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Abstract: A novel randomized approach to fixed-order controller design is proposed
for discrete-time SISO plants. It is based on the Monte Carlo sampling Schur
stable polynomials using so-called Fam–Meditch parametrization and projecting
them onto the affine set of closed-loop characteristic polynomials, which is defined
by the controller parameters. If the sampling-projecting procedure fails to find a
stabilizing controller, certain candidate controllers are then locally optimized by
means of an iterative method of nonsmooth optimization.
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1. INTRODUCTION

Stabilization of SISO plants by low-order con-
trollers is known to be one of the challenging prob-
lems in control theory (Åström and Hägglund,
2006; Polyak and Shcherbakov, 2002). Its impor-
tance stems from the fact that such controllers
are easy to adjust, and most of the real-world
controllers that are presently exploited in industry
are low-order ones; they are basically PI- or PID-
controllers having two or three free parameters.
On the other hand, few control parameters may
be insufficient, and the order of the controller has
to be increased thus leading to a more complicated
structure.

In general, fixed-order controller design is hard,
since it reduces to finding a stable polynomial
in an affine family, which is known to be NP-
hard (Polyak and Shcherbakov, 2002; Blondel
and Tsitsiklis, 2000). Moreover, at present there
are no satisfactory “yes or no” methods on the
existence of stabilizing controllers for a given
plant; in particular, this is the case even with PID-
controllers. Various straightforward randomized

methods proposed so far (e.g., see (Tempo et
al., 2004) for the most recent results in this area)
demonstrate weak performance because they work
directly in the coefficient space, while the domain
of stability is typically very small.

To circumvent some of the difficulties of this
sort, we propose a novel randomized approach
to fixed-order controller design for discrete time
SISO plants. It is based on random generation
of stable polynomials and finding for each of
them the closest element in the set of closed-loop
characteristic polynomials of the system. This
affine set is specified by the fixed structure of the
controller.

The idea behind this approach is threefold. First,
to generate Schur stable polynomials, an efficient
recursive procedure is used, which is accomplished
in the bounded domain in the space of auxiliary
parameters, not in the original coefficient space.
Second, if the set of stable closed-loop polynomials
is nonempty (the stability domain in the controller
coefficient space is nonempty), projecting a sam-
pled polynomial onto this set is aimed at finding



a stabilizing controller. Finally, if the sampling-
projecting process fails to find a stable closed-
loop polynomial, a locally optimizing procedure
is applied which iteratively shifts the closed-loop
zeros towards the stability region (the unit circle
on the complex plane). This nonsmooth optimiza-
tion procedure originally developed in (Polyak
and Shcherbakov, 1999a) is based on the ideas of
perturbation theory for the roots of polynomials;
also see (Polyak and Shcherbakov, 1999b).

Although the method equally applies to both con-
tinuous and discrete time systems, for ease of ex-
position we consider the discrete-time case in this
paper, because an existing efficient mechanism
of generating discrete stable polynomials can be
exploited without serious modifications.

2. DESIGN METHODOLOGY

In this section, we formulate the problem, give
the overall description of the method, and discuss
each of its main components in more detail.

2.1 Overall description of the method

We consider SISO plants specified by the scalar
transfer function

G(z) =
nG(z)

dG(z)

with known polynomials nG(z), dG(z) and con-
trollers of the form

C(z) =
nC(z)

dC(z)
,

where the degrees of the polynomials nC(z), dC(z)
are fixed, thus defining the structure of a con-
troller. The characteristic polynomial of the closed-
loop system is given by

nG(z)nC(z) + dG(z)dC(z).

To make the dependence on the controller coef-
ficients explicit, we denote the whole set of the
coefficients of nC(z), dC(z) by q ∈ R

` and refer to
the characteristic polynomial above as p(z, q) or
pq(z). The collection of all such polynomials as q
varies in R

` is denoted by P, which is seen to be
an affine polynomial family in the vector q. It is
assumed that the leading coefficient of p(z, q) is
non-zero for all values of q, i.e., the family P of
polynomials has invariant degree n.

We seek to find a value q = q∗ such that p(z, q∗)
is stable. To this end, we first propose to generate
randomly a stable polynomial pj(z) of degree n; a
possible way to do this is described in Section 2.2
below. The next step is to project this sampled
polynomial on the set P, i.e. to obtain a poly-
nomial p(z, q) ∈ P which minimizes the distance

to its stable prototype pj(z). If this projection,
denote it by p(z, qj), is stable, we are done,—the
point qj provides a stabilizing controller. Other-
wise, we keep generating polynomials pj(z) until
a stabilizing qj is found or the user-specified num-
ber N of samples is exceeded.

