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A Hamiltonian approach to reconstruction of a trajectory and model of complex stochastic dynam-
ics from noisy measurements is introduced. The method converges even when the entire trajectory
components are unobservable and the conventional Monte Carlo technique fails. The method is ap-
plied to reconstruct the nonlinear models of predator-prey oscillations. We found that the projected
(incomplete) character os measurements results in the likelihood distribution with two very differ-
ent scales: it is strongly localized in the vicinity of a hyperplane in the joint parameters-trajectory
space. This reflects the intrinsic tradeoff between the system parameters and hidden trajectory
components.
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Measurements of complex (multidimensional, nonlin-
ear, stochastic) systems often provide only partial infor-
mation about the system dynamics. Missing informa-
tion about the state and the model of the system is nor-
mally considered as “lost” in the case of historic time
series where measurements cannot be repeated. Classi-
cal examples include climate evolution [1], epidemic out-
bursts [2], and fluctuations in predator-prey communi-
ties [3, 4]. How to reconstruct such missing information
and deduce both the model and the full system trajec-
tory from incomplete, noise-corrupted measurements is
an unresolved scientific conundrum of long standing.

Aspects of this problem have received a considerable
attention recently. When measurement noise is absent,
attractor reconstruction [5] in time-delayed variables was
used [4] to infer model parameters; when dynamical noise
is absent, shooting and recursive approaches were applied
to reconstruct both parameters and trajectory [6]. A
simplified problem, when all the dynamical variables are
measured directly, was considered in [7–10].

In this Letter a solution of the general problem is found
by introducing a novel Hamiltonian formalism within the
log-likelihood minimization framework. The formalism is
derived from first-principles Bayesian statistics [11, 12]
and stochastic dynamics [13–15]. It allows to efficiently
analyze the complex structure of the likelihood and pro-
vides a robust convergence, even in the cases where
other general methods like Markov Chain Monte Carlo
(MCMC) [9, 10] fail.

The formalism is applied to an analysis of archetypi-
cal problem in nonlinear dynamics and statistics: noise
driven population dynamics in a rodent-predator commu-
nity [3, 4, 17], where the population of predators could
not be practically observed. We show that, contrary to
earlier belief [3, 4, 17], noise-corrupted measurements of
prey dynamics can be used as a basis for computing both
the likelihood of the unmeasured predator population
and the ecological model parameters. To validate the
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FIG. 1: (a) Measured population dynamics of small rodents in
Kilpisjärvi, Finnish Lapland, 1952-1992 [16] is (yellow dots).
The full black line is a guide to the eye and the dashed line
shows the solution of the optimization problem. (b) Recov-
ered hidden dynamics of the specialist predator population,
for different values of parameters r and rK′/K in the model
(1). The inset shows a cross-section of the weighted distribu-
tion of dynamical trajectories for 1956 (arrow in main figure).

method we apply it to prey data from another rodent-
predator community [17] where, unusually, it was possi-
ble to record both populations, enabling us to compare
the measured and inferred predator densities. We antic-
ipate that the formalism will be useful in many different
disciplines and contexts.
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Time-series data N(t) for rodent (prey) population
density oscillations in Finnish Lapland [16] are shown
by the yellow points in Fig. 1(a). The dynamical infer-
ence problem is to use this limited number (80) of noise-
corrupted measurements to recover both the unmeasured
time-dependence of the population density of their preda-
tors P (t) and the nonlinear stochastic dynamical model
underlying the oscillations. The general problem could
not be solved earlier especially since the measurement er-
ror is significant [4]. Our first step in tackling it is to write
down a stochastic model accumulating expert knowledge
about predator-prey dynamics in this community [3, 17]

Ṅ = rN [1− e1 sin(2πt) + σnξn(t)]

− (r/k)N2 − g N2

N2 + h2
− cNP

N + d
, (1)

Ṗ = sP [1− e2 sin(2πt) + σpξp(t)]− s q
P 2

N
. (2)

