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Abstract
This article is devoted to the study of controlled move-

ments of a spatial double pendulum with non-parallel
cylindrical joints axes. The collinear control is used to
swinging of the system by feedback. The most impor-
tant property of collinear control is the ability of increas-
ing system oscillations only on one oscillation mode. A
modification of the collinear control law with variable
gain depending on the energy level is investigated. It al-
lows to control the system motions more flexible than in
the case of constant gain. As a result, it is possible to ob-
serve a smooth transition from a linear oscillation mode
to a nonlinear one with a gradual output to a steady os-
cillation motion with a given energy level. The obtained
results are clearly illustrated by graph dependencies that
demonstrate the swinging of the system on one oscilla-
tion mode from small to finite amplitudes.
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1 Introduction
A large number of publications are devoted to the

control of pendulum structures [Ananyevskiy, Fradkov,
and Nijmeijer, 2008; Manevitch, Smirnov, and Romeo,
2016; Alyshev, Dudarenko, and Melnikov, 2018]. Here-
with, control processes in pendulum systems with sev-
eral degrees of freedom are of special interest. This
is explained by the fact that it is necessary to pay here
much more attention in the formation of control actions
in order to achieve certain goals than in the study of sys-
tems with one degree of freedom. In particular, a num-
ber of works are related to control of the movements of

a double pendulum and its modifications, and we should
mention among them the following works [Lavrovskii,
and Formalskii, 2001; Bogdanov, 2004; Awrejcewicz et
al., 2008; Formalskii, 2014; Andreev, and Peregudova,
2015] published in the last two decades. We note that
problem of the double pendulum has long and interest-
ing history [Smirnov, and Smolnikov, 2020], and its re-
search is of significant theoretical and practical interest.
First of all, this is due to its application as an element
of various multi-link structures in robotics, as well as
in biodynamic problems. It should be emphasized that
various spatial double pendulums attract the attention of
specialists in the field of dynamics and motion control of
pendulum systems [Bendersky, and Sandler, 2006; Xin-
jilefu, Hayward, and Michalska, 2009; Ludwicki, Awre-
jcewicz, and Kudra, 2015]. They have a much wider
range of applicability than flat pendulums, and they are
widely used in different practical purposes.

At the same time, it is very important to propose an
approach to the formation of a fairly simple control law
that allows such pendulum system to swing on each of
its oscillation modes separately with their gradual tran-
sition to a nonlinear zone. This path should be consid-
ered rational, since during its implementation, all the en-
ergy supplied to the system will be directed to the devel-
opment of only one oscillation mode, without exciting
other modes. In this case, it is important also to ensure
the gradual transition of the system to the required func-
tioning mode which corresponds to a predetermined en-
ergy level and represents a regular periodic motion with
sufficient large amplitude. These motions are the most
valuable of all possible movement modes of nonlinear
systems, because they are advisable for practical use in
the operation of manipulators and other robotic devices.
In this regard, the main purpose of this work is to con-
struct and study a control with the indicated properties.
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2 Spatial double pendulum
We consider a double pendulum consisting of two piv-

otally connected identical mathematical pendulums of
length l with end loads of mass m. We assume that axes
of the cylindrical joints of this pendulum form an acute
angle α between themselves, so that they are not parallel
to each other, and the double pendulum becomes spatial
(Fig. 1). Kinetic and potential energies of this system
were obtained in [Smirnov, and Smolnikov, 2021-4]:

T =
1

2
ml2

[(
2 + cos2 α+ sin2 α cos2 θ2 +

+2 cos θ2) θ̇21 + 2 cosα(1 + cos θ2)θ̇1θ̇2 + θ̇22

]
,

Π = mgl [3− (2 + cos θ2) cos θ1 +

+ cosα sin θ2 sin θ1] ,

(1)

where θ1 and θ2 are articulated rotation angles, which
we consider as generalized coordinates, and g is the ac-
celeration due to gravity. We can write the equations of
motion of this system in the following matrix form:

A(θ)θ̈ + B(θ, θ̇) + C(θ) = 0. (2)

Here θ = [θ1, θ2]T is the column of generalized coordi-
nates, and the matrix A(θ), as well as columns B(θ, θ̇)
and C(θ) have the following representations:

A(θ) = ml2


2 + cos2 α+
+ sin2 α cos2 θ2 + cosα(1 + cos θ2)

+ 2 cos θ2
cosα(1 + cos θ2) 1

 ,

B(θ, θ̇) = ml2 sin θ2


−
(

2
(
1 + sin2 α cos θ2

)
θ̇1+

+ cosαθ̇2

)
θ̇2

(1 + sin2 α cos θ2)θ̇21

 ,

C(θ) = mgl

[
(2 + cos θ2) sin θ1 + cosα sin θ2 cos θ1

sin θ2 cos θ1 + cosα cos θ2 sin θ1

]
.

