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Abstract
In this paper a data driven methodology to automat-

ically derive an interpretable Fuzzy Logic Classifier
(FLC) has been applied to the problem of confinement
regime identification in the Joint European Torus. The
approach has been developed explicitly to handle with
the complexities of the inference process in Magnetic
Confinement Nuclear Fusion (MCNF). The first step of
the method consists of a supervised, exploratory anal-
ysis performed with the approach of Classification and
Regression Trees (CART), to extract the variables in
the database which are the most critical for the prob-
lem under study. Then, a fully automated algorithm
determines the membership functions and the most ap-
propriate rules to reproduce the classification tree ob-
tained with CART. The resulting FLI on the one hand
attains very good performance in terms of generaliza-
tion and classification, on the other hand provides a se-
ries of rules which can be easily interpreted and con-
tributing to a very good first, intuitive understanding of
the physics involved.
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1 Introduction
In magnetically confinement nuclear fusion, the data

analysis process presents some unique challenges
which have no direct counterpart in any other field of
”Big Physics” research. Indeed, whereas disciplines
like astrophysics or high energy physics are faced with

1See the Appendix of F. Romanelli et al., Proceedings of the 22nd
IAEA Fusion Energy Conference 2008, Geneva, Switzerland

the task of extracting a small number of interesting
events from an overwhelming sea of irrelevant back-
ground, the measurements performed on high temper-
ature plasma are all relevant and there is no reason to
discard any of them. On the contrary, in principle, a
consistent model of a plasma discharge should be able
to make sense of all the acquired signals by inserting
them in a coherent picture. Till nowadays, no general
model of the plasma evolution is available, due to the
complexity and non linear character of the phenomena
involved. As a consequence data analysis constitutes a
precious tool to infer measurement driven knowledge
in fusion, which thus is more similar to the health sci-
ence, where a holistic view of the patient is also de-
sirable, in order to optimize the treatment and reduce
negative side effects.
The task of attaining a global and coherent view of the

plasma state is a real challenge for a series of aspects
of the involved physics. Since fusion plasmas are open
systems far from equilibrium, it is very difficult to for-
mulate satisfactory models starting from basic physics
principles. Moreover the nonlinear interactions among
many variables not only increase the difficulty of the
interpretation but also pose some limits to the degree
of control of the experiments which can be performed.
All these challenges are complicated by the amount of

data which are produced by fusion diagnostics. A dis-
charge of the Joint European Torus (JET) can produce
more than 10 Gbytes of data. Since several tens of dis-
charges of this sort can be performed in a day of opera-
tion, the shear amount of data renders the analysis pro-
hibitively difficult. In order to alleviate the problems
just mentioned, in the last years some efforts have been
devoted to the development of statistical and soft com-
puting methods to support the analysis and interpreta-
tion of the experiments [Rizzo and Xibilia, 2002]. On



the other hand, as summarized in [Murari et al., 2008]
and [Vega et al., 2008], till nowadays the various devel-
oped automatic analysis techniques have been limited
to exploratory aspects.
In this paper, a methodology which, starting from raw

data, proceeds up to the point of providing an intuitive
interpretation of physics involved in a purely automatic
way is applied to a specific nuclear fusion problem, i.e.
magnetic confinement regime classification. The first
step consists of an exploratory phase, performed with
the approach of the Classification and Regression Trees
(CART) [Breiman et al., 1984]. The CART algorithm
allows making a data driven decision about the most
important variables for the problem at hand and pro-
vides a classification tree. It is worth pointing out that
the CART method is fully non-linear and unbiased. It
does not require any form of preliminary signal pro-
cessing (not even normalization) and therefore is con-
sidered particularly suited to the exploratory phase of
identifying the data with the highest information con-
tent. A fully automated procedure has been developed
to derive a fuzzy logic classifier (FLC) from the clas-
sification tree obtained in the previous step explicitly
oriented to the production on an interpretable system.
The following criteria, proposed in [Guillame, 2001]
and [Zhou and Gan, 2008], were followed to achieve
an interpretable fuzzy system:

1. the fuzzy partition should be readable, i.e. it
should be possible to interpret the fuzzy set as lin-
guistic labels, the fuzzy sets must be distinguish-
able and they should be in moderate number;

2. the set of rules should be as small as possible, pre-
serving the performance;

3. the rules should be incomplete, i.e. the rules
premises should not exceed the limit of 72 con-
ditions.

