STOCHASTIC GENERATION OF OSCILLATIONS IN THE 3D-MODEL OF COOL-FLAME COMBUSTION OF A HYDROCARBON MIXTURE

Irina Bashkirtseva
Department of Theoretical and Mathematical Physics
Ural Federal University
Russia
Irina.Bashkirtseva@urfu.ru

Lev Ryashko
Department of Theoretical and Mathematical Physics
Ural Federal University
Russia
Lev.Ryashko@urfu.ru

Evdokiia Slepukhina
University of Hohenheim
Germany
Evdokiia.Slepukhina@uni-hohenheim.de

Abstract

The stochastic model of cool-flame combustion of a hydrocarbon mixture is considered. For this 3D model, noise excitement of large-amplitude oscillations in the parametric zone, where the deterministic model has a single equilibrium attractor, is studied. By statistics of interspike intervals, a phenomenon of anti-coherence resonance is revealed. To estimate threshold intensities of noise that causes excitement, stochastic sensitivity technique and method of principal directions are applied.

Key words
combustion, mathematical model, random disturbances, excitement, method of principal directions

1 Introduction

At present, mathematical modelling of thermochemical kinetics is actively used to study complex combustion processes [Williams, 2018; Bykov et al., 2018]. Even in the class of two-dimensional dynamic models, a wide diversity of oscillatory regimes was found (see, e.g. [Uppal et al., 1974; Sheplev et al., 1998]). In these studies, researchers rely on the mathematical theory of bifurcations and computer simulations.

Mathematically, an appearance of oscillatory regimes is usually associated with the existence of limit cycles. In the studies [Bykov et al., 1980; Bykov et al., 2018], such a connection was used to explain the mechanisms that generate oscillatory forms of kinetics in three-dimensional combustion models.

Recently, the study of stochastic models that take into account the inevitable random perturbations has attracted considerable interest of researchers. Indeed, the combination of strong nonlinearity and stochasticity can generate new unexpected modes of dynamics that have no analogues in the original deterministic models [Horsthemke and Lefever, 1984; Anishchenko et al., 2007; Lindner et al., 2004; Bashkirtseva, 2016; Kremer, 2021; Romero-Meléndez and Castillo-Fernández, 2022]. A constructive role of noise in two-dimensional models of thermochemical kinetics was revealed and investigated (see, e.g. [Lemarchand and Nowakowski, 2005; Ryashko, 2021]). Stochastic effects in the three-dimensional combustion model in a zone of limit cycles was studied in [Bashkirtseva and Slepukhina, 2022].

This paper aims to show how oscillatory regimes can be induced by noise in a zone where the stable equilibrium is a single attractor of the deterministic model. In our study, we use the three-dimensional model of the cool-flame combustion of an n-heptane-isooctane mixture [Bykov et al., 1980].

In Section 2, we briefly present results of bifurcation analysis of the deterministic model. In Section 3, we study an impact of noise in the parameter zone where this deterministic model possesses the only equilibrium attractor. Here, noise-induced excitement of oscillations of large amplitudes is studied by statistics of interspike intervals. A phenomenon of anti-coherence resonance is discussed. To estimate threshold intensities of noise that causes excitement, the stochastic sensitivity technique [Bashkirtseva and Ryashko, 2018; Ryashko, 2018;
Alexandrov et al., 2021] and the method of principal directions are applied.

2 Deterministic model

Consider the three-dimensional model which describes the cool-flame combustion of a mixture of two hydrocarbons (n-heptane and isoctane) [Bykov et al., 1980]:

\[
\begin{align*}
\dot{x}_1 &= f_1(y) (1 - x_1) - x_1 \\
\dot{x}_2 &= f_2(y) (1 - x_2) - x_2 \\
\dot{y} &= \beta_1 f_1(y) (1 - x_1) + \beta_2 f_2(y) (1 - x_2) + (1 - y) - s (y - \bar{y}),
\end{align*}
\]

where

\[f_i(y) = Da_i \exp \left[\gamma_i \left(1 - \frac{1}{y} \right) \right], \quad i = 1, 2. \]

Here, \(x_1 \) and \(x_2 \) are the concentrations of two reagents, and \(y \) is the temperature. \(Da_i, \beta_i, \gamma_i, s, \bar{y} \) are dimensionless parameters of the model. In this article, we fix the parameters as in [Bykov et al., 2018],

\[Da_1 = 0.14, \quad Da_2 = 0.001, \quad \beta_1 = 0.25, \quad \beta_2 = 0.5, \quad s = 2, \quad \bar{y} = 1, \quad \gamma_2 = 40, \]

and study the behavior of the system when \(\gamma_1 \) is varied. Fig. 1 shows the bifurcation diagram of the system (1) in the region \(\gamma_1 \in (47.2, 48) \). For \(\gamma_1 < B_2 \approx 47.71 \), there is a unique stable equilibrium, which loses its stability at \(\gamma_1 = B_2 \) due to the subcritical Andronov-Hopf bifurcation, when an unstable limit cycle is born. As a result of the saddle-node bifurcation of limit cycles, a stable limit cycle appears in the system at \(\gamma_1 = B_1 \approx 47.46 \). Thus, in the region \(B_1 < \gamma_1 < B_2 \), the stable limit cycle coexists with the stable equilibrium, and for \(\gamma_1 > B_2 \), the only attractor of the system is the stable limit cycle.