(3)
In the same article [Smirnov, and Smolnikov, 2021-4],
a linear model of this double pendulum was considered,
and the linear matrix equation is

A0θ̈ + C0θ = 0, (4)

where matrix of inertial coefficients A0 and matrix of
quasi-elastic coefficients C0 are constant symmetric ma-
trices, and they have the form:

A0 = ml2
[

5 2 cosα
2 cosα 1

]
,

C0 = mgl

[
3 cosα

cosα 1

]
.

(5)

As a result, the dimensionless frequencies ps0 = ks0/k,
where k =

√
g/l, and also the small oscillation modes

Θ(s) = [Θ1s,Θ2s]
T, which are characterized by the ra-

tio βs0 between the oscillation amplitudes Θ2s and Θ1s

of the rotation angles θ2 and θ1 in the pendulum joints,
were determined, where s = 1, 2:

ps0 =

√
2(1 + sin2 α)±

√
2− sin2 α

1 + 4 sin2 α
,

βs0 = − 3± 2
√

2− sin2 α

cos 2α±
√

2− sin2 α
cosα.

(6)

It is necessary to define specific values Θ1s and Θ2s in
the small oscillation mode for further actions, for exam-
ple, Θ1s = 1, Θ2s = βs0. We also need to introduce the
normalizing coefficients of oscillation modes Ns, where

ΘT
(s)A0Θ(s) = Ns, ΘT

(s)C0Θ(s) = Nsk
2
s0, (7)

and the values Ns can be calculated taking into account
expressions (5) and (6).

3 Formation of the motion control law
It is known that the oscillation frequencies begin to

drift with increase in amplitudes in a nonlinear system,
and also the oscillation modes are gradually changing.
In particular, the drift of frequencies and modes of spa-
tial double pendulum was established in [Smirnov, and
Smolnikov, 2021-3]. Therefore, the traditional methods
of swinging of the system, that is, the organization of
resonant oscillations, associated with harmonic excita-
tion in the form of a given program in time with pre-
scribed frequency from the outside and widely used in
linear systems, are unsuitable here. This reason means
that it is necessary to create control actions, according to
the state when the frequency is fed to the excitation drive
as a feedback signal. Such a controlled resonant mode is
well known for systems with one degree of freedom, and
its research begins from fundamental work [Andronov,
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Figure 1. Spatial double pendulum
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Vitt, and Khaikin, 1966], where the concept of ”autores-
onance” was introduced for it. This controlled mode en-
sures that the frequency and phase of the feedback sig-
nal will exactly correspond to the current frequency and
phase of the system oscillations, due to which all the en-
ergy entering the system will be transferred to it. How-
ever, this term remained practically unnoticed for many
years, and the interest in this concept gradually increased
only in the last several decades. For example, the works
[Fradkov, 1999-1; Fradkov, 1999-2] are devoted to the
feedback resonance. The main difficulty in the practical
implementation of such resonance is the need to use a
feedback loop in order to form the required drive control
law. The formation of a control law using feedback can
be carried out in many different ways for systems with
one degree of freedom, when there will be a monotonic
increase in the total energy E = T + Π of the system.