The FLC so produced provides a series of explicit rules
which turn out to be very useful for the interpretation
of the physics involved. With the proposed method, the
transparency of the fuzzy logic is combined with the
maintenance ease typical of other black box methods
like neural networks. To illustrate the potentiality of the
method, in this paper a specific FLC is applied to the
problem of confinement regime identification in JET.
The results of fuzzy logic inference systems are quite
positive. First of all the derived rules are very sound
and quite intuitive; they formalize a body of common
sense knowledge about the L-H transition that can con-
tribute to acquire knowledge and deeply inspect the un-
derlying physics. The validity of these rules is proved
by the classification capabilities of the system, which
can exceed 90 % over the whole discharge.

2 Confinement Regime At Jet
Tokamak configuration can be operated in different

confinement regimes, which can be significantly dif-
ferent not only in terms of performance but also of
physics interpretation and control requirements. The

High Confinement regime, the so called H mode [Wag-
ner et al., 1982], is a particularly relevant example. Its
performance can increase of more than a factor of two
compared to the L-mode (Low confinement), but it is
affected by edge instabilities. These require particu-
lar measures to avoid disruptions and could be very
dangerous for the integrity of the entire device in the
next generation of machines like ITER. Moreover the
H-mode of confinement is a self-organized state of the
plasma, which develops spontaneously when certain
conditions are met. The transition from one mode of
confinement to the other presents some characteristics
of phase transitions already studied in many other phys-
ical systems. On the other hand, the details of the
plasma evolution from the L-mode to the H-mode state
have not been fully understood yet, neither from the dy-
namics aspects, nor from power requirements to trigger
the transition. Even the optimal control parameters re-
main unclear.
In addition to physical interpretation, the H-mode of

confinement presents some important challenges form
the control point of view. The higher internal energy of
the plasma, together with the increased plasma shaping
used to improve performance, make the H-mode sig-
nificantly more unstable and more prone to disruptions.
On the other hand, up to now no reliable classifier of the
confinement regime is available for real time operation
and therefore normally tokamak devices are controlled
in feed-forward, predicting a priori in which type of
regime the plasma will be during the discharge. In case
of unexpected transitions from state to another the con-
trol systems can therefore adopt a non optimal strat-
egy which can not only limit the performance but also
compromise the equilibrium and contribute to trigger
disruptions [Franzen et al., 1998]. In the perspective of
ITER, in which accessing the H-mode is essential but
disruptions can have very harmful consequences, it is
becoming urgent to develop models to better interpret
the H-mode physics and to identify the regimes in real
time.

3 Database And Features Selection
The database used for the analysis reported in this pa-

per covers the shot range between 55211 (21/03/2002)
and 62723 (28/01/2004) and therefore refers mainly to
JET divertor configuration with the Septum. More de-
tails about these discharges can be found in [Meakins,
2008]. The database is composed of 55 pulses and
29 signals which comprises both unprocessed quanti-
ties and processed ones. Among the last ones, some of
the parameters taken into account, such as the electron
temperature (Te) and the axial toroidal magnetic field
at 80% of the flux (BT80), are not calculated routinely
at JET but were calculated specifically for this work.
The objective of this work is to produce an inter-

pretable fuzzy system. A limited number of input vari-
ables is, therefore, mandatory to have readable fuzzy
sets and rule base (see [Guillame, 2001] and [Zhou



and Gan, 2008]) and it can be achieved trough a fea-
ture selection step to select among the variables in the
database the most relevant for the description of the
problem. The instrument selected to perform this step
is Classification and Regression Trees [Breiman et al.,
1984]. It is a non-parametric statistical method, which
uses a decision tree to solve classification and regres-
sion problems using both categorical and continuous
variables.
One of CART features is the evaluation of the impor-

