FIXED-ORDER CONTROLLER DESIGN FOR SISO SYSTEMS USING MONTE CARLO TECHNIQUE

Ya. I. Petrikevich B. T. Polyak P. S. Shcherbakov

Trapeznikov Institute of Control Science, Russian Academy of Sciences, Moscow, Russia

Abstract: A novel randomized approach to fixed-order controller design is proposed for discrete-time SISO plants. It is based on the Monte Carlo sampling Schur stable polynomials using so-called Fam–Meditch parametrization and projecting them onto the affine set of closed-loop characteristic polynomials, which is defined by the controller parameters. If the sampling-projecting procedure fails to find a stabilizing controller, certain candidate controllers are then locally optimized by means of an iterative method of nonsmooth optimization.

Keywords: control system design, stabilizing feedback, Monte Carlo simulation, optimization.

1. INTRODUCTION

Stabilization of SISO plants by low-order controllers is known to be one of the challenging problems in control theory (Åström and Hägglund, 2006; Polyak and Shcherbakov, 2002). Its importance stems from the fact that such controllers are easy to adjust, and most of the real-world controllers that are presently exploited in industry are low-order ones; they are basically PI- or PIDcontrollers having two or three free parameters. On the other hand, few control parameters may be insufficient, and the order of the controller has to be increased thus leading to a more complicated structure.

In general, fixed-order controller design is hard, since it reduces to finding a stable polynomial in an affine family, which is known to be NPhard (Polyak and Shcherbakov, 2002; Blondel and Tsitsiklis, 2000). Moreover, at present there are no satisfactory "yes or no" methods on the *existence* of stabilizing controllers for a given plant; in particular, this is the case even with PIDcontrollers. Various straightforward randomized methods proposed so far (e.g., see (Tempo *et al.*, 2004) for the most recent results in this area) demonstrate weak performance because they work directly in the coefficient space, while the domain of stability is typically very small.

To circumvent some of the difficulties of this sort, we propose a novel randomized approach to fixed-order controller design for discrete time SISO plants. It is based on random generation of stable polynomials and finding for each of them the closest element in the set of closed-loop characteristic polynomials of the system. This affine set is specified by the fixed structure of the controller.

The idea behind this approach is threefold. First, to generate Schur stable polynomials, an efficient recursive procedure is used, which is accomplished in the bounded domain in the space of auxiliary parameters, not in the original coefficient space. Second, if the set of stable closed-loop polynomials is nonempty (the stability domain in the controller coefficient space is nonempty), projecting a sampled polynomial onto this set is aimed at finding a stabilizing controller. Finally, if the samplingprojecting process fails to find a stable closedloop polynomial, a locally optimizing procedure is applied which iteratively shifts the closed-loop zeros towards the stability region (the unit circle on the complex plane). This nonsmooth optimization procedure originally developed in (Polyak and Shcherbakov, 1999a) is based on the ideas of perturbation theory for the roots of polynomials; also see (Polyak and Shcherbakov, 1999b).

Although the method equally applies to both continuous and discrete time systems, for ease of exposition we consider the discrete-time case in this paper, because an existing efficient mechanism of generating discrete stable polynomials can be exploited without serious modifications.

2. DESIGN METHODOLOGY

In this section, we formulate the problem, give the overall description of the method, and discuss each of its main components in more detail.

2.1 Overall description of the method

We consider SISO plants specified by the scalar transfer function

$$G(z) = \frac{n_G(z)}{d_G(z)}$$

with known polynomials $n_G(z), d_G(z)$ and controllers of the form

$$C(z) = \frac{n_C(z)}{d_C(z)}$$

where the degrees of the polynomials $n_C(z)$, $d_C(z)$ are fixed, thus defining the structure of a controller. The characteristic polynomial of the closedloop system is given by

$$n_G(z)n_C(z) + d_G(z)d_C(z)$$

To make the dependence on the controller coefficients explicit, we denote the whole set of the coefficients of $n_C(z)$, $d_C(z)$ by $q \in \mathbb{R}^{\ell}$ and refer to the characteristic polynomial above as p(z,q) or $p_q(z)$. The collection of all such polynomials as q varies in \mathbb{R}^{ℓ} is denoted by \mathcal{P} , which is seen to be an affine polynomial family in the vector q. It is assumed that the leading coefficient of p(z,q) is non-zero for all values of q, i.e., the family \mathcal{P} of polynomials has invariant degree n.

