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Abstract
The stochastic model of cool-flame combustion of a

hydrocarbon mixture is considered. For this 3D model,
noise excitement of large-amplitude oscillations in the
parametric zone, where the deterministic model has a
single equilibrium attractor, is studied. By statistics
of interspike intervals, a phenomenon of anti-coherence
resonance is revealed. To estimate threshold intensi-
ties of noise that causes excitement, stochastic sensitivity
technique and method of principal directions are applied.
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1 Introduction
At present, mathematical modelling of thermochemi-

cal kinetics is actively used to study complex combustion
processes [Williams, 2018; Bykov et al., 2018]. Even in
the class of two-dimensional dynamic models, a wide di-
versity of oscillatory regimes was found (see, e.g. [Up-
pal et al., 1974; Sheplev et al., 1998]). In these studies,
researchers rely on the mathematical theory of bifurca-
tions and computer simulations.

Mathematically, an appearance of oscillatory regimes
is usually associated with the existence of limit cy-
cles. In the studies [Bykov et al., 1980; Bykov et al.,
2018], such a connection was used to explain the mecha-
nisms that generate oscillatory forms of kinetics in three-
dimensional combustion models.

Recently, the study of stochastic models that take
into account the inevitable random perturbations has
attracted considerable interest of researchers. Indeed,
the combination of strong nonlinearity and stochastic-
ity can generate new unexpected modes of dynamics
that have no analogues in the original deterministic mod-
els [Horsthemke and Lefever, 1984; Anishchenko et al.,
2007; Lindner et al., 2004; Bashkirtseva, 2016; Kre-
mer, 2021; Romero-Meléndez and Castillo-Fernández,
2022]. A constructive role of noise in two-dimensional
models of thermochemical kinetics was revealed and in-
vestigated (see, e.g. [Lemarchand and Nowakowski,
2005; Ryashko, 2021]). Stochastic effects in the three-
dimensional combustion model in a zone of limit cycles
was studied in [Bashkirtseva and Slepukhina, 2022].

This paper aims to show how oscillatory regimes can
be induced by noise in a zone where the stable equilib-
rium is a single attractor of the deterministic model. In
our study, we use the three-dimensional model of the
cool-flame combustion of an n-heptane-isooctane mix-
ture [Bykov et al., 1980].

In Section 2, we briefly present results of bifurcation
analysis of the deterministic model. In Section 3, we
study an impact of noise in the parameter zone where
this deterministic model possesses the only equilibrium
attractor. Here, noise-induced excitement of oscillations
of large amplitudes is studied by statistics of interspike
intervals. A phenomenon of anti-coherence resonance
is discussed. To estimate threshold intensities of noise
that causes excitement, the stochastic sensitivity tech-
nique [Bashkirtseva and Ryashko, 2018; Ryashko, 2018;
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Alexandrov et al., 2021] and the method of principal di-
rections are applied.

2 Deterministic model

Consider the three-dimensional model which describes
the cool-flame combustion of a mixture of two hydrocar-
bons (n-heptane and isooctane) [Bykov et al., 1980]:

ẋ1 = f1(y) (1− x1)− x1

ẋ2 = f2(y) (1− x2)− x2

ẏ = β1 f1(y) (1− x1) + β2 f2(y) (1− x2)+

+(1− y)− s (y − ȳ),

(1)

where

fi(y) = Dai exp

[
γi

(
1− 1

y

)]
, i = 1, 2.

Here, x1 and x2 are the concentrations of two reagents,
and y is the temperature. Dai, βi, γi, s, ȳ are dimen-
sionless parameters of the model. In this article, we fix
the parameters as in [Bykov et al., 2018],

Da1 = 0.14, Da2 = 0.001, β1 = 0.25, β2 = 0.5,
s = 2, ȳ = 1, γ2 = 40,

and study the behavior of the system when γ1 is varied.
Fig. 1 shows the bifurcation diagram of the system (1) in
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Figure 1. Bifurcation diagram of the deterministic system (1): y-
coordinates of stable (greed solid) and unstable (red dashed) equilibria;
minimal and maximal values of y-coordinate along stable (blue solid)
and unstable (blue dashed) limit cycles, in dependence on the parame-
ter γ1.

the region γ1 ∈ (47.2, 48). For γ1 < B2 ≈ 47.71, there
is a unique stable equilibrium, which loses its stability at
γ1 = B2 due to the subcritical Andronov-Hopf bifurca-
tion, when an unstable limit cycle is born. As a result of
the saddle-node bifurcation of limit cycles, a stable limit
cycle appears in the system at γ1 = B1 ≈ 47.46. Thus,
in the region B1 < γ1 < B2, the stable limit cycle co-
exists with the stable equilibrium, and for γ1 > B2, the
only attractor of the system is the stable limit cycle.

In this paper, we focus on the zone γ1 < B2, where
the system (1) is in the monostable equilibrium regime.
Fig. 2 shows an example of a phase portrait in this re-
gion. Here, the system is excitable: a small deviation
from the stable equilibrium can result in trajectories of
large amplitudes.
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Figure 2. Phase portrait for γ1 = 47.4: projection of a phase tra-
jectory (solid) and the stable equilibrium (circle) on the plane x2−y.