Parameters e1,2 in (1),(2) are dimensionless amplitudes of
periodic (seasonal) forcing. ξn(t) and ξp(t) in (1) are mu-
tually uncorrelated zero-mean white Gaussian dynamical
noise sources. Parameters r and s are intrinsic rates of
prey and predator growth, respectively; k is prey carrying
capacity that determines the saturation of prey popula-
tion in the absence of predators. The effect of so-called
generalist predators (e.g., foxes) whose total population
does not appreciably change with N is encapsulated into
the term ∝ N2 with coefficient g (maximum mortality
rate). The “specialist” predators (small mustelids) most
likely maintain the oscillatory prey dynamics and their
effect is described by the term ∝ NP with maximum
killing rate c. However their population is notoriously
difficult to study in a field. The corresponding density
P (t) represents an unmeasured (hidden) variable in our
model. The measured rodent density N ′(t) is related to
the actual (unknown) value N(t) via N ′ = Neσobsη(t)

where η(t) is white Gaussian noise of unit intensity.
The precise functional forms are known neither for pre-

dation nor for the predator response, and some modifica-
tions of equations (1),(2) have been considered [4]. For
this and other predator-prey models there exists a change
of variables x1(t) = log(N(t)/k′), x2(t) = log(q′P/k′)
(for known nominal values of the scaling coefficients k′

and q′) that transforms the predator-prey and the mea-
surement equations into a simpler form with noise enter-
ing the equations only additively

ẋi(t) = Ki(x(t), c) + ξi(t), (3)

yk(t) =
L∑

i=1

Bki xi(t) + βk(t), (4)

where L=2 corresponds to the present case. The above
set of equations represents a generalization that can
be applied to a great variety of stochastic dynamical
model reconstruction problems with “hidden variables”.
The state-vector x(t)={x1(t), . . . , xL(t)} is governed by
an L-dimensional drift vector field with components Ki

and a white Gaussian process with zero-mean compo-
nents ξi(t) characterized by an L× L correlation matrix
D̂. Each vector field component Ki(x, c) depends on
the state vector x and a set of (unknown) model pa-
rameters c={c1, . . .}. The measurement equations (4)
are described by an M × L measurement matrix B̂, by
a white Gaussian process with zero-mean components
{βm(t)}, and by an M × M measurement noise matrix
Nnm (M ≤ L). The model (3), (4) is characterized
by the unknown parameters M ≡ {c, B̂, D̂, N̂}. Ex-
istence of hidden variables implies that M < L. For
the problem at hand the vector of unknown parame-
ters M = {r, s, e1, e2, k, g, c, q, h, d, σn, σp, σobs}, mea-
surement matrix Bij = δi1δj1 and vector fields Ki can
be directly obtained using (1),(2) and the change of vari-
ables from N, P to x1, x2 described above.

We now turn to the general formulation of the in-
ference problem of finding unknown model parameters
M and unobserved trajectory components ( x2(t) in our
case). Because of the dynamical and measurement noise,
this problem must be cast in probabilistic terms. A key
statistical quantity is the so-called likelihood probabil-
ity density functional (LPDF) PY [x(t);M]. It repre-
sents the joint probability density that the system tra-
jectory is x(t) and that the system parameter values
are M, conditioned on the observed time-series Y =
{y(tm), tm = mh, m = 1 : K}. It can be written as
PY [x(t);M] = AY exp (−SY [x(t); M]), where AY is a
normalization constant. A negative log-likelihood func-
tional SY [x(t); M] can then be found using the path-
integral approach to fluctuational dynamics [14, 15], as

SY =
1
2

∫ T

0

dt (Lyx + Lx) +
K
2

ln det D̂N̂, (5)

Lyx = [y − B̂ x]T N̂−1[y − B̂ x],

Lx = [ẋ−K(x, c)]T D̂−1[ẋ−K(x, c)] +
∂K(x, c)

∂x
.

Here x=x(t), y=y(t). Also T = Kh where K is the num-
ber of data points, h is the sampling time, and dimen-
sion L of the state vector x is greater than the dimension
ML of the observation vector y, implying the existence
of hidden variables. Despite the hidden dynamical vari-
ables not being measured directly, the functional SY (5)
contains the dynamical coupling between the variables
via the force fields Ki(x1, x2).