We seek to find a value $q = q^*$ such that $p(z, q^*)$ is stable. To this end, we first propose to generate randomly a stable polynomial $p^j(z)$ of degree n; a possible way to do this is described in Section 2.2 below. The next step is to project this sampled polynomial on the set \mathcal{P} , i.e. to obtain a polynomial $p(z,q) \in \mathcal{P}$ which minimizes the distance to its stable prototype $p^{j}(z)$. If this projection, denote it by $p(z, q^{j})$, is stable, we are done,—the point q^{j} provides a stabilizing controller. Otherwise, we keep generating polynomials $p^{j}(z)$ until a stabilizing q^{j} is found or the user-specified number N of samples is exceeded.

Noteworthy, it may be reasonable to generate all N samples, no matter if a stabilizing controller is found or not. The reason is that this process is numerically cheap (see Section 2.2), while the outcome might be the whole collection of stabilizing controllers, so that various performance indices can further be optimized over this collection.

If the sampling-projecting process terminates without obtaining a stable p(z,q), we choose $N_{cand} \ll N$ candidate polynomials among the $p(z,q^j), j = 1, \ldots, N$, to be used for further tuning. By tuning we mean an optimization procedure (to be described in Section 2.4 below) which is aimed at shifting the roots of a candidate polynomial towards the unit disk iteratively in q.

The candidate polynomials can be chosen in different ways from the available information. For instance, let d_j denote the distance between the $p(z, q^j)$ and its stable prototype $p^j(z)$. Then, the polynomials having the least values of d_j can be selected as candidates. Alternatively, let $\sigma_j = \max_k |z_k|$ be the degree of instability of the (unstable) projected $p(z, q^j)$. Then the candidate polynomials are those having the least degrees of instability. A combination of both criteria might as well be accepted. The motivation for such a choice for the candidates is that they might be close (in the q-space) to stable characteristic polynomials in \mathcal{P} .

It is hardly possible to evaluate the probability of obtaining a stable projection (if it exists); nor there is a guarantee that the tuning procedure will lead to a stabilizing point. However, numerical tests of the proposed methodology over a number of problems involving fixed-order controllers testify to its validity and high efficiency.

We now consider each of the components of the method in more detail.

2.2 Generation of stable polynomials

Since division by a positive number does not alter the roots of a polynomial, we restrict our attention to monic *n*th order polynomials of the form

$$p(z) = z^n + a_{n-1}z^{n-1} + \ldots + a_1z + a_0.$$
 (1)

A polynomial is said to be *(discrete) stable* (Schur stable) if all its roots z_k belong to the open unit disk $C_1 \doteq \{z \in \mathbb{C} : |z| < 1\}$ on the complex plane.

The lemma below is one of the cornerstones of the approach proposed, see (Fam and Meditch, 1978; Prakash and Fam, 1982) and Lemma 3.3 in (Polyak and Shcherbakov, 2002).

Lemma 1. Any Schur stable monic polynomial p(z)(1) can be obtained by the recursive procedure

$$p_0(z) = 1, \quad p_{k+1}(z) = zp_k(z) + t_k z^k p_k(z^{-1}), \quad (2)$$

 $|t_k| \le 1, \quad k = 0, \dots, n-1.$

In the control literature, the numbers t_k are referred to as the *Fam-Meditch parameters*; the lemma states that sweeping the unit cube $T = [-1, 1]^n$ in the space of these parameters yields all stable monic polynomials of degree n. Moreover, all stable polynomials of *all* degrees less than or equal to n are generated by means of this recursive procedure. Sometimes relations (2) are called the Levinson-Durbin recursion, see (Jury, 1974).

Notably, this procedure does not lean on sampling any roots or coefficients of a desired stable p(z), but rather produces its coefficients from the Fam-Meditch (FM) parameters; the resulting stable polynomials will be referred to as FMpolynomials.

In the implementation of the approach in this paper, the FM parameters t_k are generated randomly uniformly on [-1, 1]. Neither the coefficients, nor the roots of a polynomial generated in such a way are distributed uniformly in the respective domains; e.g., see Fig. 1 for root distribution of sampled FM polynomials of degree 5.

However, the procedure gives quite a representative description of the (bounded) set of all stable polynomials in the coefficient space. Moreover, as seen from the figure, the FM polynomials tend to concentrate closer the boundary of this set.

