurate but small-range tracking. The short-
stroke stages are represented by floating masses which
are controlled in six degrees-of-freedom.
For thez-direction of the short-stroke wafer stage, the

single-input single-output linear feedback design can
be represented by the simplified block diagram repre-
sentation of Figure 1. In transfer function notation, the
wafer stage plant is given by the following simplified

fourth-order model

P(s) =

m1 s2+ b12 s+ k12

m1m2 s4+ b12 (m1 + m2)s3+ k12 (m1 + m2)s2
,

(6)

with m1 + m2≈ 22.5 kg representing the wafer
stage mass. High-frequency resonance is modelled
via the distinction betweenm1≈ 5 kg and m2≈
17 kg, an interconnected stiffness coefficientk12=
7.5 107 Nm−1, and corresponding damping coefficient
b12= 9 101 Nsm−1.
The validity of the model (with sampling delay cor-

rection) is shown in Figure 4. It shows frequency
response functions of both (electro-)mechanics and
model. Below 20 Hz, a poor measurement qual-
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Figure 4. Bode diagram of the measured (electro-)mechanics inz-

direction along with the characteristics of a fourth-ordermodel.

ity induces a poor correspondence between measure-
ment and simulation; all measurements are done under
closed-loop conditions. Beyond 1 kHz, higher-order
dynamics no longer justify the model assumptions.
The feedback controllerCfb in Figure 1 is based

on a series connection of a proportional-integrator-
derivative (PID) controller which aims at disturbance
rejection and robust stability, a second-order low-pass
filter to avoid high-frequent noise amplification, and
three notch filters designed to counteract higher-order
plant resonances. In transfer function notation, the sim-
plified model reads

Cfb(s) = Fpid(s)Flp(s)Fn,1(s)Fn,2(s)Fn,3(s), (7)

with

Fpid(s) =
kp

(

s2+ ωd s+ ωiωd

)

ωd s
, (8)



kp= 6.9 106 Nm−1 a loop gain,ωd≈ 3.8 102 rad s−1

the cut-off frequency of a differential operation, and
ωi≈ 3.14 102 rad s−1 the cut-off frequency of an in-
tegral operation,

Flp(s) =
ωlp

2

s2 + 2β ωlp s+ ωlp
2
, (9)

ωlp≈ 3.04 103 rad s−1 the cut-off frequency of a
second-order low-pass filter,β ≈ 0.08 a dimension-
less damping coefficient, and three notch filters having
a general second-order filter structure, or

Fn,i(s) =

(

ωp,i

ωz,i

)2

·
s2 + 2 βz,iωz,i s+ ωz,i

2

s2 + 2 βp,iωp,i s+ ωp,i
2
. (10)

The parameter values used for the notch filters are
given in Table 1.

i ωz,i in rad s−1 βz,i ωp,i in rad s−1 βp,i

1 90π 0.4 96π 0.05

2 1456π 1.53 · 10−6 1624π 0.88

3 2207π 0.19 1459π 0.18

Table 1. Notch filter parameter values.

Both plantP and controllerCfb are characterized by
the open-loop frequency response functions such as de-
picted in Figure 5. In Bode representation it shows
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Figure 5. Bode diagram of the measured open-loop dynamics in

z-direction along with the characteristics of a model.

OL= CfbP via the characteristics reconstructed from
closed-loop measurement (black) along with the char-
acteristics of a model (grey). Robust stability is suf-
ficiently guaranteed with a controller bandwidth of≈

160 Hz along with a phase margin of 20 degrees and a
gain margin of -4.5 dB near 300 Hz.
Given the linear control design, closed-loop perfor-

mance is assessed at five distinct positions on the wafer:
at four wafer corner points and at the wafer center
point. At each position an identical scan in terms of its
accelerationx- andy-set-points is performed, the result
of which is shown in Figure 6. In the error response,
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Figure 6. Time-series of the filtered error signal inz-direction un-

der equal scans at five different{x, y}-locations on the wafer; four

corner locations (black) and a center location (grey).

large deviations can be observed at the considered po-
sitions on the wafer. Especially within the indicated
interval of constant velocity. This is the interval where
performance should be achieved. The differences in er-
ror response are emphasized by applying the weighting
filter operationF1, see (1), withβz = 1, βp = 0.02,
andωz = ωp = 75π rad s−1. It is clear that the con-
trolled wafer stage shows position-dependent behavior,
the error responses significantly differ over the wafer.
Hence the kind of behavior particularly suited for the
application of the hybrid control strategy.
The ability of the hybrid controller to achieve im-

proved performance is shown in Figure 7. Still under
linear closed-loop conditions (the extra nonlinear con-
troller in Figure 2 is not yet activated) and at two scan
positions: {x, y} = (0.1, 0.1) and {x, y} = (0, 0),
the upper part of the figure shows the monitor func-
tion of the filter operationF1 applied to the error
signal e along with a scaled representation of they-
acceleration set-point. The user-defined value of the
deadzone lengthδ = 40 nm is indicated by means of
the dotted lines. At{x, y} = (0, 0) the resulting sig-
nal almost entirely falls within the indicated bounds,
whereas at{x, y} = (0.1, 0.1) it significantly exceeds
these bounds. The effect of selection through the non-
linear filter operationφ(·), see (2), is shown in the mid-
dle part of the figure. For{x, y} = (0.1, 0.1), it can
be seen that the sinusoidal-based behavior largely re-
mains unaffected whereas for{x, y} = (0, 0) almost
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Figure 7. Time-series measurement of the closed-loop and nonlin-

ear filtered error signals at two location on the wafer:{x, y} =
(0.1, 0.1) and{x, y} = (0, 0) with δ = 40 nm.