3 Stochastic generation of large-amplitude oscilla-
tions

Let us study effects of noise on the system (1) in
the equilibrium mode. For this, consider the stochastic
model

ẋ1 = f1(y) (1− x1)− x1

ẋ2 = f2(y) (1− x2)− x2

ẏ = β1 f1(y) (1− x1) + β2 f2(y) (1− x2)+

+(1− y)− s (y − ȳ) + εξ(t),

(2)

where ξ(t) is the standard white Gaussian noise with the
properties ⟨ξ(t)⟩ = 0, ⟨ξ(t)ξ(t + τ)⟩ = δ(τ) and the
intensity ε.
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Figure 3. Projections of system (2) random trajectories on the x2 −
y-plane (a) and corresponding time series y(t) (b) starting from the
stable equilibrium for γ1 = 47.45 for ε = 0.0002 (red) and
ε = 0.001 (blue).

Fig. 3 shows random trajectories of the system (2)
starting at the stable equilibrium and the corresponding
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time series y(t) for different values of the noise inten-
sity ε. One can see that for ε = 0.0002, the trajectory
stays close to the deterministic equilibrium, while for
ε = 0.001, large-amplitude oscillations far away from
the equilibrium appear.

Such generation of large-amplitude oscillations by
noise is observed also for other values of the parame-
ter γ1. Fig. 4 displays y-coordinates of random states
in dependence on γ1, for several fixed values of ε. One
can notice that with an increase of the noise intensity,
the zone of large-amplitude oscillations expands, so that
they appear for smaller values of γ1. This can be consid-
ered as a stochastic shift of the bifurcation point.
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Figure 4. Distribution of y-coordinates of system (2) random states
in dependence on γ1 for several fixed values of noise: a) ε =
0.0002, b) ε = 0.0003, c) ε = 0.0005.

The transition to large-amplitude oscillations from the
equilibrium mode can be also traced analyzing interspike
intervals statistics. Interspike intervals are commonly
referred to as time intervals between two consecutive
peaks of large amplitude in oscillations. In Fig. 5, mean
values m and coefficients of variation CV for such inter-
vals are plotted. For weak noise, the values m are large,
since stochastic trajectories are the most likely to locate

near the deterministic equilibrium and large-amplitude
spikes appear extremely rare. As the intensity ε increases
and becomes larger than some threshold, the values m
abruptly decrease, which indicates the onset of stochas-
tic generation of large-amplitude oscillations. For the
same levels of noise, the coefficients of variation change
from zero to sufficiently large values, which marks a
large variation in lengths of interspike intervals in form-
ing oscillations. This effect is known as anti-coherence
resonance.
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Figure 5. Statistics of interspike intervals in dependence on ε: a)
mean values, b) coefficients of variation.

Let us study the probabilistic mechanism of the
stochastic generation of large-amplitude oscillations in
the model (2). For this purpose, we apply the stochas-
tic sensitivity function technique [Bashkirtseva and
Ryashko, 2018; Ryashko, 2018; Alexandrov et al., 2021]
which allows us to approximate stationary distribution of
random states around attractors.

Suppose that the deterministic system has a stable
equilibrium. Then the stochastic sensitivity matrix W of
the equilibrium is a unique solution of the matrix equa-
tion

FW +WF⊤ = −S,

where F is the Jacobi matrix of the system (1) and S is
a matrix which characterizes random disturbances. For
the system (2), S = diag[0, 0, 1].

Eigenvalues and eigenvectors of the matrix W de-
scribe a size and direction of dispersion of random states
around the deterministic equilibrium. In Fig. 6, eigen-
values of the matrix W for equilibria of the system (1) in
dependence on the parameter γ1 are plotted. One can see
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Figure 6. Eigenvalues of the stochastic sensitivity matrix for the equi-
libria of the system (1).

that the eigenvalue λ1 is larger than other eigenvalues λ2

and λ3 in orders of magnitude. This means that random
states are distributed very unevenly around the equilib-
rium. Thus, one can determine the principal direction
for deviation of stochastic states. It is the direction of
the eigenvector v1 corresponding to the eigenvalue λ1.
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Figure 7. Eigenvectors of stochastic sensitivity matrix and deter-
ministic phase trajectories in projection on the x2 − y-plane for
γ1 = 47.45.

Fig. 7 shows for γ1 = 47.45 the eigenvectors of the
stochastic sensitivity matrix for the equilibrium of the
system (1) and two deterministic trajectories starting at
the points with different deviations from the equilib-
rium in the principal direction. One of the trajecto-
ries goes close to the equilibrium, while another has
large-amplitude loops far from it. Thus, one can deter-
mine a threshold in the phase space (pseudo-separatrix)
which detaches points corresponding to small- and large-
amplitude transient processes.

Using the stochastic sensitivity function technique,
one can construct the corresponding confidence inter-
val. The ending points of this interval lay on the pseudo-
separatrix surface. With these confidence intervals, it is
also possible to estimate the critical noise intensity for
which large-amplitude oscillations are generated. For
γ1 = 47.45, we get the value ε∗ = 0.0005, and for
γ1 = 47.2, we get the value ε∗ = 0.0008, which agree
with the observations obtained with the direct numerical
simulations (see Fig. 5).

4 Conclusion
This article is devoted to the problem of revealing

the reasons causing complex oscillations in the ther-
mochemical kinetics of combustion processes. In our
study, a three-dimensional model describing the com-
bustion process of a mixture of two hydrocarbons was
used. It was shown that in the range of parameters,
where the original deterministic model has only a stable
equilibrium mode, even small random perturbations can
generate large-amplitude oscillations. We revealed the
probabilistic mechanism of this effect and described the
phenomenon of anti-coherence resonance. In analyti-
cal study of noise-induced excitement, constructive abil-
ities of the stochastic sensitivity technique and method
of principal directions were demonstrated.
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