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Abstract 
Recently, hybrid automata have emerged as a 

natural modelling abstraction for biochemical 
interactions. Within discrete states, the local 
dynamics is usually described by linear differential 
equations, and generically, the continuous variables 
are protein concentrations. Transitions between 
discrete states occur, with possible reset variables, 
when specific threshold values are reached, thus 
producing abrupt changes in the right hand side of 
the differential system. This paper firstly analyses a 
simple hybrid automaton modelling a repressor 
mechanism in molecular biology, which presents a 
hysterezis behaviour. Alternate modelling 
frameworks, limitations of the model and simulation 
challenges are discussed. Secondly, a second-order 
piecewise-linear model of a generic biochemical 
interaction process is abstracted to a Zeno hybrid 
automaton. A solution for implementation, in 
MATLAB, of a Zeno path avoidance scheme, based 
on fixed-step time discretization is proposed and 
further research directions are emphasized. 
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1 Introduction and motivation 
Biological processes like protein regulatory 

networks present a hybrid nature, in which the 
continuous evolution of protein concentrations is 
activated or deactivated when the protein 
concentrations reach given threshold values. 

Hybrid automata, combining event-driven with 
time-driven dynamics, have recently emerged as an 
ideal framework for modelling, analysis and 
simulation of biochemical interactions [Gosh and 
Tomlin, 2004], [Mysore, 2006]. Within locations the 
system dynamics is modelled by differential 

equations, as long as invariants, usually represented 
by algebraic inequality-like restrictions, are satisfied 
and transitions between locations occur when 
conditions for flow equations change are satisfied 
[Alur et al., 1995]. 

Despite recent progress, hybrid systems theory still 
presents open issues [Branicky, 2005] and its 
application in theoretical systems biology is 
currently subject of intense research [Aderem, 
2005]. 

A description of a biochemical process in terms of 
state space, its dynamics (i.e. rules for ODEs and 
discrete transitions) and a region in its state space 
corresponding to a desired property can be converted 
to a hybrid automaton and vice versa. 

Given such a two-facet model, a first problem is 
the behaviour prediction from a biologically 
reasonable initial state [Piazza et al., 2005]. An 
adequate numerical simulation tool may be an 
answer, but special care must be taken when 
implementing the discontinuities in the right-hand 
side of the differential system. 

A second problem concerns those regimes - 
characterized by locations in the hybrid automaton - 
from which a desired regime or state space region 
can be reached. In brief, reachability is the problem 
of deciding if a location of a hybrid automaton can 
be attained in a finite number of steps from a given 
initial location.   

Zeno hybrid automata, executing infinite many 
transitions in a finite (Zeno-) time interval, may 
appear in biological modelling and they are not 
decidable for the reachability problem [Piazza et al., 
2005], [Mysore, 2006]. Zeno hybrid automata have 
earlier been studied within computer science theory 
[Alur and Dill, 1990]. Although real systems are not 
Zeno, a hybrid model may be Zeno due to modelling 
abstraction. Also, simulation of Zeno behaviour may 
become imprecise, time consuming or it may just get 
stuck [Zhang et al., 2001]. 
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The attempts to solve the Zeno phenomenon and to 
extend system executions beyond the so-called 
Zeno-time are based on approximations of hybrid 
systems dynamics. Given a Zeno hybrid automaton, 
the approach called regularization [Johansson et al, 
1999] proposes the construction of a family of non-
Zeno parameterised hybrid automata, which tend to 
the initial automaton, as the parameter tends to zero, 
although their executions respectively differ. Time 
discretization is a similar way to obtain such hybrid 
systems approximations and Mysore [2006] analyses 
three classes of theoretical relations between the 
discrete time step h and the number of allowed 
discrete transitions. Implementing these relations in 
simulation schemes is an open issue. 

Starting from a simple repressor hybrid automaton 
with hysterezis behaviour, the paper firstly discusses 
some related modelling and simulation challenges 
and proposes a conversion to a Simulink scheme, 
similar to those encountered in control engineering 
approaches. Secondly, the relation between the two 
proteins in the first model is slightly changed, 
driving to a second-order piecewise-linear model of 
a generic biochemical interaction process with Zeno 
behaviour. For Zeno path avoidance, the paper 
proposes a MATLAB simulation solution based on 
fixed-step time discretization, which implements the 
theoretical timed-jump transition relation introduced 
in [Mysore, 2006]. 

The paper is structured as follows. An overview of 
hybrid automata basic definitions and related 
concepts is presented in Section 2. Simulation 
problems and alternate models of the simple 
repressor hybrid automaton are discussed in Section 
3. Zeno path avoidance for the hybrid automaton of 
a generic two-state biochemical interaction process 
is analysed in Section 4, followed by concluding 
remarks. 