In this paper, we focus on the zone \(\gamma_1 < B_2 \), where the system (1) is in the monostable equilibrium regime. Fig. 2 shows an example of a phase portrait in this region. Here, the system is excitable: a small deviation from the stable equilibrium can result in trajectories of large amplitudes.

3 Stochastic generation of large-amplitude oscillations

Let us study effects of noise on the system (1) in the equilibrium mode. For this, consider the stochastic model

\[
\begin{align*}
\dot{x}_1 &= f_1(y) (1 - x_1) - x_1 \\
\dot{x}_2 &= f_2(y) (1 - x_2) - x_2 \\
\dot{y} &= \beta_1 f_1(y) (1 - x_1) + \beta_2 f_2(y) (1 - x_2) + (1 - y) - s (y - \bar{y}) + \varepsilon \xi(t),
\end{align*}
\]

where \(\xi(t) \) is the standard white Gaussian noise with the properties \(\langle \xi(t) \rangle = 0, \quad \langle \xi(t) \xi(t + \tau) \rangle = \delta(\tau) \) and the intensity \(\varepsilon \).

Fig. 3 shows random trajectories of the system (2) starting at the stable equilibrium and the corresponding
time series $y(t)$ for different values of the noise intensity ε. One can see that for $\varepsilon = 0.0002$, the trajectory stays close to the deterministic equilibrium, while for $\varepsilon = 0.001$, large-amplitude oscillations far away from the equilibrium appear.

Such generation of large-amplitude oscillations by noise is observed also for other values of the parameter γ_1. Fig. 4 displays y-coordinates of random states in dependence on γ_1, for several fixed values of ε. One can notice that with an increase of the noise intensity, the zone of large-amplitude oscillations expands, so that they appear for smaller values of γ_1. This can be considered as a stochastic shift of the bifurcation point.

Let us study the probabilistic mechanism of the stochastic generation of large-amplitude oscillations in the model (2). For this purpose, we apply the stochastic sensitivity function technique [Bashkirtseva and Ryashko, 2018; Ryashko, 2018; Alexandrov et al., 2021] which allows us to approximate stationary distribution of random states around attractors.

The transition to large-amplitude oscillations from the equilibrium mode can be also traced analyzing interspike intervals statistics. Interspike intervals are commonly referred to as time intervals between two consecutive peaks of large amplitude in oscillations. In Fig. 5, mean values m and coefficients of variation CV for such intervals are plotted. For weak noise, the values m are large, since stochastic trajectories are the most likely to locate near the deterministic equilibrium and large-amplitude spikes appear extremely rare. As the intensity ε increases and becomes larger than some threshold, the values m abruptly decrease, which indicates the onset of stochastic generation of large-amplitude oscillations. For the same levels of noise, the coefficients of variation change from zero to sufficiently large values, which marks a large variation in lengths of interspike intervals in forming oscillations. This effect is known as anti-coherence resonance.

![Figure 4](image_url)

Figure 4. Distribution of y-coordinates of system (2) random states in dependence on γ_1 for several fixed values of noise: a) $\varepsilon = 0.0002$, b) $\varepsilon = 0.0003$, c) $\varepsilon = 0.0005$.

![Figure 5](image_url)

Figure 5. Statistics of interspike intervals in dependence on ε: a) mean values, b) coefficients of variation.

![Figure 6](image_url)

Figure 6. Eigenvalues of the matrix W for equilibria of the system (1) in dependence on the parameter γ_1.
that the eigenvalue λ_1 is larger than other eigenvalues λ_2 and λ_3 in orders of magnitude. This means that random states are distributed very unevenly around the equilibrium. Thus, one can determine the principal direction for deviation of stochastic states. It is the direction of the eigenvector v_1 corresponding to the eigenvalue λ_1.

4 Conclusion

This article is devoted to the problem of revealing the reasons causing complex oscillations in the thermochemical kinetics of combustion processes. In our study, a three-dimensional model describing the combustion process of a mixture of two hydrocarbons was used. It was shown that in the range of parameters, where the original deterministic model has only a stable equilibrium mode, even small random perturbations can generate large-amplitude oscillations. We revealed the probabilistic mechanism of this effect and described the phenomenon of anti-coherence resonance. In analytical study of noise-induced excitation, constructive abilities of the stochastic sensitivity technique and method of principal directions were demonstrated.

Acknowledgements

The work was supported by Russian Science Foundation (N 23-21-00042)

References