If the measurements provide information sufficient to
pin down both the key model parameters of the system
and its trajectory, the joint LPDF PY(x(t),M) is well-
localized in the vicinity of its maximum, thus revealing
the most probable trajectory x∗(t) and parameter values
M∗ that provide minimum of functional SY(x(t),M) for
a given set of measurements Y. Paragraph is removed

We solve this variational problem by introducing a new
paradigm in which SY(x(t),M) is viewed as the mechan-
ical action of an auxiliary Hamiltonian system with co-
ordinate x, momentum p = D̂−1(ẋ(t)−K) and a Hamil-
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tonian function H(x,p)

H(x,p) = −1
2

(
y − B̂ x

)T

N̂−1
(
y − B̂ x

)

−1
2

∂K
∂x

+ Kp +
1
2
pT D̂ p. (6)

The extremum of SY(x(t),M) in the joint space
(x(t),M) is then found by solving the coupled variational
problems

δS/δx(t) = 0, ∂S/∂M = 0. (7)

The first condition corresponds to a solution of the
boundary value problem (BVP) for the Hamiltonian
equations

ẋ = K + D̂p,

ṗ =
1
2

∂2K
∂x2

− ∂K
∂x

p−
(
y − B̂ x

)T

N̂−1B̂ (8)

that satisfy the boundary conditions p(0) = p(t) = 0.
This BVP can be solved very efficiently in many cases
using, e.g., results of [18]. An interesting property of
this solution seen from the structure of Eqs. (8) is that
measured data y(t) effectively act as a “control force” of
an amplitude inversely proportional to the measurement
noise intensity (the difference between y(t) and x(t) is fed
back in the last term of the second equation in (8)). This
control force drives the x(t) towards the most probable
one (at a fixed M). We then fix the inferred trajectory
x(t) and update the values of the parameters in the set
M, using an analytic solution [8] of the second variational
problem, δS

δM = 0. This procedure is iterated until the
desired convergence is achieved. The outcome of this
algorithm is the most probable system trajectory x∗(t)
and set of model parameters M∗ providing a minimum
to the action functional SY . It corresponds to a point
p∗=(x∗(t), M∗) in the joint trajectory-parameter space.

Note however, that in the presence of hidden variables
slight changes in the model parameters can lead to signif-
icant changes in the system’s trajectory giving rise to a
complex shape of the SY . This proved to be the case for
the problem at hand because dynamical model (1) with
periodic driving force undergoes the onset of bifurcations
and the transition into a chaos when the system parame-
ters vary [4, 19]. To investigate the shape of SY we define
a window of possible values for each model parameter
from the set using the approximate plausible ranges of
parameter elucidated in earlier research [3, 4, 17]. For
many parameters the windows are very broad. We show
some of them as rectangular planes in Figs. 2. Start-
ing from a random point inside of the predefined range
we find a point p∗=(x∗(t), M∗) corresponding to one of
the solutions of a dual variational problem (7). Random
restarts are needed if there is (as in our case) more then
one solution p∗. Projections of the points p∗ onto the 2D
parameter plains and corresponding 3D plots of LPDF
are shown in Figs. 2.
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FIG. 2: Weighted distributions of the inferred values (a) of the
model parameters r and rK′/K, and (b) of the model param-
eters s and sQ/Q′. For some other parameters their likelihood
distributions are well-localized around their expected values
r = 5.69 ± 0.49, k = 76 ± 17 s = 1.08 ± 0.31, q = 43 ± 22,
g = 0.12 ± 0.3, e1 = 1.4 ± .4, e2 = 1 ± .5 which are close to
the values considered in the earlier ecological research. The
projections of the points p∗ onto the 2D parameter plains are
shown at the top of both figures by black dots.