2 Hybrid automata - an overview 
A hybrid automaton H is a collection 

, where Q is a finite 
set of discrete variables, X is a finite set of 
continuous states, with 
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3 A repressor hybrid automaton with 
hysteresis behaviour – simulation models 

Consider the repressor hybrid automaton in Figure 
1, with notations adapted from [Mysore, 2006]. A 
protein [2] with concentration  is produced at a 
rate  and consumed at a rate . Its repressor 
protein [1] with concentration  is always 
produced at a rate . When the repressor 
concentration  exceeds a certain threshold level 

, it begins to repress the production of protein [1]. 
Consequently, the repressor protein is consumed, the 
repressor concentration  eventually drops below a 

different threshold level  and the system 
resumes production of protein [2]. 
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Clearly, from the threshold limit inequality and 
from the fact that the locations are switched 
depending only on the values of , it results 
hysterezis behaviour. Main simulation challenges 
are hysterezis implementation and an adequate 
handling of discontinuities in the right hand side of 
differential equations. 

1x

The simple repressor hybrid automaton can be 
viewed as a two-tank accumulation process in 
control engineering (Figure 2), with a corresponding 
state space representation and Simulink scheme in 
Figure 3a.  
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Figure 1. Hybrid automaton of a repressor mechanism:  

repressor and  repressed protein concentrations. 
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Figure 2. The repressor hybrid automaton in Figure 1 viewed as 

an accumulation process in control engineering. 
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Figure 3. Simulink model of the hybrid automaton in Figure 1 (a) 
and the control law represented as a relay with hysteresis (b). 

There is no feedback from the controlled variable 
 and the state equations of the hybrid system can 

be written as 
2x
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where . The diagram of the switching 
control law  in Figure 3b is implemented using 
the classic relay bloc in Simulink and simulation 
results are shown in Figure 4. Note that the system is 
not asymptotically stable and the lack of feedback 
from  acts like model incompleteness. A 
modification of the production rate of protein [2], 
such that 
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222122 kkk −≠ , driving to an 
unsymmetrical relay for , generates unbounded 
evolution of protein concentration (Figure 5). 
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Figure 4. Simulated evolutions of repressor (a) and protein (b) 
concentrations, for : , , , , 
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Figure 5. Unrealistic evolution of protein concentration with same 

repressor evolution and parameters as in Figure 4, except 
, thus 3021 =k 222122 kkk −≠ .  

Remark 1. Using the notations in the piecewise-
linear model of genetic regulatory networks 
dynamics in [de Jong et al., 2003], firstly introduced 
by [Glass and Kaufmann, 1973], equations (1) can 
be rewritten as 
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In the original piecewise-linear model of genetic 
regulatory networks dynamics in [de Jong et al., 
2003], there are exponential protein degradations 
rates in the right hand side of the ODEs, ii xγ−  with 

0>γ i , so the process is asymptotically stable. In 



(1), the exponential protein degradations are 
neglected and thus the system is a pure integrator 
(Figure 5). The decays arise from the sign of the 
difference between the coefficients  and , 
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4 Time discretization for a Zeno hybrid model of 
a generic biochemical interaction process 

Consider the biochemical interaction process 
modelled by the hybrid automaton in Figure 6, 
obtained by modifying the model in Figure 1: the 
variables , , are protein concentrations 
and this time each one is a repressor for the other. 
This toy-model generalizes the Zeno hybrid 
automaton proposed in [Branicky, 2005], with 
following numerical values: , 

ix 2:1=i

0)0(1 =x 4)0(2 =x , 

, , . The 
system switches from one location to another, when 
one of the two concentrations falls to the lowest 
level zero. 
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4.1 Behaviour analysis of the Zeno hybrid 
automaton 

At , the hybrid automaton starts from 
location  with the initial continuous state and it 
evolves generating the state trajectories 
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Zeno behaviour results from the fact that time does 
not “progress” with k, and the Zeno-time is 
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4.2 Time discretization as hybrid systems 
approximation technique - background 

Time discretization is an approach for hybrid 
systems approximation, in view of model checking. 
Consider a hybrid automaton H with continuous 
dynamics , ,  and a time 

step .  
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Numerical simulation techniques based on variable 
time-step discretization implement discrete-time 
transition relations allowing the system to take steps 
less than h: 
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Thus, the system is allowed (a) to evolve 
continuously for the full-time h in the current state 
or (b) to evolve to an intermediate point  and 
then take a transition. In this case, the number of 
iterations does not correlate with the elapsed 
simulation time: some of the iterations correspond to 
discrete transitions, while some continuous steps are 
of length less than h. Also, Zeno-path are not 
excluded [Mysore, 2006]. 

h≤

Since Zeno-behaviour arises from zero time 
switching, a natural refinement of the transition 
relation (5) is, according to Mysore [2006], 
imposing a minimum on the time spent in each step. 
In this regard, the timed-jump model allows only one 
state transition at the beginning of the time-step: 
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There are several limitations of this approach. 
Firstly, the equality transition conditions may never 
be satisfied, as they are checked at the start/end of 
the time-step h [Mysore, 2006], so they have to be 
replaced with inequalities, which capture the same 
dynamics. Secondly, the system is not allowed to 
take multiple jumps at a step h, so h has to be 
“small” enough, but without increasing too much the 
system complexity. 