tance of the different explanatory variables, i.e. the
variables provided as input during the building of the
tree, to describe the output through the so-called ”vari-
able ranking method”. The importance value produced
through the variable ranking allows sorting the differ-
ent input signals from highest to lowest or zero impor-
tant one. Since the aim of the work is, also, to derive
an intuitive understanding of the confinement transi-
tion in tokamak plasmas, the time slices of the various
discharges have been divided in three subsets and ana-
lyzed separately. The three subsets include data around
the transition from L to H, around the transition back
from H to L, and away from the transitions in steady
state L and H mode phases. In more detail, the first
two datasets include data acquired 300 ms before and
after the L→H and the H→L transition. The last one is
obtained using intervals of 500 ms in L mode, between
1200 ms and 700 ms before the L→H transition and
intervals of 500 ms in H mode, between 1200 ms and
700 ms before the H→L transition.
The three subsets have been provided to CART in or-

der to build three different trees. According to the vari-
able ranking provided by CART the signals reported in
Table 1 have been evaluated as the most relevant. In
addition to these physical quantities, it has been con-
sidered important to test also the influence of geomet-
rical parameters that can account for the position/shape
of the plasma inside the vacuum vessel. Several tests
have been performed using various quantities and the
ones which have produced the best results are the radial
and vertical position of the X point. These parameters
have been appended to the ones reported in Table 1 in
all the subsets used to obtain the results described in
the following.

4 From Cart Rules To Fuzzy Rule
Once the most relevant variables have been selected, a

new tree is produced providing only the selected vari-
ables as predictors. The output from the CART rep-
resents the input for the automatic FLC construction
which comprises three steps:

1. Extraction of the crisp rules from the classification
tree.

2. Determination of the membership functions from
the set of crisp rules obtained in the previous step.

3. Formulation of the fuzzy rules on the basis of the
classification tree crisp rules and the membership
functions.

Table 1. The Four Most Relevant Variables For The Three Different
Subsets. The Signals Are Sorted In Descendent Order Of Importance

L→H

Symbol Description

Wmhd Magnetohydrodynamic energy

βN Beta normalized over diamagnetic energy

Te Electron temperature

BT80 Axial toroidal magnetic field at ψ=0.8

H→L

Symbol Description

βN Beta normalized over diamagnetic energy

BT Toroidal magnetic field

FDWDT Time derivative of diamagnetic energy

q95 Safety factor at ψ=0.95

Steady State

Symbol Description

βN Beta normalized over diamagnetic energy

BT Toroidal magnetic field

Lid4 Outer interferometry channel

FDWDT Time derivative of diamagnetic energy

4.1 Extraction Of The Crisp Rules From The
Classification Tree

The tree is parsed automatically to determine a rule
for each terminal node. The definition of these rules
is performed in the following way. For each terminal
node, the corresponding branch is scanned up to the
root and a specific rule is devised for each intermediate
node, on the basis of the inequality used by CART at
each node to perform the split.

4.2 Determination Of The Membership Functions
In order to satisfy the first criteria for interpretability,

i.e. the readability of fuzzy partitions, the number of
fuzzy membership functions was limited to three trape-
zoidal function since they provides enough flexibility
to cover each variable domain by dividing it in three
different regions. The selection of the parameters iden-
tifying the trapezoidal function is performed evaluating
the cumulative discriminating power [Vagliasindi et al.,
2009] of the various splitting values selected when the
variable is used as a splitter. In other word, each crisp
rule provided by the tree is ranked according to the
number of sample it is able to discriminate. Since each
rule is the combination of many conditions involving
different variables, the splitters, and different values,
the splitting value, a discriminating power is associated
to each splitting value depending on the rule in which it
compares. For each variable, the splitting values hav-
ing the two highest cumulative discriminating powers



are selected and used to build the trapezoidal member-
ship functions, as in equation 1 where α and β, with
α > β, are the two splitting variables selected and δ is
a parameter defining the slope of the shoulders.