The organization of swinging using feedback is more
difficult in multidimensional nonlinear systems. We
note that feedback resonance in such systems is stud-
ied in some works, for example, in [Efimov, Fradkov,
and Iwasaki, 2013]. Serious difficulties arise here be-
cause these mechanical systems have several oscillatory
degrees of freedom, i.e., several natural frequencies and
modes. So that, it is necessary for swinging of the system
in this case not only to increase the energy of the system,
but also to be able to swing the system on one of its free
oscillation modes separately. Otherwise, the energy sup-
plied to the system will go to excite all modes at once,
which will lead to a sharp decrease of the resonant prop-
erties of control and the quality of the motion processes.
This means that the required control should not violate
the linear oscillation modes of the system and allow a
gradual transition of each oscillation mode to a corre-
sponding nonlinear one, swinging the system from small
amplitudes up to the sufficiently large ones. It is known
that the specified property is possessed by the so-called
”collinear control”. From a mathematical point of view,
collinear control involves the formation of a column of
control actions Q collinear to the column of generalized
impulses K = ∂T/∂θ̇, i.e., in the form Q = γK, where
γ is the gain factor. This control uses dynamic proper-
ties of the controlled system, imitating the inertial forces
that arise in the process of its movement. Initially, it was
proposed to control the motion of rigid bodies and var-
ious manipulators operating in the absence of external
force fields [Merkin, and Smolnikov, 2003; Smolnikov,
1991]. Subsequently, this idea was applied to control the
motion of pendulum systems that oscillate in the grav-
ity field [Smirnov, and Smolnikov, 2017]. Herewith, the
relation Ė = 2γT is fulfilled, and it demonstrates the in-
creasing character of the total energy. As a result, using
the example of a flat double pendulum, it was shown that
it is possible to swing this pendulum on each of the os-
cillation modes with a smooth transition from a linear to
a nonlinear zone with the help of collinear control with
small constant gain. In addition, it is possible to achieve
an output to the conservative oscillatory motion with a
periodicity by switching off the control when the de-

sired energy level E∞ is reached. All of the techniques
mentioned above enable to use the collinear control in
a wide variety of areas of modern technology. It should
also be emphasized that described controlled movements
are apparently widespread in the animal world, where all
running, swimming and flying animals perform their lo-
comotion in a controlled resonant motion according to
one of oscillation modes. Naturally, we also need to use
these principles for locomotion of modern running an-
droids [Leontev, Smirnov, and Smolnikov, 2019], that
once again ensures the relevance of the proposed study.

4 Collinear control with variable gain
The collinear control with a constant gain γ described

above leads to a fairly rapid energy increasing in time,
which stops abruptly when the value of E∞ is reached.
So that, the question arises: how is it necessary to set the
gain in order to achieve a smooth transition of the sys-
tem to the steady motion with the desired energy level
E∞? It is clear that it is necessary to gradually lower
the gain as the energy approaches this value, thereby re-
ducing the rate of its growth, that is, to set this gain in
the form of a function depending on the state variables:
γ = γ(θ, θ̇). It is easy to understand that this depen-
dence can be formed in the various ways. The most
preferable option seems to be similar to that described
in [Fradkov, 2007]:

γ(θ, θ̇) = γ0
E∞ − E(θ, θ̇)

mgl
, (8)

where the factor mgl is introduced for dimensional rea-
sons, so that constant value γ0 has the same dimension
as γ. It’s seen that γ gradually decreases to zero when
the energy approaches the value E∞, therefore, the tran-
sition to the steady oscillation motion will be smooth
in this situation. Considering that function (8) changes
rather slowly, it can be assumed that this change has
practically no effect on the main property of collinear
control – preservation of the oscillation modes of the
original conservative model. We recall that his circum-
stance is decisive, since the main task of the control ac-
tion means the development of one or another oscillation
mode of the system.

Let us turn to the study of controlled motions of the
spatial double pendulum. We assume that control mo-
ments are formed using sensors installed in its joints, so
we can write down the nonlinear matrix equation of the
controlled motion of the system, adding to the right side
(2) the column of control actions Q:

A(θ)θ̈ + B(θ, θ̇) + C(θ) = Q, (9)

wherein this column is formed according to the principle
of collinear control, taking into account (8):

Q = γ(θ, θ̇)
∂T

∂θ̇
= γ0

E∞ − E(θ, θ̇)

mgl
A(θ)θ̇, (10)
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Figure 2. Control of a flat double pendulum (α = 0)

where the total energy is E = T + Π, and it is deter-
mined according to (1). The equation (9) can be solved
using numerical methods. In order to excite a resonant
motion on one of the oscillation modes of the system, it
is necessary to set the initial conditions that correspond
to the required mode in the linear model. For example,
we can assume, for the simplicity, that at t = 0 initial
conditions have the form: θ0 = a0Θ(s), θ̇0 = 0, where
a0 is the sufficiently small value. We restrict ourselves
to the study of controlled motion only on the first oscil-
lation mode, which is of the main practical significance.