Noteworthy, it may be reasonable to generate
all N samples, no matter if a stabilizing controller
is found or not. The reason is that this process is
numerically cheap (see Section 2.2), while the out-
come might be the whole collection of stabilizing
controllers, so that various performance indices
can further be optimized over this collection.

If the sampling-projecting process terminates
without obtaining a stable p(z, q), we choose
Ncand ¿ N candidate polynomials among the
p(z, qj), j = 1, . . . , N , to be used for further
tuning. By tuning we mean an optimization pro-
cedure (to be described in Section 2.4 below)
which is aimed at shifting the roots of a candidate
polynomial towards the unit disk iteratively in q.

The candidate polynomials can be chosen in dif-
ferent ways from the available information. For
instance, let dj denote the distance between the
p(z, qj) and its stable prototype pj(z). Then,
the polynomials having the least values of dj
can be selected as candidates. Alternatively, let
σj = maxk |zk| be the degree of instability of the
(unstable) projected p(z, qj). Then the candidate
polynomials are those having the least degrees of
instability. A combination of both criteria might
as well be accepted. The motivation for such a
choice for the candidates is that they might be
close (in the q-space) to stable characteristic poly-
nomials in P.

It is hardly possible to evaluate the probability
of obtaining a stable projection (if it exists); nor
there is a guarantee that the tuning procedure will
lead to a stabilizing point. However, numerical
tests of the proposed methodology over a num-
ber of problems involving fixed-order controllers
testify to its validity and high efficiency.

We now consider each of the components of the
method in more detail.

2.2 Generation of stable polynomials

Since division by a positive number does not alter
the roots of a polynomial, we restrict our attention
to monic nth order polynomials of the form

p(z) = zn + an−1z
n−1 + . . .+ a1z + a0. (1)

A polynomial is said to be (discrete) stable (Schur
stable) if all its roots zk belong to the open unit
disk C1

.
= {z ∈ C : |z| < 1} on the complex plane.



The lemma below is one of the cornerstones of
the approach proposed, see (Fam and Meditch,
1978; Prakash and Fam, 1982) and Lemma 3.3 in
(Polyak and Shcherbakov, 2002).

Lemma 1. Any Schur stable monic polynomial
p(z) (1) can be obtained by the recursive procedure

p0(z) = 1, pk+1(z) = zpk(z) + tkz
kpk(z

−1), (2)

|tk| ≤ 1, k = 0, . . . , n− 1.

In the control literature, the numbers tk are re-
ferred to as the Fam–Meditch parameters; the
lemma states that sweeping the unit cube T =
[−1, 1]n in the space of these parameters yields all
stable monic polynomials of degree n. Moreover,
all stable polynomials of all degrees less than or
equal to n are generated by means of this recursive
procedure. Sometimes relations (2) are called the
Levinson–Durbin recursion, see (Jury, 1974).

Notably, this procedure does not lean on sam-
pling any roots or coefficients of a desired sta-
ble p(z), but rather produces its coefficients from
the Fam–Meditch (FM) parameters; the resulting
stable polynomials will be referred to as FM-
polynomials.

In the implementation of the approach in this
paper, the FM parameters tk are generated ran-
domly uniformly on [−1, 1]. Neither the coeffi-
cients, nor the roots of a polynomial generated in
such a way are distributed uniformly in the respec-
tive domains; e.g., see Fig. 1 for root distribution
of sampled FM polynomials of degree 5.

However, the procedure gives quite a representa-
tive description of the (bounded) set of all stable
polynomials in the coefficient space. Moreover, as
seen from the figure, the FM polynomials tend
to concentrate closer the boundary of this set.
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Fig. 1. Root distribution for 5th-degree FM
polynomials from N = 500 samples.

In a sense, this is to the advantage of the over-
all method, since the subsequent projecting will
probably lead to closed-loop polynomials, which
are close to the stability domain. Interestingly,
the observed average number nr of real roots per
FM polynomial remains quite stable; for instance,
nr ≈ 1.45 for degree n = 5.

For completeness of the exposition, the work (An-
drieu and Doucet, 1999) is worth mentioning,
where a nonlinear transformation of the tk’s is
devised that results in the uniform distribution in
the coefficient space of Schur stable polynomials.
We also mention other existing random generation
schemes such as random walks over bounded re-
gions, which might be competitive to the one dis-
cussed above. For example, the so-called Hit-and-
Run algorithm (Smith, 1984) can be implemented
over the nonconvex bounded set of all monic Schur
stable polynomials.

2.3 Projecting on the set of closed-loop polynomials

This simple technical step is briefly described
below.