all (random-based) oscillations are removed from the
error response. Combined with the loop-shaping func-
tion of filter F2, see (3), the overall nonlinear filter op-
eration gives a strong reduction of the original error sig-
nal e (black versus grey) at{x, y} = (0, 0) whereas it
roughly shows the same signal at{x, y} = (0.1, 0.1).
At {x, y} = (0.1, 0.1), this provides the means to ob-
tain improved disturbance suppression under high-gain
feedback while at the same time it keeps the amplifica-
tion of noise at{x, y} = (0, 0) small.

4 Performance Assessment on a Wafer Stage

At a wafer stage of an industrial wafer scanner, closed-
loop performance is assessed by time-series measure-
ment and cumulative power spectral density analysis.
Prior to this assessment, however, two performance
measures from the wafer scanner industry are briefly
discussed: overlay and fading.

Overlay is a measure for position accuracy, hence the
ability to perform a new scan at a previous scan loca-
tion. In terms of servo control measures, overlay is
(partly) assessed by the moving average filter opera-
tion. For a time-sampled error signale{i} with i ∈ Z,
the moving average filter operation is defined as

Ma(i) =
1

n

i+n/2−1
∑

j=i−n/2

e(j), ∀i ∈ Z, (11)

wheren ∈ N
+ represents a specific time frame. Basi-

cally, (11) represents a low-pass filter operation one.

Fading relates to image quality, hence the ability to fo-
cus light in the path from lens to wafer. Here a moving

standard deviation filter operation is used, or

Msd(i) =

√

√

√

√

√

1

n

i+n/2−1
∑

j=i−n/2

(e(j) −Ma(i))
2
, ∀i ∈ Z,

(12)
that is, a rms-based high-pass filter operation.
For the previously considered wafer positions
{x, y} = (0.1, 0.1) and{x, y} = (0, 0), improved per-
formance with the hybrid control design is shown in
Figure 8. Additionally the results are shown for the lin-
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Figure 8. Time-series measurement of theMa- andMsd-filtered

error signals at two positions{x, y} = (0.1, 0.1) and{x, y} =
(0, 0) on the wafer.

ear design limits: the low-gain design withφ(·) = 0
(grey-dashed) and the high-gain design withφ(·) = 1
(grey-solid). In the indicated scanning interval, it can
be seen in the upper-left part at{x, y} = (0.1, 0.1) that
both the hybrid design and the high-gain linear design
perform equally good in terms of keeping the peak val-
ues of the moving averaged filtered error small. This
shows improved low-frequent disturbance rejection in
comparison with the low-gain linear design. In the
lower-right part, however, at{x, y} = (0, 0), it can be
seen that both the hybrid design and the low-gain linear
design perform equally good. In fact much better than
the high-gain linear design. Hence an improved high-
frequent noise response is obtained in comparison with
the high-gain linear design.
In terms of cumulative power spectral density analy-

sis, Figure 9 shows the results for the five considered
wafer positions. A distinction is made between linear
low-gain (grey-dashed), linear high-gain (grey-solid),
and nonlinear gain (black-solid). It can be seen that
the hybrid control design at each considered position
tends to the smallest rms-value of the error signal. Note
that at some positions the smallest rms-value of the er-
ror signal is determined by the linear low-gain design
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Figure 9. Cumulative power spectral density analysis of the mea-

sured servo error inz-direction at five different positions (each being

the average if four realizations) on the wafer.

whereas at other positions it is determined by the lin-
ear high-gain design. The smallest versus the largest
rms-values over the five wafer locations are shown in
Table 2. Here it can be seen that the hybrid design

low-gain limit nonlinear high-gain limit

minimum in nm 1.67 1.43 1.48

maximum in nm 3.23 2.79 3.65

Table 2. Root-mean-square (rms) values.

excels in performance either by obtaining the smallest
overall rms-value but also by having the smallest error
extremes. It is therefore concluded that the linear de-
sign limits cannot compete with the hybrid design in
terms of servo performance along the wafer. Key is the
ability to adapt the trade-off between disturbance rejec-
tion and measurement noise sensitivity according to the
error response at hand.

5 Conclusions
For motion control systems, a hybrid control design

is proposed which aims at improved disturbance re-
jection properties under equal noise response. Im-
portant is the distinction between stability and perfor-
mance. While nonlinear closed-loop stability is guar-
anteed in the presence of loop-shaping filters, perfor-
mance is effectively dealt with by the introduction of
a stability-invariant weighting filter connection. For a
wafer stage of an industrial wafer scanner, the hybrid
controller improves upon performance in the presence
of position-dependent behavior. Measured at distinct
(and sufficiently distributed) positions along the wafer,
the hybrid control design demonstrates improved low-
frequent disturbance rejection without the necessary

transmission of high-frequent noise. The kind of trans-
mission inherently present under high-gain feedback.
In this sense, performance is achieved unknown to any
linear feedback design and with expected potential in
the broader field of motion control systems.
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