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Abstract 
 The electron tunneling through semiconductor 
superlattice in the presence of Dresselhaus spin-
orbit interaction by coherent potential 
approximation in the zinc-blende structure is 
investigated. The effect of indium percent in the 
impurity layers and the distance between them 
on the spin polarization, spin up and spin down 
transparency is evaluated.  
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1. Introduction 
In spintronics or spin based electronics, an 
efficient spin polarized current [Wolf, 2001] is 
much demanded. There have been a number of 
researches demonstrating spin injection from 
dilute magnetic semiconductors [Fiederling, 
1999; Jonker, 2000] or ferromagnetic metals 
[Ohno, 1999; Zhu and Hu, 2001; Hanbicki, 
2002] into semiconductors. In recent researches 
the use of conventional nonmagnetic 
semiconductors [Voskoboynikov, 2000] at zero 
magnetic field, has obtained a spin polarized 
current in resonant tunnelling heterostructure 
[de Andrada e Silva, 1999]. The conductivity 
mismatch of the metal and the semiconductor 
structure causes a fundamental obstacle for 
electrical injection from ferromagnetic into 
semiconductor which was first pointed out by 
Schmidt et al. [Schmidt, 2000]. As a result 
Rashba used the tunneling contact at the metal 
semiconductor interface [Rashba, 2000]. Also 
Voskoboynikov, Liu, and Lee [Voskoboynikov, 
1998] showed that the spin can be filtered by 
using only asymmetric nonmagnetic 

semiconductor. Perel et al. proposed that using 
a material which lacks the center of inversion as 
a barrier for electron tunneling can produce a 
considerable spin polarization, such as zinc-
blende structure semiconductors [Perel, 2003]. 
They showed using a single barrier 
heterostructure only Dresselhaus spin-orbit 
interaction makes the spin polarization 
efficiency of about 20%. Gnanasekar and 
Navaneethakrishnan used an asymmetrical 
double-barrier heterostructure and could 
increase the spin polarization by Dresselhaus 
spin orbit interaction up to 60-70%, using 
Rashba spin-orbit interaction caused 75-85% 
and using both, they achieve a 100% result 
[Gnanasekar, 2005; Deych, 2003].  
 In this research the electron tunneling through 
semiconductor superlattice in the presence of 
Dresselhaus spin-orbit interaction by coherent 
potential approximation in the zinc-blende 
structure is investigated. The effect of indium 
percent in the impurity layers and the distance 
between them on the spin polarization, spin up 
and down transparency is evaluated 
 
2. Method 
 In this work we calculated spin polarization 
efficiency and transmission coefficient under 
spin orbit interaction in zinc-blende structure. 
The spin dependent part of Hamiltonian, HD, 
which is derived from spin orbit interaction, is 
[Silva, 1997]; 
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where γ  describes the strength of Dresselhaus 
effect in the barriers, the iσ  are the Pauli 
matrices and the  are the electron wave vector ik
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component. In the Hamiltonian (1) γ  is 
strongly correlated to band structure e.g. for 
GaAs γ  is calculated by eight band Kane 
theory [Kane, 1957; Rossler, 1984] while for  
InxGa(1-x) As is calculated by coherent potential 
approximation coupled to eight band Kane 
theory. In CPA, the Green’s function for a 
system of scatterers can be written in operator 
notation as  
 
G G GTG= +%                                                           (2) 

 
where  is the Green’s function of real system 
and G is the average effective Green’s function 
and T is the total scattering matrix of the 
system. The scattering matrix of the system may 
be written as 
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where Tik is the scattering-path operator and ti is 
the t matrix that describes the scattering from 
the potential on the i-th site which can be 
written as  
 

1(1 )i i it V GV −= −      .                                      (4) 
 