µ1
Fj

= [MIN MIN β − δ β + δ]
µ2

Fj
= [β − δ β + δ α− δ α + δ]

µ3
Fj

= [α− δ α + δ MAX MAX]



 (1)

4.3 Formulation Of The Fuzzy Rules
Each rule provided by the tree has already a form

similar to a fuzzy rule apart from the fact that the an-
tecedent is composed of inequalities using crisp values.
We have then to translate the inequalities of the tree
rules for the terminal nodes into inequalities based on
the membership functions defined in the previous sec-
tion. This is achieved selecting the fuzzy membership
function which best approximates the crisp inequalities
produced during the tree construction. A detailed de-
scription of the above mentioned steps is available in
[Vagliasindi et al., 2009].

5 Evaluation Of The Performance And Discussion
Since the total number of rules is affected by the num-

ber of terminal nodes of the related tree, the complex-
ity of the produced FIS also depends on nodes retained
in the CART trees. On the other hand some of the
terminal nodes discriminate a very limited number of
samples; therefore the corresponding rules may intro-
duce an excessive increase in complexity compared to
the additional discrimination capability they provide.
Therefore, an investigation of the number of terminal
nodes, and consequently the number of rules, which
give the best results in terms of correct classification
of samples has been performed. At the same time, an
investigation of the optimal threshold value of the out-
put, which maximizes the classification performance,
has also been carried out.
Figure 1 reports the results of the above mentioned

investigations for a test set of 17 pulses and a total of
234429 samples. The final performance of the vari-
ous threes is represented as a surface plot versus the
numbers of nodes and the threshold values. From these
surface plots, it can be noticed that with a high num-
ber of terminal nodes and, consequently, a high num-
ber of rules in the corresponding FIS, the performance
tends to be low and the best threshold value is 0.5. This
suggests that too many rules may not necessarily in-
crease the discrimination capability of the system. On
the contrary, being some of them very specific and re-
lated to a small subset of the data, they may cause over-
fitting and move the output of the network to a small
neighborhood of 0.5. When reducing the number of
nodes, the performance raises and tends to flatten both
in the nodes and threshold direction. The flattening in
the nodes direction may be caused by the data provided
as test samples. Indeed, being the test data represented
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Figure 1. Performance of the FIS generated from the CART data
on full set of data as function of the number of terminal nodes taken
into account and the threshold chosen to discriminate between the L
and H mode. a), b) and c) are the results when the FIS is trained
using data near the L→H transition, near the H→L transition and in
steady-state condition respectively.

by whole pulses data, the majority of them are sam-
ples distant from a transition. Therefore, L and H sam-
ples present very different characteristics in terms of
values in the space of parameters so that only a small
number of rules are activated even if a large number
is present. The same reason can explain the flattening
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Figure 2. Performance of the FIS generated from the CART data on
specific test intervals as a function of the number of terminal nodes
taken into account and the threshold chosen to discriminate between
the L and H mode. a), b) and c) are the results when the FIS is trained
and tested using data near the L→H transition, near the H→L tran-
sition and in steady-state condition respectively.

in the threshold direction. Being the data mainly rep-
resented by samples distant from a transition, they are
well discriminated by the systems for a wide range of
thresholds.
To confirm these hypotheses, the three FIS have been

tested on a subset of the full set of data available for

the test. In particular they have been applied to data
taken from the specific interval used for training them.
So the fuzzy inference system developed starting from
the classification tree built using data around the L→H
transition (from now on referred to as LH-FIS) has been
tested on data around the L→H transition, the FIS de-
veloped using data in the neighborhood of H→L transi-
tion (HL-FIS) with data around the H→L transition and
the FIS devised starting from data far from the transi-
tion (referred to as SS (steady-state)-FIS) with data far
from the transition.
The results of these tests are reported in Figure