4.3 MATLAB implementation of the timed-jump 
model: fixed-step time discretization and 
Zeno-path avoidance  

In order to avoid effects of Zeno behaviour in the 
vicinity of Zeno time, a discrete time approach is 
proposed, based on the linearity of the local 
continuous dynamics in the hybrid automaton in 
Figure 6. Recall that given a system 
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and the sampling step , the corresponding 
discrete-time linear system is 
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The two continuous integrators, in variables  and 
, are discretized (using  the c2d routine, for 

example) and the dynamical equations are: 
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Remark 2. The initial equality transition conditions 
are replaced by inequalities as follows. In the hybrid 
automaton in Figure 6,  and }0:{)( 220 >= xxqInv
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A similar condition is introduced for testing if the 
transition  occurs. At each step, the new 
state values are tested. ◊ 
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Simulation results, for  and simulation 
time equal to Zeno-time, are depicted in Figure 7a. 
Simulation of the discrete time version over Zeno 
time does not get stuck, and a continuation of 
evolution is obtained (Figure 7b). However, after 
Zeno-time, the values of the simulated discrete 
variables loose their physical significance. As 
already emphasized, another problem with this 
approach is the (rather empirical) choice of sampling 
step h. The plot in Figure 8 compared to the one in 
Figure 7a illustrates this. 
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5 Concluding remarks 
Hybrid automata theory has recently emerged as an 

important framework for modelling and prediction 
in systems biology, such that crucial problems like 
reachability analysis or model checking may get a 
systematic answer. However, hybrid systems 
simulation is difficult because it must properly deal 
with switching among a collection of continuous 
evolution  laws,  with  eventual  resetting  maps over  
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Figure 6. A Zeno hybrid automaton interpreted as a biochemical 
interaction process:  and  are protein concentrations, each 

one repressing the other.  
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Figure 7. Evolution of the discrete-time system approximating the 
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Figure 8. Evolution of the discrete-time system approximating the 
Zeno hybrid automaton in Figure 6, with  and simulation 

time . 
1.0=h

Ttsim =

initial conditions of differential equations and with 
testing transition conditions, such as “zero-
crossing”, among others. 

The toy example repressor hybrid automaton with 
hysterezis discussed in Section 3 cannot be 
simulated using classic variable-step integration 
methods without special care. If the models are 
simple enough – as it was the case - they can be 
converted into Simulink schemes, which 



successfully capture also special discontinuities, like 
relays with hystersis. However, if the model 
complexity increases or if the system parameters are 
imprecisely known, this is no more a solution and 
alternate qualitative simulation approaches have to 
be considered [de Jong et al., 2003]. 

Zeno behaviour, characterized by infinitely many 
switching executed in a finite time interval, may 
arise from sometimes-inevitable model 
simplifications. The direct implementation of Zeno 
models in simulation programs drives to improper 
simulated evolution: the simulation either gets stuck, 
or it generates incorrect results. The important 
reachabilty problem, which requires behaviour 
prediction – is not decidable for Zeno systems. A 
solution is to approximate the Zeno system in a 
convenient way, by a model that is easier to be 
checked. 

Time discretization is, in this respect, an adequate 
tool for Zeno path avoidance, and several theoretical 
discretization schemes are proposed in the literature 
[Mysore, 2006]. The implementation approach 
proposed in Section 4 for approximating a Zeno toy 
model of a biochemical interaction process is based 
on converting the continuous linear state equations 
of the hybrid model to a fixed-step discrete time 
model, using the c2d MATLAB routine with zero-
order hold on the inputs. The switching conditions 
are tested at each discrete time step and simulation 
does not get stuck when the computed Zeno time is 
reached. For same initial conditions, the simulated 
trajectories do not coincide with the trajectories of 
the Zeno hybrid automaton, but if the simulation 
step is “small enough”, the trajectories of the 
discrete time model reflect adequately the behaviour 
of the original Zeno hybrid system. The equality-like 
transition conditions in the original Zeno system are 
converted, in the program, into inequalities 
conditions, which capture the original dynamics. 

Three basic problems have to be solved when 
implementing a time discretization scheme: the 
adequate choice (i) of the discretization method, (ii) 
of the discretization step and (iii) the proper 
modification of transition conditions. Also, a prior 
model analysis and evaluation of Zeno time is 
usually necessary, for the choice of the simulation 
time. Adequate interpretation of results is mandatory 
if simulation time exceeds Zeno time. 

Implementation of various time discretization 
schemes for Zeno path avoidance and integrating 
them in simulation tools is subject of future research. 
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