Fig. 1. Root distribution for 5th-degree FM polynomials from N = 500 samples.

In a sense, this is to the advantage of the overall method, since the subsequent projecting will probably lead to closed-loop polynomials, which are close to the stability domain. Interestingly, the observed average number n_r of real roots per FM polynomial remains quite stable; for instance, $n_r \approx 1.45$ for degree n = 5.

For completeness of the exposition, the work (Andrieu and Doucet, 1999) is worth mentioning, where a nonlinear transformation of the t_k 's is devised that results in the *uniform* distribution in the coefficient space of Schur stable polynomials. We also mention other existing random generation schemes such as random walks over bounded regions, which might be competitive to the one discussed above. For example, the so-called Hit-and-Run algorithm (Smith, 1984) can be implemented over the nonconvex bounded set of all monic Schur stable polynomials.

2.3 Projecting on the set of closed-loop polynomials

This simple technical step is briefly described below.

We identify the nth-degree FM polynomial

$$p^{j}(z) = z^{n} + a_{n-1}z^{n-1} + \ldots + a_{1}z + a_{0}$$

with the *n*-dimensional vector $p^j = (a_{n-1}, \ldots, a_0)^{\mathsf{T}}$ of its coefficients. Similarly, let p_q denote the corresponding vector for a closed-loop polynomial $p_q(z) \in \mathcal{P}$. We have

$$p_q(z) = p_0(z) + \sum_{i=1}^{\ell} q_i p_i(z)$$
 (3)

with certain constituent polynomials $p_i(z)$, $i = 0, \ldots, \ell$ (having different degrees). This relation can be re-written in the form

$$p_q = Aq + p_0,$$

where the rectangular matrix $A \in \mathbb{R}^{n \times \ell}$ is composed from the coefficient vectors p_i with the properly added zero components—to have the same lengths. Then the projection problem of finding $\min_q \|p_q - p^j\|$ formulates as finding

$$\arg\min_{q} \|Aq + p_0 - p^j\|$$

If the euclidean norm is used, the solution is given in closed form by $q = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}(p^j - p_0)$ as the solution of the least squares problem. Use of other norms such as l_1 or l_{∞} require solving a corresponding linear program.

2.4 Local iterative tuning

For a detailed description of the tuning algorithm under consideration, a reader is referred to (Polyak and Shcherbakov, 1999a,b), where it was proposed for the continuous-time case. Here we present just its main idea as applied to Schur stability.

Given an affine polynomial family (3) of invariant degree n such that p(z, 0) is unstable, we seek to find a $q = q^*$ such that $p(z, q^*)$ is stable. The algorithm works in the q-space and moves the roots of p(z, q) iteratively towards the boundary of the stability region (the interior of the unit circle).

The following result on the perturbed roots of a polynomial constitutes the basis for this algorithm; it can be easily obtained by expanding p(z,q) in Taylor series.

Lemma 2 (Polyak and Shcherbakov, 1999a,b). Let p(z,q) be a polynomial in $z \in \mathbb{C}$, which depends on the vector of real parameters $q = (q_1, \ldots, q_\ell)^{\mathsf{T}}$, and $\deg p(z,q) = n = \operatorname{const}(q)$. Assume that p(z,q) is differentiable with respect to q at the point q = 0 and denote

$$\pi_i(z) = \left. \frac{\partial p(z,q)}{\partial q_i} \right|_{q=0}, \qquad i = 1, \dots, \ell.$$

Let $z_k = z_k(0)$ denote a simple zero of the polynomial $p_0(z) = p(z, 0)$. Then for sufficiently small q there exists a zero $z_k(q)$ of the polynomial p(z,q) such that

$$z_k(q) = z_k + (w^k, q) + o(q),$$

where it is denoted $w^k = -\pi^k/r_k$, $r_k = p'_0(z)\big|_{z=z_k}$, and $\pi^k = (\pi_1(z_k), \dots, \pi_\ell(z_k))^{\mathsf{T}}$.

For the affine linear dependence (3) on q we have $\pi_i(z) = p_i(z)$, and the vectors w^k are computed in closed form.