We identify the nth-degree FM polynomial

pj(z) = zn + an−1z
n−1 + . . .+ a1z + a0

with the n-dimensional vector pj= (an−1, . . . , a0)
T

of its coefficients. Similarly, let pq denote the
corresponding vector for a closed-loop polynomial
pq(z) ∈ P. We have

pq(z) = p0(z) +
∑̀

i=1

qipi(z) (3)

with certain constituent polynomials pi(z), i =
0, . . . , ` (having different degrees). This relation
can be re-written in the form

pq = Aq + p0,

where the rectangular matrix A ∈ R
n×` is com-

posed from the coefficient vectors pi with the
properly added zero components—to have the
same lengths. Then the projection problem of
finding minq ‖pq − pj‖ formulates as finding

argmin
q
‖Aq + p0 − pj‖.

If the euclidean norm is used, the solution is given
in closed form by q = (ATA)−1AT(pj − p0) as
the solution of the least squares problem. Use of
other norms such as l1 or l∞ require solving a
corresponding linear program.

2.4 Local iterative tuning

For a detailed description of the tuning algo-
rithm under consideration, a reader is referred



to (Polyak and Shcherbakov, 1999a,b), where it
was proposed for the continuous-time case. Here
we present just its main idea as applied to Schur
stability.

Given an affine polynomial family (3) of invariant
degree n such that p(z, 0) is unstable, we seek to
find a q = q∗ such that p(z, q∗) is stable. The
algorithm works in the q-space and moves the
roots of p(z, q) iteratively towards the boundary of
the stability region (the interior of the unit circle).

The following result on the perturbed roots of
a polynomial constitutes the basis for this algo-
rithm; it can be easily obtained by expanding
p(z, q) in Taylor series.

Lemma 2 (Polyak and Shcherbakov, 1999a,b).
Let p(z, q) be a polynomial in z ∈ C, which
depends on the vector of real parameters q =
(q1, . . . , q`)

T, and deg p(z, q) = n = const(q).
Assume that p(z, q) is differentiable with respect
to q at the point q = 0 and denote

πi(z) =
∂p(z, q)

∂qi

∣

∣

∣

∣

q=0

, i = 1, . . . , `.

Let zk = zk(0) denote a simple zero of the polyno-
mial p0(z) = p(z, 0). Then for sufficiently small q
there exists a zero zk(q) of the polynomial p(z, q)
such that

zk(q) = zk + (wk, q) + o(q),

where it is denoted wk = −πk/rk, rk = p′0(z)
∣

∣

z=zk

,

and πk = (π1(zk), . . . , π`(zk))
T.

For the affine linear dependence (3) on q we have
πi(z) = pi(z), and the vectors wk are computed
in closed form.

We start our constructions by distinguishing the
critical roots among the roots of p(z, 0), namely,
those having maximal moduli. More precisely, let
zw be the “worst” root, i.e., |zw| ≥ |zk| for all
roots of p(z, 0). We specify a small constant ε > 0
and consider the roots zck such that |zck| ≥ |z

w|−ε.

These critical roots zck(q), k = 1, . . . ,m, are then
linearized in the neighborhood of q = 0 using
Lemma 2 and their linear approximations

z̃ck(q)
.
= zck(0) + (wk, q), k = 1, . . . ,m,

are considered; it is these linearized roots that will
be shifted at every current iteration.

Namely, we specify a small δ > 0 and seek for
a smallest q that makes all of z̃ck(q) stable with
degree of stability 1− δ:

min‖q‖ s.t. |zck(0)+(wk, q)| < 1−δ, k=1,m. (4)

If a solution q̃ of this problem (which is seen to be
a low-dimensional convex program in q) exists, it
defines the direction at the current step. Finally,

to guarantee that all roots of the “renewed”
polynomial p(z, q) are shifted towards the unit
disk, we find

αmin = argmin
α>0

max
k
|zk|

by one-dimensional search, where zk are the roots
of p(z, αq̃), adopt αmin as the stepsize and take
q = αminq̃. As a result, the degree of instability
of the renewed polynomial is decreased and the
point q is located closer to the stability domain of
the polynomial family.

The next iteration is performed with the resulting
p(z, q) after change of variables q := q − αminq̃.

Several comments are due. First, there might be
several “worst” roots and, moreover, some of them
may have multiplicity greater than one. In that
case, a refined linearization formulae can be de-
rived. Second, the constraints in the optimization
problem (4) may turn out to be inconsistent. In
that case, the optimization step can be performed
from a different point in the small neighborhood
of the current point. Third, other optimization
schemes can be devised, e.g, the one where the
direction at every step is chosen as a direction of
common decrease (a linear combination of anti-
gradients).