5 Discussion of the results of numerical research
We turn to discussion of the results of numerical study

at various values of angle α between the joint axes. First
of all, we consider the special case of a flat double pen-
dulum, when α = 0. The nonlinear modes for this situ-
ation were constructed in the work [Smirnov, and Smol-
nikov, 2021-2], where, in addition to the rotation angles
θ1 and θ2 in joints, absolute deviation angles of pendu-
lum links from the vertical ϕ1 = θ1 and ϕ2 = θ1 + θ2
are used, which also are often considered as generalized
coordinates. Fig. 2 shows the graph dependencies of an-
gles θ1, θ2 and ϕ2, as well as angular velocities θ̇1, θ̇2
and ϕ̇2 in time in the process of controlled movement. It
can be seen that at the initial stage of motion all the pre-
sented quantities are rather small and gradually increase
their amplitudes without changing their character. This
means that oscillation mode is still linear at this stage.
However, over time, there is a pronounced drift of the
oscillation mode with its smooth transition to a nonlinear
mode and the reaching a steady motion for all mentioned
quantities. It can be seen that this movement retains a
regular character and is a single-frequency one, while it
is already very different from the motion on the linear
oscillation mode, which has a harmonic, i.e., sinusoidal
character. We note that the form of the nonlinear oscil-
lation mode is in complete agreement with the results
obtained in [Smirnov, and Smolnikov, 2021-2] using an-
alytical methods based on asymptotic analysis, as well
as in the case of numerical methods.

Now consider the controlled motion of a spatial double
pendulum, for example, at α = π/6. The graph depen-
dencies of angles θ1 and θ2, as well as angular velocities
θ̇1 and θ̇2 in time are shown for this case in Fig. 3. It is
easy to see that there is also a slow transition of the linear
oscillation mode to the nonlinear one with the preserva-
tion of the single-frequency motion upon a detailed ex-
amination of presented graphs.

Finally, let us consider the case α = π/2 which cor-
responds to the so-called orthogonal double pendulum,
when joint axes of both pendulums are orthogonal to
each other. Then the matrices (5) are diagonal, and there-
fore, the oscillations in both degrees of freedom in this
case are independent in linear conservative model. This
means that one generalized coordinate can change oscil-
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Figure 3. Control of a spatial double pendulum at α = π/6
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Figure 4. Control of an orthogonal double pendulum (α = π/2)

latory, while the second coordinate is equal to zero. It
can be shown that it is possible to increase the amplitude
of oscillations of the coordinate θ1 at zero value of the
coordinate θ2, and the character of the controlled process
will be completely analogous to the swinging of an or-
dinary mathematical pendulum studied in [Smirnov, and
Smolnikov, 2021-1]. The graph dependencies of angle
θ1 and angular velocity θ̇1 in time are presented in Fig. 4,
while the angle θ2 and angular velocity θ̇2 are zero.

Thus, the following important conclusion can be made:
the proposed collinear control law with variable gain re-
ally allows to swing the system on one of its oscillation
modes with gradual transformation of this mode from
linear to nonlinear one and the transition to a steady os-
cillatory motion corresponding to a given energy level.

6 Analytical solution for small deviations
We study the case of sufficiently small deviations,

when the angles θ1 and θ2 can be considered as not so
significant. It is possible to construct a simple analytical
solution in this case, and it is an important feature. For
this purpose, we can write down the expression of total
energy using the quadratic approximation:

E(θ, θ̇) =
1

2
θ̇TA0θ̇ +

1

2
θTC0θ. (11)

We will assume that it is required to bring the system to
the harmonic oscillations on one of the modes Θ(s) with
corresponding to it natural frequency ks0, i.e.,

θ = Θ(s)A cosψ, ψ = ks0t+ ϑs0, (12)

where A is a constant parameter that has the meaning of
the amplitude and is also sufficiently the small one. We
calculate the desired energy level corresponding to (12):

E∞ =
1

2
Nsk

2
s0A

2, (13)

where conditions (7) are used. For small deviations, the
equation (9) can be simplified by reducing it to the form

A0θ̈ + C0θ = Q(θ, θ̇). (14)

and here the column of control actions is

Q =
γ0

2mgl

(
Nsk

2
s0A

2 − θ̇TA0θ̇ − θTC0θ
)

A0θ̇.

