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Abstract
We address a linear control system under geomet-

ric constraints on control and study its reachable sets
starting at zero time from the origin. The main re-
sult is the existence of a limit shape of the reachable
sets as the terminal time tends to zero. Here, a shape
of a set stands for the set regarded up to an invert-
ible linear transformation. Both autonomous and non-
autonomous cases are considered.
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1 Problem Statement
Consider the following linear control system

ẋ = Ax + Bu, x ∈ V = Rn, u ∈ U ⊂ U = Rm,
(1)

where the setU is a central symmetric convex body
in Rm, i.e., U is assumed to be a convex compact set
with the non-empty interior, andU = −U . For any
T > 0 we get the reachable setD(T ) being the set of
the ends{x(T )} at timeT of all admissible trajectories
of system (1) such thatx(0) = 0.

We study the asymptotic behavior of the reachable sets
D(T ) asT → 0. The problem is not as silly as it may
seem. Of course,D(T ) is small with a smallT . Still
we can look at it through a kind of microscope and see
fine details of its development, in particular, its shape.
For instance, consider a rather trivial system (1), where
A = 0, B = 1, andU is the unit ballB1 in Rn = Rm.
ThenD(T ) = TB1, and the reachable set has the shape
of a ball at any timeT > 0.
There is a well developed mathematical concept of

shapes [Ovseevich, 1990]. Informally speaking, a
shape of a set is the set regarded up to an invertible
linear transformation. We will cite some further details
in Section 2. In our example for allT > 0 the sets
D(T ) have the same shape, so that there exists a limit

of the shapes asT → 0, and this limit is not zero, but
the shape of a ball.
In this paper we will show that, for any completely

controllable linear system, shapes of the reachable sets
converge as time tends to zero. We will give an estimate
for the rate of convergence. The paper can be regarded
as theT → 0 counterpart of the results [Ovseevich,
1990] on the large-time dynamics of the reachable sets,
where the existence of a limit shape has been estab-
lished.
This study of the fine structure of reachable setsD(T )

asT → 0 is interesting not only by itself. Another face
of the problem is the study of minimum-time control
bringing a given state vector to the origin, e.g. the op-
timal damping of a pendulum. The problem also arises
naturally in any attempt to devise a bounded feedback
control steering a linear control system to the equilib-
rium in finite time [Ananievskii et al., 2010].

2 Shapes of Reachable Sets
Consider the metric spaceB of central symmetric con-

vex bodies with the Banach-Mazur distanceρ:

ρ(Ω1,Ω2) = log(t(Ω1,Ω2)t(Ω2, Ω1)), where

t(Ω1, Ω2) = inf{t ≥ 1 : tΩ1 ⊃ Ω2}. (2)

The general linear groupGL(V) naturally acts on the
spaceB by isometries. The factorspaceS is called the
space of shapes of central symmetric convex bodies,
where the shapeShΩ ∈ S of a convex bodyΩ ∈ B is
the orbitShΩ = {gΩ : det g 6= 0} of the pointΩ with
respect to the action ofGL(V). The Banach-Mazur
factormetric

ρ(Sh Ω1,ShΩ2) = inf
g∈GL(V)

ρ(gΩ1, Ω2)

makesS into a compact metric space. In what follows,
the convergence of the reachable setsD(T ) and their
shapes is understood in the sense of the Banach-Mazur



metric. The convergence of convex bodies may be also
understood in the sense of convergence of their sup-
port functions. Remind that the support function of a
convex compact setΩ is given by formulaHΩ(ξ) =
supx∈Ω〈x, ξ〉, whereξ ∈ V∗, and uniquely defines the
setΩ. The equivalence of the two definitions of conver-
gence of convex bodies is established by the following
easy lemma [Figurina and Ovseevich, 1999]:

Lemma 1. A sequenceΩi ∈ B converges toΩ ∈ B
in the sense of the Banach-Mazur metric if and only
if the corresponding sequence of the support functions
HΩi(ξ) converges to the support functionHΩ(ξ) point-
wise and is uniformly bounded on the unit sphere in the
dual spaceV∗.

If ρ(Ω1(T ), Ω2(T )) → 0 asT → 0, we say that the
convex bodiesΩ1 andΩ2 are asymptotically equal, and
we writeΩ1(T ) ∼ Ω2(T ). The asymptotic equivalence
of shapes is defined similarly.

3 Main Result: Autonomous Case
We assume that system (1) is time-invariant and the

Kalman controllability condition holds. The Kalman
condition ensures that the reachable setsD(T ) to sys-
tem (1) are central symmetric convex bodies inRn.

Theorem 1. The shapesShD(T ) have a limitSh0 as
T → 0. The Banach–Mazur distanceρ(ShD(T ),Sh0)
is O(T ).