We start our constructions by distinguishing the *critical* roots among the roots of p(z, 0), namely, those having maximal moduli. More precisely, let z^w be the "worst" root, i.e., $|z^w| \ge |z_k|$ for all roots of p(z, 0). We specify a small constant $\varepsilon > 0$ and consider the roots z_k^c such that $|z_k^c| \ge |z^w| - \varepsilon$.

These critical roots $z_k^c(q)$, k = 1, ..., m, are then linearized in the neighborhood of q = 0 using Lemma 2 and their linear approximations

$$\tilde{z}_k^c(q) \doteq z_k^c(0) + (w^k, q), \quad k = 1, \dots, m,$$

are considered; it is these linearized roots that will be shifted at every current iteration.

Namely, we specify a small $\delta > 0$ and seek for a smallest q that makes all of $\tilde{z}_k^c(q)$ stable with degree of stability $1 - \delta$:

$$\min \|q\| \text{ s.t. } |z_k^c(0) + (w^k, q)| < 1 - \delta, \ k = \overline{1, m}. \ (4)$$

If a solution \tilde{q} of this problem (which is seen to be a low-dimensional convex program in q) exists, it defines the direction at the current step. Finally, to guarantee that all roots of the "renewed" polynomial p(z,q) are shifted towards the unit disk, we find

$$\alpha_{\min} = \arg\min_{\alpha>0} \max_{k} |z_k|$$

by one-dimensional search, where z_k are the roots of $p(z, \alpha \tilde{q})$, adopt α_{\min} as the stepsize and take $q = \alpha_{\min} \tilde{q}$. As a result, the degree of instability of the renewed polynomial is decreased and the point q is located closer to the stability domain of the polynomial family.

The next iteration is performed with the resulting p(z,q) after change of variables $q := q - \alpha_{\min} \tilde{q}$.

Several comments are due. First, there might be several "worst" roots and, moreover, some of them may have multiplicity greater than one. In that case, a refined linearization formulae can be derived. Second, the constraints in the optimization problem (4) may turn out to be inconsistent. In that case, the optimization step can be performed from a different point in the small neighborhood of the current point. Third, other optimization schemes can be devised, e.g, the one where the direction at every step is chosen as a direction of common decrease (a linear combination of antigradients).

It should be noted that this method is approximate and does not provably lead to a stable solution even if it exists. However it has demonstrated very stable performance over a range of test examples.

In the context of the approach in this paper, this algorithm should be repeatedly run N_{cand} times for different unstable initial points q^j , which are provided by the candidate controllers as described in Section 2.1. As said, these "meaningful" initial conditions are expected to be located close to the stability domain, hence contributing to a faster convergence of the algorithm.

3. EXPERIMENTS

We demonstrate the efficacy of the approach by a simple illustrative example of stabilization via PI-controllers. In that case, only two control parameters q_1, q_2 , are involved that makes the method easily visualizable on the plane.

Example. In the first experiment, we considered the plant with one unstable pole, specified by

$$n_G(z) = 2z^2 - 1.5,$$

$$d_G(z) = z^4 - 0.5z^3 - 0.98z^2 + 0.048z + 0.144,$$

and with PI-controller of the form

$$C = \frac{q_1 + q_2 z}{z}$$

in the feedback loop. The 5th-order closed-lcharacteristic polynomial writes

$$p(z,q) = p_0(z) + q_1 p_1(z) + q_2 p_2(z),$$

where

$$p_0(z) = z^5 - 0.5z^4 - 0.98z^3 + 0.048z^2 + 0.14$$

$$p_1(z) = 2z^2 - 1.5,$$

$$p_2(z) = 2z^3 - 1.5z.$$

For benchmark purposes, we determined explic the boundary of the stability domain for p(z)in the two-dimensional q-space using the class D-decomposition technique originally propo in (Neimark, 1949) (for the recent development the field, see (Gryazina and Polyak, 2006) and references therein). The result is given in Fig.

Next, N = 500 was specified as the maxim number of sample Schur polynomials of degree 5 to be generated by the FM algorithm. As early as at the 33rd attempt, the projected $p(z, q^j)$ was detected to be stable with $q = q^j \approx (0.308, 0.275)$ being a stabilizing controller. For illustration, we plotted the points q^j associated with all $N_{stab} = 11$ stable projections that were found during the sampling; these are marked by asterisks in the figure.