(15)
We have excluded here the own nonlinearity of the sys-
tem, which affects the oscillation frequency and mode in
the first level of approximation, that we are not consider-
ing now, since we are interested in only the character of
the oscillation growth here. Therefore, we have left only
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Figure 5. Control of a spatial double pendulum at α = π/6 (the
case of small deviations)

nonlinear terms of the third order of smallness, arising
due to control actions and directly affecting the increase
in the amplitudes of oscillations. We will seek solution
of equation (14) in the form:

θ = Θ(s)a cosψ, ψ = ks0t+ ϑs0, (16)

where a = a(t) is some unknown time function, which is
to be determined. It should be found from the harmonic
balance equation for oscillation mode Θ(s) [Bogoliubov,
and Mitropolsky, 1961]:

2π∫
0

ΘT
(s)

(
A0θ̈ + C0θ −Q

)
sinψdψ = 0. (17)

We assume that ȧ = F (a), where the function F (a), as
it is easy to understand, has the third order of smallness
at values a and A = const, which we consider as values
of the same order of smallness. Then, we calculate θ̇ and
θ̈ according to (16) with the required precision:

θ̇ = Θ(s) [F (a) cosψ − a sinψks0] ,

θ̈ = Θ(s)

[
−2F (a) sinψks0 − a cosψk2s0

]
.

(18)

Let us calculate the column (15) up to the third order of
smallness:

Q = −γ0Nsk
2
s0

2mgl
(A2 − a2)a sinψks0A0Θ(s). (19)

Substituting now formulas (16), (18) and (19) into the
equation (17), we obtain after some transformations the
following expression:

F (a) =
γ0Nsk

2
s0

4mgl
a(A2 − a2). (20)

Thus, we obtain the equation to determine a(t):

ȧ = κsa(A2 − a2), κs =
γ0Hsp

2
s0

4
, (21)

where it is taken into account that ps0 = ks0/k, and also
dimensionless normalization coefficients are introduced:
Hs = Ns/(ml

2). Taking the initial conditions in the
previous form θ0 = a0Θ(s), θ̇0 = 0 and referring to
the formulas (16) and (18), and, in addition, taking into
account that F (a) is small in comparison with a, we can
approximately obtain that ϑs0 = 0, and a = a0 at t = 0.
Solving (21), we finally find the desired dependence:

a(t) =
a0Ae

κsA
2t√

A2 + a20
(
e2κsA2t − 1

) . (22)

It is seen from (22) that for t → ∞ we have a → A,
i.e., E → E∞, as expected. As a result, for small de-
viations, the controlled motion of a spatial double pen-
dulum is approximately described by the formulas (16)
and (22). Fig. 5 shows the graphs of controlled motion
at α = π/6 at sufficiently small angles θ1 and θ2. The
envelope lines, which characterize the oscillation ampli-
tudes of specified angles, are plotted according to the ob-
tained formulas. It is seen that these lines are in complete
agreement with the results of numerical integration.

Thus, the obtained analytical results enable to as-
sess the character of increase in the oscillation ampli-
tudes within the framework of the considered simplified
model. We emphasize once again that despite the ap-
proximations carried out and the absence of a drift of
the frequency and oscillation mode in this model, it still
remains nonlinear due to the control actions.

7 Conclusion
Summarizing the results of the study of controlled mo-

tion of a spatial double pendulum, we can conclude that
collinear control with a variable gain, as well as collinear
control with constant gain, allows to transfer all the en-
ergy supplied to the system to the growth of oscillations
only on one oscillation mode. This means, that it is pos-
sible to excite resonant oscillations in a given oscillation
mode with the help of such control, and besides the os-
cillation amplitudes of both articulated rotation angles
increase and tend to the predetermined level over time.
As a result, it is possible to observe the system move-
ment on a nonlinear oscillation mode characterized by a
single frequency. Of course, the proposed method can
be applied to any other mechanical system, especially in
the field of robotics and biodynamics.

Finally, it is necessary to note the invaluable contribu-
tion of I. I. Blekhman to many of the issues discussed
in this article. His remarkable papers are devoted to the
theory of nonlinear oscillations, vibrational mechanics,
resonance phenomenon, cybernetical physics and many
other fields of applied mechanics and control processes
[Blekhman, 2000; Blekhman, and Fradkov (eds), 2001;
Blekhman, 2012; Blekhman, and Sorokin, 2018].
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