This means that there exists a time independent convex
bodyΩ such that

D(T ) ∼ C(T )Ω,

whereC(T ) is a matrix function. The Banach-Mazur
distance between the left- and the right-hand sides of
the latter formula isO(T ).
Note that the initial reachable setD(0) = {0} does

not belong to the spaceB of symmetric convex bod-
ies. The Banach-Mazur distance betweenShD(T ) and
ShD(0) equals infinity.
Proof of Theorem 1 is based on two easy lemmas, and

the use of the Brunovsky normal form of a controllable
system.

Lemma 2. Consider the linear system

ẋ = Ãx + B̃u, u ∈ U, (3)

obtained from system(1) by adding a linear feedback,
that is,Ã = A + BC andB̃ = B. Then the Banach–
Mazur distanceρ(D(T ), D̃(T )) is O(T ) as T → 0,
whereD(T ) and D̃(T ) are the reachable sets to sys-
tems(1) and(3), respectively.

Lemma 3. Consider the linear system

ẋ = Ãx + B̃u, u ∈ U, (4)

obtained from system(1) by a gauge transformation,
whereÃ = C−1AC, B̃ = C−1B, andC is an invert-
ible matrix. ThenSh D̃(T ) = ShD(T ), whereD̃(T ) is
the reachable set to system(4).

Lemma 3 is obvious. We postpone proving Lemma 2
for a moment, and conclude that applying gauge trans-
formations coupled with adding a linear feedback do
not affect the validity of Theorem 1. However, by
these transformations one can reduce the general sys-
tem (1) to the Brunovsky normal form [Brunovsky,
1970], where the matricesA andB are the direct sums
A = ⊕Ai, B = ⊕Bi, and the matricesAi andBi of
sizesni × ni andni × 1, respectively, take the form

Ai =




0 1

0
. ..
. .. 1

0




, Bi =




0
0
...
1


 . (5)

Note that the Brunovsky classification is known
to be closely related to the Grothendieck theorem
[Grothendieck, 1957] on decomposition of vector bun-
dles onP1 into a sum of line bundles.
We can relate to the Brunovsky system (1), (5) a dis-

tinguished matrix functionδ = ⊕ δi, where

δi(T ) = diag(T−ni , T−ni+1, . . . , T−1) (6)

such that

δAδ−1 = T−1A, δB = T−1B. (7)

This immediately implies that forT fixed andy = δx,
we have

ẏ = T−1 (Ay + Bu) . (8)

Equation (8) reveals the geometric meaning of the ma-
trix δ(T ): The corresponding gauge transformation is
equivalent to the passage to the new time scalet 7→ t/T
in (1), (5). Since the gauge transformations do not
change shapes of the reachable sets (Lemma 3), we
conclude that the shapesShD(T ) of the reachable sets
to the Brunovsky system do not depend onT , and we
are done.
It remains to prove Lemma 2. Consider a trajectory

t 7→ x(t) of system (1), and the corresponding trajec-
tory x̃(t) of (3). We have

ẋ(t) = Ax(t) + Bu(t),
˙̃x(t) = Ax̃(t) + B(u(t) + Cx̃(t))

It is clear thatCx̃(t) = O(t), and therefore for all
t ≤ T the control vector̃u(t) = u(t) + Cx̃(t) belongs



to the set(1 + ε)U , whereε = O(T ). This means
that D̃(T ) ⊂ (1 + ε)D(T ), whereε = O(T ). Since
the relation between systems (1) and (3) is symmet-
ric, we similarly have thatD(T ) ⊂ (1 + ε)D̃(T ). But
this implies Lemma 2 in view of the definition of the
Banach–Mazur distance (2).

4 Non-autonomous Case
In fact, the same phenomenon of the existence of a

limit shape takes place in the non-autonomous case.
We should just assume a kind of a genericity condi-
tion generalizing the Kalman one we operated with in
the time-invariant case.
We study system (1), where now the dataA, B, and

U areC∞-functions of timet ≥ 0. First, by a standard
trick we make (1) into the time-invariant system

τ̇ = 1, (9)

ẋ = A(τ)x + B(τ)u. (10)

Second, consider the Lie algebraL generated by the
vector fields(1, A(τ)x) and (0, B(τ)u) in R × V =
Rn+1, whereu ∈ Rm is a constant vector. Define
L(τ, x) as the set of the values at(τ, x) of all vector
fields fromL.
We use the following Kalman type condition as a

standing assumption:

For each(τ, x) ∈ R×V the setL(τ, x) coin-
cides with the entire tangent spaceRn+1. In
other words,

dimL(τ, x) = n + 1. (11)

It is well known that in the time-invariant case this
assumption coincides with the Kalman controllability
condition.