One can infer from these figures that LPDF has a form
of a very steep ridge localized in the vicinity of a ridge
top forming a “line” R={p`

∗}={(x`
∗(t),M`

∗} in the joint
parameter-trajectory space that can be seen in the den-
sity plots in Figs. 2. Fluctuations along the ridge top
indicated by the superscript ` above are large and non-
Gaussian as can be seen from Figs. 2. However fluctu-
ations in the direction transverse to the ridge top are
strongly suppressed. The mechanical action along the R
is varying slightly and each point at R (approximately)
corresponds to a solution of (7). This difference is scales
and a quasi-degenerate form of the SY and LPDF can
be attributed to the projective character of the mea-
surements with M < L that are incapable of resolving
certain tradeoffs between the parameters and hidden tra-
jectory components. We note that different points along
R correspond to quite different time traces of the hid-
den trajectory component (predator oscillations) shown
in Fig. 1(b) but they all fit very well to the the set of prey
population observations. Such tradeoffs are intrinsic to
a given dynamic and measurement models and their un-
derstanding is crucial to the domain experts for model
discovery and data interpretation.
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FIG. 3: Populations of (a) lemmings and (b) stoats (individ-
uals/ha) observed in the high-Arctic tundra (1988–2002) [20]
are shown by yellow ellipses. Jagged thin solid lines show the
initial guesses for each population. Dash-dot red lines show
the population dynamics inferred from (1) using the Hamilto-
nian approach and assuming that only the lemming popula-
tion was determined, with a measurement error of 0.1, while
the stoat dynamics remained hidden. Dashed blue lines are
from MCMC after 40000 iterations of the whole trajectory,
under the same assumption.

Next, we validate the approach by applying it to the in-
ference of population dynamics in a stoat-lemming com-
munity [17] and by comparing it to Markov Chain Monte
Carlo (MCMC) method. The corresponding data (Fig. 3)
are similar to the earlier set [? ] but with an important
difference: the dynamics of both populations, prey N(t)
and predator P (t), were recorded. We assume initially
that only the prey population was measured, and and
we subsequently compare the inferred predator popula-
tion with the measured one. The dynamical model [17]
for this community is rather elaborate. However, given
the close similarity between the two communities it is in-

structive to perform such a comparison using a simplified
model (1). The corresponding results are shown in Fig. 3.
It is evident that the predator trajectory is reproduced,
including the correct slope and scale of the oscillations,
unlike the earlier simulations [17]. It can also be seen
that the MCMC method gives a poor result because it
takes so long to converge and because it tends to get
stuck in local minima close to the original guesses. We
found that these local minima correspond to non-smooth
time functions P∗(t) that are excluded from the start in
our Hamiltonian approach (6)-(8).

In Conclusion, we presented a method based on Hamil-
tonian dynamics for inference of parameters and hidden
(unobserved) trajectory components of a nonlinear dy-
namical model in the presence of noise and measurement
errors. We applied the method to ecological problem
where the most important conclusion is that a lack of ob-
servational data for predator populations need no longer
constitute a fundamental obstacle to the inference of eco-
logical parameters from noisy measurements [3, 4, 17, 21].
The method allowed us to uncover a quasi-degeneracy of
the log-likelihood along certain hyperplane R in the joint
parameters-trajectory space. The existence and shape
of R reflects the tradeoffs between parameters r and
k′/k (s and q/q′) on one hand and and hidden trajec-
tory components on the other. An important feature of
our procedure is that, unlike MCMC, it avoids sampling
in the trajectory space. Instead, it relies on continuous
in time solution of the deterministic auxiliary Hamilto-
nian problem (8), thereby exploiting recent advances in
[18] the BVP problem. The method will also be appli-
cable quite generally to cases where some state variables
were not, or could not be, recorded, e.g. those mentioned
in the introduction [1, 2]. It can be particularly use-
ful in the context of physiological measurements relating
difficult-to-access parameters to noninvasively-measured
data [22], and to cases where dynamical variables are
intrinsically hidden and cannot be measured experimen-
tally, even in principle: e.g. flow parameters in aerospace
applications [23], susceptible and exposed populations in
epidemiology [2, 24].
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