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1 Introduction

The problem of minimum-time damping of a pendulum is a classical problem of
control theory. In the linear case, described by the equation ẍ+ x = u, |u| ≤ 1,
its solution is stated in [1]. The optimal control is of bang-bang type, i.e. it
takes values u = ±1, and the switching curve which separates the domain of
the phase plane, where u = −1 from the domain u = +1 consists of unit
semicircles centered at points of the form (2k+1, 0), where k is an integer. The
real physical pendulum controlled by a torque in the joint is governed by the
equation ẍ + sinx = εu, |u| ≤ 1, where x is the vertical angle, and ε is the
maximal amplitude of the control torque. The parameter ε is arbitrary: it might
be large, small, of order 1. We are interested most in the case of a small ε. The
maximum principle says that the optimal control has the form u = signψ, where
the “adjoint” variable satisfies the equation ψ̈+ (cosx)ψ = 0. Thus, the control
is still of the bang-bang type, but the time instants of switchings are roots of a
rather nontrivial function, a solution of the general Sturm–Liouville/Schrödinger
equation. The complexity of a control is characterized mainly by the switching
number. In the linear case this number for a trajectory connecting the initial
point (x, ẋ) with (0, 0) is T

π + O(1), where T is the duration of the motion. In

its turn, T = π
√

E
2 + O(1), where E = 1

2 ẋ
2 + 1

2x
2 is the energy. Thus, each

trajectory possesses a finite number of switches, but if the initial energy is large

this number is
√

E
2 +O(1) and is also large.

In the nonlinear case the switching number behaves quite differently. The
best result, known to the author, is due to Reshmin [2]. It says that if the
parameter ε is large enough, all optimal trajectories possess no more than a
single switch.

2 Results

We show that for any ε the switching number for all optimal trajectories pos-
sesses a common bound.

Theorem 2.1 Suppose Nε(x, ẋ) is the number of zeroes of the adjoint variable
ψ along an optimal trajectory connecting (x, ẋ) with (0,0). Then the quantity
Nε = supNε(x, ẋ), where sup is taken over the entire phase space is finite.
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Another result is an upper and lower bound for Nε which is sharp with respect
to the order of magnitude.

Theorem 2.2 There exist positive constants c1, c2, such that

c1
ε
≤ Nε ≤

c2
ε

as the parameter ε is small enough.

Our main result is a promotion of inequalities of theorem 2.2 to an asymptotic
equality:

Theorem 2.3 As ε→ 0 there is the asymptotic equivalence

Nε ∼
D

ε
, where D =

1
2

Si(π) =

π∫
0

sinx
2x

dx = 0.925968526 . . . (2.1)

The theorem can be regarded, like the “Feigenbaum universality”, as an as-
ymptotic formula εn ∼ D/n for bifurcation values of the parameter ε. Here,
the bifurcation is the increment by 1 of the maximal number of the control
switches. Unlike the period-doubling bifurcation, studied by Feigenbaum, the
relevant constant D can be expressed via standard mathematical constructions,
and its computation with any accuracy is not a problem.

The paper is based on a lemma saying that in the large speed area the optimal
trajectory possesses no more than a single switch. We use heavily the Sturm
theory of zero loci for solutions of a Sturm–Liouville equation. It allows us to
relate Nε to the optimal time of motion from points with energy of order 1 to the
point (0,0). The lower bound in Theorem 2.2 is based on energy considerations,
which allows us to estimate this time. The upper bound is more complicated and
follows from a computation of the elapsed time in a motion under a quasioptimal
control. The asymptotic equivalence (2.1) stems from the idea of the Poincaré
map control, coupled with a special nonlinear Sturm-like theorem.

3 Proofs

The control system takes the form{
ẋ = y,
ẏ = − sinx+ εu, |u| ≤ 1 (3.1)

We are interested in the minimum-time damping: fastest motion from a given
point (x, y) ∈ S1 ×R to the stable equilibrium (lower) point (0, 0).

According to the Pontryagin maximum principle this problem is associated
with adjoint variables (φ, ψ) and the Hamiltonian

H = yφ+ (− sinx+ εu)ψ − 1

so that, the maximum of the Hamiltonian is attained at the optimal control
u, the optimal motion is governed by the corresponding canonical system, and
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H ≡ 0 along the optimal trajectory. In other words, besides the system (3.1)
the following relations hold:

u = signψ, (3.2)
φ̇ = (cosx)ψ, (3.3)
ψ̇ = −φ (3.4)
yφ+ (− sinx+ εu)ψ − 1 ≡ 0. (3.5)

The following bound for the number of switches is implied by (3.3), (3.4), and
the Sturm theory [4]:

Lemma 3.1 In the optimal arc of duration T no more than T
π + 1 switches of

control is possible.

Note that the duration of optimal motion can be arbitrary large, if the initial
energy is large enough. In particular, the Lemma does not immediately imply
the finiteness Theorem 2.1.

3.1 Basic Lemma

We begin with a lemma which implies (almost total) absence of switches at high
energy states.