Theorem 2. LetD(T ) be the reachable set to a non-
autonomous system of the form(1) and the genericity
condition(11) hold. The shapesShD(T ) have a limit
Sh0 asT → 0. Moreover, the Banach–Mazur distance
ρ(ShD(T ), Sh0) is O(T ).

Proof. One can easily reduce system (1) to the case
A = 0. Indeed, make a gauge transformationx = Cy,
whereĊ = C−1AC, C(0) = 1. The Cauchy problem
is, at least locally in time, solvable. Then,ẏ = C−1Bu,
and the shapes of the reachable sets to the new system
are the same as those of the old one.
For the new systeṁy = B̃u the condition (11) takes

the form: For any (constant) vectorξ ∈ V∗ = Rn the
functiont 7→ B̃∗ξ is not flat at any time instantτ , i.e.,
a higher derivative does not vanish atτ .
We associate a flag inV∗ to the matrix functionB̃.

With an integerk ≥ 0 we associate the set

F ∗k = {ξ : B̃∗(t)ξ = O(tk)}

of vectorsξ ∈ V∗ = Rn. It is obvious thatF ∗k form
a decreasing sequence of subspaces ofV∗ such that
F ∗0 = V∗ and F ∗∞ = 0. The latter equality is a re-
statement of the nonflatness condition (11).
Consider the graded spaceGrV∗ = ⊕∞k=0F

∗
k /F ∗k+1,

and choose an isomorphism

φ : V∗ ' GrV∗

such that for anyj the subspaceF ∗j maps to
⊕∞k=jF

∗
k /F ∗k+1 in such a way that the induced map

F ∗j /F ∗j+1 → F ∗j /F ∗j+1 is identical. In other words,
for anyξ ∈ V∗ we have a unique representation of the
form ξ =

∑
i∈I ξi, whereξi belongs to the subspace

Vk(i) = φ−1
(
F ∗k(i)/F ∗k(i)+1

)

in F ∗k(i). Here, the setI of indices can be identified
with the set{k(i) : i ∈ I} of jumps in the filtrationF ∗,
i.e., the values ofk such thatF ∗k 6= F ∗k+1.
We define a generalization∆∗(T ) of the transposed

matrix δ(T ) from (6) as follows:

∆∗(T )ξ =
∑

∈I

T−k(i)−1ξi.

In other words,∆∗(T ) is equal toT−k(i)−1 on Vk(i).
If ξi 6= 0, thenξi ∈ F ∗k(i) \ F ∗k(i)+1, and we have that

B̃∗(t)ξi = tk(i)ηi(t), whereηi(t) is C∞-smooth int,
and ηi(0) 6= 0. Thus, we have theC∞-smooth ma-
trix function B̃∗

i (t)ξ = ηi(t), and the decomposition
B̃∗(t) =

∑
tk(i)B̃∗

i (t). Therefore,

B̃∗(t)∆∗(T ) =
1
T

∑ (
t

T

)k(i)

B̃∗
i (t).

Since each̃B∗
i (t) = B̃∗

i (0) + O(t), the left-hand side
coincides with1

T B̃∗ (
t
T

)
+ O

(
t
T

)
so that

B̃∗(t)∆∗(T ) =
1
T

B̃∗
(

t

T

)
+ O

(
t

T

)
. (12)

The support function of the reachable setD(T ) has the

form HD(T )(ξ) =
∫ T

0

ht(B̃∗(t)ξ), whereht is the

support function of the setUt of controls at timet.
Thus, the support function of the normalized reachable
setD̃(T ) = ∆(T )D(T ) is given by

H eD(T )(ξ) =
∫ T

0

ht(B̃∗(t)∆∗(T )ξ)dt,



where∆(T ) is by definition the adjoint of the already
introduced operator∆∗(T ). Because of (12) the inte-
gral can be rewritten as

HD(T )(ξ) =
∫ 1

0

hτT (B̃∗(τ)ξ + O(τT ))dτ,

where τ = t/T . The latter integral equals∫ 1

0

h0(B̃∗(τ)ξ))dτ + O(T ), and surely converges as

T → 0 to
∫ 1

0

h0(B̃∗(τ)ξ))dτ . If ξ 6= 0 the function

τ 7→ B̃∗(τ)ξ does not vanish identically in any open in-
terval. Thus, the latter integral is positive, what means
that it defines the support function of a convex bodyΩ,

HΩ(ξ) =
∫ 1

0

h0(B̃∗(τ)ξ))dτ,

and we conclude by invoking Lemma 1 that the shapes
ShD(T ) = Sh D̃(T ) tend toSh0 = Sh Ω asT → 0.

5 Conclusion
In the paper we obtained a refined picture of evolution

of reachable sets of a linear control system at the vicin-
ity of the initial time. It is shown that there exists a limit
shape of the reachable set as the time of motion tends to
zero. These results provide a starting point for design
of a bounded feedback control bringing the system to
equilibrium in a finite time.
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