In the second experiment we slightly changed the coefficients of the plant:

$$n_G(z) = 2z^2 - 1.57$$

leaving the coefficients of $d_G(z)$ the same values, thus leading to

$$p_0(z) = z^5 - 0.5z^4 - 0.98z^3 + 0.048z^2 + 0.144z,$$

$$p_1(z) = 2z^2 - 1.57,$$

$$p_2(z) = 2z^3 - 1.57z,$$

as the constituents of the closed-loop polynomial p(z,q) (5). The stability domain of family (5) is also nonempty, but now it is much smaller than in the previous experiment, see Fig. 3. As a result, all N = 500 randomly sampled Schur polynomials have unstable projections, see the associated points in the space of the controller coefficients, none of which fall in the stability domain.

Among these, we selected $N_{cand} = 10$ candidate polynomials having the least degrees of instability σ_j and applied the iterative method of Section 2.4 (with parameter δ being $\delta = 0.001$) trying to locally optimize them. In other words, we ran the algorithm N_{cand} times choosing the respective $q^j, j = 1, \ldots, 10$, as the initial point for iterations. Optimization terminated successfully for all of them after 1 to 4 steps, thus leading to stabilizing controllers. The corresponding N_{cand} trajectories of the algorithm are also shown in Fig. 3.

Fig. 2. Stability domain for polynomial (5) and the projected p^j samples in the $\{q_1, q_2\}$ -plane.

Fig. 3. Local optimization of the candidate controllers.

Numerical experiments have been performed for higher-order plants having several unstable poles, higher-order controllers (for instance, PID-controllers), etc. The method showed excellent performance in all the examples.

4. CONCLUSION

In this paper, we proposed a simple-to-implement randomized technique for fixed-order controller design. Although it does not provably lead to a solution, the method has demonstrated high efficiency over a range of test problems; it is believed to be practically useful in control applications.

Among the natural extensions of the approach is its immediate modification to the continuoustime case, with the associated methods of random generation of Hurwitz stable polynomials. The technique can be extended to the problem of maximizing the degree of stability of the closed-loop system, robust statements of the problem (where the plant coefficients are not known exactly), simultaneous stabilization, etc. In the latter cases, only the iterative algorithm of Section 2.4 should be properly modified.

One of the interesting directions for further research would be development and deeper analysis of alternative efficient methods for generating stable polynomials and extensions of the overall approach to the MIMO case.

REFERENCES

- Andrieu, C. and A. Doucet (1999). An improved method for uniform simulation of stable minimum phase real ARMA (p,q) processes. *IEEE Sig. Proc. Lett.* **6**(6), 142–144.
- Åström, K. J. and T. Hägglund (2006). Advanced PID Control. Instrumentation, Systems and Automation Society. Research Triangle Park, NC.
- Blondel, V. and J. N. Tsitsiklis (2000). A survey of computational complexity results in systems and control. Automatica 36, 1249–1274.
- Fam, A. and J. Meditch (1978). A canonical parameter space for linear systems design. *IEEE Transactions on Automatic Control* 23(3), 454–458.
- Gryazina, E. N. and B. T. Polyak (2006). Stability regions in the parameter space: D-decomposition revisited. Automatica 42(1), 13–26.
- Jury, E. I. (1974). Inners and Stability of Dynamic Systems. Wiley. New York.
- Neimark, Yu. I. (1949). Stability of Linearized Systems (in Russian). LKVVIA. Leningrad.
- Polyak, B. T. and P. S. Shcherbakov (1999a). A new approach to robustness and stabilization of control systems via perturbation theory. *Proc. 14th World Congress of IFAC* C, 13– 18.
- Polyak, B. T. and P. S. Shcherbakov (1999b). Numerical search of stable or unstable element in matrix or polynomial families: A unified approach to robustness analysis and stabilization. In: *Robustness in Identification and Control, Lecture Notes in Control and Inf. Sci.*. Vol. 245. pp. 344–358. Springer.
- Polyak, B. T. and P. S. Shcherbakov (2002). *Robust Stability and Control (in Russian)*. Nauka. Moscow.

- Prakash, M. N. and A. T. Fam (1982). A geometric root distribution criterion. *IEEE Transac*tions on Automatic Control 27(2), 494–496.
- Smith, R. L. (1984). Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions. *Operations Research* 32, 1296–1308.
- Tempo, R., G. Calafiore and F. Dabbene (2004). Randomized Algorithms for Analysis and Control of Uncertain Systems. Springer-Verlag. London.