It should be noted that this method is approx-
imate and does not provably lead to a stable
solution even if it exists. However it has demon-
strated very stable performance over a range of
test examples.

In the context of the approach in this paper, this
algorithm should be repeatedly run Ncand times
for different unstable initial points qj , which are
provided by the candidate controllers as described
in Section 2.1. As said, these “meaningful” initial
conditions are expected to be located close to the
stability domain, hence contributing to a faster
convergence of the algorithm.

3. EXPERIMENTS

We demonstrate the efficacy of the approach by a
simple illustrative example of stabilization via PI-
controllers. In that case, only two control param-
eters q1, q2, are involved that makes the method
easily visualizable on the plane.

Example. In the first experiment, we considered
the plant with one unstable pole, specified by

nG(z) = 2z2 − 1.5,

dG(z) = z4 − 0.5z3 − 0.98z2 + 0.048z + 0.144,

and with PI-controller of the form

C =
q1 + q2z

z



in the feedback loop. The 5th-order closed-loop
characteristic polynomial writes

p(z, q) = p0(z) + q1p1(z) + q2p2(z), (5)

where

p0(z) = z5 − 0.5z4 − 0.98z3 + 0.048z2 + 0.144z,

p1(z) = 2z2 − 1.5,

p2(z) = 2z3 − 1.5z.

For benchmark purposes, we determined explicitly
the boundary of the stability domain for p(z, q)
in the two-dimensional q-space using the classical
D-decomposition technique originally proposed
in (Neimark, 1949) (for the recent developments in
the field, see (Gryazina and Polyak, 2006) and the
references therein). The result is given in Fig. 2.

Next, N = 500 was specified as the maximum
number of sample Schur polynomials of degree 5
to be generated by the FM algorithm. As early
as at the 33rd attempt, the projected p(z, qj) was
detected to be stable with q = qj ≈ (0.308, 0.275)
being a stabilizing controller. For illustration, we
plotted the points qj associated with all Nstab=11
stable projections that were found during the sam-
pling; these are marked by asterisks in the figure.

In the second experiment we slightly changed the
coefficients of the plant:

nG(z) = 2z2 − 1.57

leaving the coefficients of dG(z) the same values,
thus leading to

p0(z) = z5 − 0.5z4 − 0.98z3 + 0.048z2 + 0.144z,

p1(z) = 2z2 − 1.57,

p2(z) = 2z3 − 1.57z,

as the constituents of the closed-loop polynomial
p(z, q) (5). The stability domain of family (5)
is also nonempty, but now it is much smaller
than in the previous experiment, see Fig. 3. As
a result, all N = 500 randomly sampled Schur
polynomials have unstable projections, see the
associated points in the space of the controller
coefficients, none of which fall in the stability
domain.

Among these, we selected Ncand = 10 candidate
polynomials having the least degrees of instabil-
ity σj and applied the iterative method of Sec-
tion 2.4 (with parameter δ being δ = 0.001) trying
to locally optimize them. In other words, we ran
the algorithm Ncand times choosing the respective
qj , j = 1, . . . , 10, as the initial point for iterations.
Optimization terminated successfully for all of
them after 1 to 4 steps, thus leading to stabilizing
controllers. The corresponding Ncand trajectories
of the algorithm are also shown in Fig. 3.
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Fig. 2. Stability domain for polynomial (5) and the
projected pj samples in the {q1, q2}-plane.
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Fig. 3. Local optimization of the candidate con-
trollers.

Numerical experiments have been performed for
higher-order plants having several unstable poles,
higher-order controllers (for instance, PID-cont-
rollers), etc. The method showed excellent perfor-
mance in all the examples.

4. CONCLUSION

In this paper, we proposed a simple-to-implement
randomized technique for fixed-order controller
design. Although it does not provably lead to a



solution, the method has demonstrated high effi-
ciency over a range of test problems; it is believed
to be practically useful in control applications.

Among the natural extensions of the approach
is its immediate modification to the continuous-
time case, with the associated methods of random
generation of Hurwitz stable polynomials. The
technique can be extended to the problem of max-
imizing the degree of stability of the closed-loop
system, robust statements of the problem (where
the plant coefficients are not known exactly), si-
multaneous stabilization, etc. In the latter cases,
only the iterative algorithm of Section 2.4 should
be properly modified.

One of the interesting directions for further re-
search would be development and deeper analy-
sis of alternative efficient methods for generating
stable polynomials and extensions of the overall
approach to the MIMO case.
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