Here, Vi is the extra potential that is caused the 
scattering i-th site with respect to an effective 
medium. The effective medium is introduced by 
the self energy ξ which can be determined by 
〈T〉=0. Using the CPA, we impose the condition 
that for any barrier 〈ti〉=0 which means the extra 
effective scattering due to the atom at site i 
vanishes and the following self-consistent 
equations can be achieved  
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where εc is the effective indium barrier height  
energy, η is indium barrier percentage, and ξ(m) 
is the self-energy. We have studied the 
transmission of an electron through a 
superlattice which consists of three zinc-blende 
structured materials A, B and C by the order 
shown in Fig. 1. In this figure, layer A (InAs) 
indicates well and layers B (GaAs) and C 
(InxGa(1-x)As) are the barriers where impurity 
layers take place on C layers. First the spin 
polarization and transmission coefficient are 
calculated for a given heterostructure such as 
A/B/A and then extended to the whole 
superlattice using the transfer matrix approach 
 [Kane E. O]. We have considered the 
transmission of an electron along the growth 
direction with the initial wave vector k= (k||, kz) 
through the flat potential barriers of height V 
periodic along the growth direction (z || [001]) 
where k|| is the in-plane wave vector and kz is 
the wave vector along the growth direction. We 
have assumed that the kinetic energy of the 
electron is much smaller than the barrier height 
V. The Hamiltonian in the barrier of j-th 
heterostructure is simplified to; 
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where  is the electron effective mass,  
is barrier potential and the third term is 
Dresselhaus spin-orbit interaction. In the 
following, we omit the j indices for 
convenience. The Dresselhaus term in the 
Hamiltonian  (7) is diagonalized by the spinors; 
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These spinors describe the electron states +  

and −  of the opposite spins directions. In this 
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notation ϕ  is the polar angle of the wave vector 
k in the x-y plane, . The 
electron spins  corresponding to the 
eigenstates “ ” are given by 

),  sin,  cos( |||| zkkkk ϕϕ=
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±
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Electrons with the eigen spin states +  and −  
propagate through the barrier, conserving the 
spin orientation. Since the wave vector in the 
plane of the barrier  is fixed, the wave 
functions of the electrons can be written in the 
form 
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Here  and  are the reflection and 
transmission coefficient and 

±r ±t
),( yx=ρ  is an in-

plane coordinate of the electrons propagating 
through the heterostructure are described in the 
j-th part of heterostructure A/B or C/A. The 
wave vector  through the barrier is given by ±q
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where o  is the reciprocal length of decay of 
the wave function in the barrier. When the spin 
orbit interactions are omitted it is given by 
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Here  and are the electron effective 
masses in the barriers and  are in the wells. 
For calculating transmission through the 
superlattice as A/B/A/B/… we use the standard 

Ben Daniel-Duke boundary condition that 
obtained two equations at each interface. The 
coefficient of the last region can be linked to 
initial coefficients by the transfer matrix. 
Transmission coefficient is proportional to the 
ratio of the last coefficient to initial one.  

Bm Cm

Am

The spin polarization efficiency, P, is 
determined; 
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The polarization efficiency of the 
aforementioned heterostructure is plotted in 
Fig.1. 
  
3. Results and discussion 
Our superlattice structure consists of InAs 
layers (A layers) as wells, GaAs layers (B 
layers) as barriers and two InxGa(1-x)As layers 
(C layers) as disordered layers, one is fixed at 
the beginning and the other is located on an 
arbitrary place. The total length of system is 
5000 angstrom, width of each barrier or well is 
equal and the height of each barrier is 320 meV. 
The temperature regime is 20-77 K. 
 

 
 
Fig.1. The spin polarization versus Indium (In) 
percent in disordered layer and the distance 
between two impurity layers. The energy of the 
electron is 200 meV. 
 
Fig.1 shows the spin polarization versus Indium 
(In) percent and the distance between two 
impurity layers. The energy of the electron is 
fixed at 200 meV. 
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Fig.2. The spin up and down transparency and 
polarization efficiency as function of the 
electron energy for InAs/GaSb/InAs/GaSb/InAs 
double barrier heterostructure in the presence of 
Dresselhaus spin-orbit coupling.  Well width 30 
Å, barriers thickness 50 Å and 40Å respectively 
and the barriers height, V=320 meV. 
 
We restricted our superlattice to a structure of 
double barriers and no impurity layers with the 
same well width and barrier thickness. The 
electron transmission for spin up and down and 
the polarization efficiency are calculated and 
the results are plotted as a function of the 
electron energy in Fig.2 and they are in good 
agreement with the Gnanasekar reports 
[Gnanasekar, 2005].   
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