2(a),2(b) and 2(c) respectively. Whereas the results
achieved by the SS-FIS (Figure 2(c)) are comparable
with Figure 1(c) although with an higher percentage of
success, being the data similar but without the samples
in the more uncertain region of L→H and H→L transi-
tion, the performance surface of LH-FIS and HL-FIS
are slightly different. It is possible to observe (Fig-
ure 2(a)-2(b)) that the flattening of the surface at small
node numbers is no more present and the maximum
performance are achieved with 7 and 11 nodes respec-
tively indicating that more information is required to
distinguish between L and H mode samples near a tran-
sition. Table III summaries the above mentioned results
in a numerical way, showing the maximum percent-
age of success for the various developed FIS, together
with the number of nodes taken into account to build
the FIS and the threshold value which best discrimi-
nate between L and H mode samples. With regard to
the maximum percentages of success achievable by the
various FIS, it can be noticed that while SS and LH
are comparable, the classifier tuned on the HL exhibits
significantly lower performance. This can be due to a
greater uncertainty in the H→L transition times con-
tained in the database and, therefore, in a more uncer-
tain classification of the samples in the neighborhood of
the H→L transition. This confirms the long suspected
fact that the H→L is less defined and more difficult to
pin point with the measurements available. The conse-
quent uncertainties can lead to both erroneous learning
during the training phase and a wrong estimation of the
results during the testing phase.
The automatic procedure, in addition to classifying

the plasma confinement regime with a very high rate
of success, can also provide an intuitive interpretation
of the plasma behavior at the transition. Qualitative in-
dications about the plasma dynamics can indeed be ob-
tained by the rules devised in an automatic way by the
proposed methodology. An example of the rules de-

Table 2. Performance On Full Test Set And Specific Test Sets

Full Test Specific Test

(%) Thr Rules (%) Thr Rules

L → H 89.70 0.52 22 93.58 0.58 7

H → L 84.31 0.5 42 87.45 0.48 11

SteadyState 90.13 0.44 4 96.14 0.56 3



Table 3. The Rules Of The Fis System For The L To H Transition
With The Highest Performance

] Linguistic Term

1 IF Te is not high and WMHD is low and XPzl is not
low then Output is L

2 IF BT80 is not low and WMHD is high then Output
is H

3 IF βN is high and BT80 is not high and TE is high
and WMHD is not high then Output is L

4 IF βN is not low and BT80 is not low and TE is high
and WMHD is not high then Output is H

5 IF BT80 is not low and WMHD is medium and
XPzl is not high then Output is H

6
IF BT80 is not high and XPrl is low and TE is not
low and WMHD is not high and XPzl is not low
then Output is H

7 IF BT80 is low and WMHD is medium and XPzl is
not high then Output is L

rived by the FIS for the L to H transition is reported in
Table 3.
These rules are considered quite realistic and sum-

maries properly a significant amount of expert knowl-
edge in the field. Therefore these rules confirm the
good quality of the final FIS and the soundness of the
automated method used to derive them. Moreover,
the intuitive and fully transparent character of the fi-
nal rules is a very positive outcome of the approach.
Contrary to other methods, like Artificial Neural Net-
works, which provide good performance but are prac-
tically black boxes very difficult to interpret, the pro-
posed automatic FIS gives a clear set of rules which
can result particularly useful to get a first grasp of com-
pletely new or poorly understood phenomena.

6 Conclusion
An automatic learning system for fuzzy inference sys-

tem based on crisp classification trees has been applied
to a nuclear fusion problem. The method achieves a
good compromise between accuracy and interpretabil-
ity. It is, indeed, able to reach about 90 % of accuracy
on the whole data set and up to the 96 % when tested
on specific regions of the data set. The derived FIS, on
the other hand, presents a high grade of interpretabil-
ity. According to [Guillame, 2001], in order for a set of
rules to be interpretable it should satisfy the following
requirements: the fuzzy partition should be readable,
i.e. it should be possible to interpret the fuzzy set as lin-
guistic labels, the set of rules should be as small as pos-
sible and the rules should be incomplete, i.e. the rules
premises should not involve all the input variables. All
of these requirements are satisfied by the proposed ap-
proach. Indeed, the fuzzy partition is simple since the
number of fuzzy set is limited to three and readable
since each fuzzy set is associated to a linguistic label.
According to Table 2, the best performance is usually

achieved when the number of rules is small and, even
when the best performing network has an high number
of rules, the reduction in accuracy, when a lower num-
ber of rules is used, is limited to just a few %. Finally,
as it is possible to observe in Table 3, where an exam-
ple of the rules produced by the algorithm is reported,
most of the rules involve just a few of the input vari-
ables leading to an incomplete rule set.
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