Lemma 3.2 (Basic Lemma) Suppose t1, t2 are adjacent zeroes of the adjoint
variable ψ = ψ(t). Then, the velocities y(t1), y(t2) have opposite directions.

Corollary 3.1 Under conditions of the Lemma there is a time t between t1, t2
such that y(t) = 0.

Notice that the statement of Corollary is a Sturm-like theorem. In section 3.5 we
will prove a strengthening of Corollary 3.1, where the uniqueness of t is asserted.

The energy E = 1
2y

2 +(1− cosx) of the pendulum cannot be large at point,
where y = 0; at that point E = |E| ≤ 2. Therefore, even before the second
switch the optimal motion takes place in the bounded energy area.

3.2 Bounds for the damping time

Let K be a compact in the phase space S1 ×R, and Tε = Tε(K) the maximum
of damping times over all initial conditions (x, y) ∈ K. Assume that K is not
the singleton (0,0). The next estimate for the time Tε makes a ground for the
finiteness Theorems 2.1 and 2.2:

Theorem 3.1 There exist positive constants Ci = Ci(K), i = 1, 2 such that

C1

ε
≤ Tε ≤

C2

ε

as the (positive) ε is small enough.

Theorems 2.1 and 2.2 follows from the above bounds relatively easily.
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3.3 Proof of Theorem 3.1: lower estimate

To prove the lower estimate it suffices to take a singleton for the compact K.
Take this point p0 as the initial one of an optimal trajectory p(t) = (x, y)(t),
and consider the energy E of the running point on the trajectory as a function
of time. We have

Ė = εyu, |y| ≤
√

2E, (3.6)

which implies that
∣∣∣ d
dt

√
E

∣∣∣ =
∣∣∣ 1
2

Ė√
E

∣∣∣ ≤ 1√
2
ε. Since the initial value of energy is

E(p0), and the final one is zero, we get a lower estimate for the elapsed time

Tε ≥
√

2E(p0)

ε . I

3.4 Proof of Theorem 3.1: upper estimate

General strategy. We divide the phase space into three parts: of high energy
{E > 2}, of low energy {E < 2}, and the standstill zone S2ε = {| sinx| <
2ε, |y| < 2ε}. For small ε the standstill zone consists of two connected compo-
nents, the neighborhoods of the upper and lower equilibrium points. To estimate
the damping time we use a particular “quasioptimal” control which is given by
the formula

u = − sign y (3.7)

outside the standstill zone. It reflects the idea of steepest local energy descent.
Note that on an interval of a constant velocity sign the controlled motion is
governed by the Hamiltonian of the form 1

2y
2 + (1− cosx)± εx. We will show

that one can make it to the upper standstill zone from a high energy state in
time of order O(1/ε), make it to the lower standstill zone from a low energy
state in time of the same order O(1/ε), make it to the low energy from the
upper standstill zone in time of order O(log 1/ε), and, finally, make it to the
lower equilibrium point from the lower standstill zone in time of order O(1).

To this end we use the logarithmic bound for the oscillation period of the
uncontrolled pendulum. It has the following form. Let p be a point of the phase
space, denote by τ(p) the time required for the next hit of the point p in the
uncontrolled motion of the pendulum. Then, if the energy E(p) = 2 + h, then
τ(p) = O(log

∣∣ 1
h

∣∣) as h→ 0. Note that if h = 0 the pendulum might stay forever
in the upper equilibrium state, so that τ = ∞. Analytically, the estimate has
the form ∫ 2π

0

| cos s+ 1 + h|−1/2ds = O(log |h|−1) as h→ 0. (3.8)

Standstill zones. In order to understand the motion inside and in the vicinity
of the standstill zone we use linearization of the control system in a neighborhood
of an equilibrium point. The manner of passage of the standstill zones is different
in the upper and lower parts. The situation in the lower part is simpler: The
corresponding linearized system is globally controllable in spite of the control
bound |u| ≤ 1. Therefore, it is possible to reach the lower equilibrium point
from any point of the lower standstill zone in time of order O(1).

In order to get from a point p of the upper standstill zone to the low-energy
zone one can do as follows: Because of the local controllability of the linearized
system there is a positive constant c such that if the point p is at the distance
less than cε from the upper equilibrium point, we can move it in time O(1) to
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any point at the distance exactly cε from the upper equilibrium. If p is at the
distance more than cε from the upper equilibrium it stays intact. Thereafter
we switch the control off, and wait for the time t1, when the x-coordinate of
the point p(t1) become zero. Then we apply the control (3.7) up to the time t2,
when the velocity y of the point p′ = p(t2) become zero. The energy decrease
E(p)−E(p′) = (π+o(1))ε. Therefore, if E(p) = 2+O(ε2), then, E(p′) < 2− 1

2πε,
provided that the parameter ε is sufficiently small. This means that the point
p′ is within the low-energy zone. In view of the estimate (3.8) for the period of
oscillations the maneuver takes time of order O(log 1/ε).

To estimate the duration of motion within high and low energy zones we
use the Poincaré section technique coupled with the logarithmic bound for the
oscillation period of the uncontrolled pendulum.
Low energies. Consider the controlled motion of the point p in the low energy
zone E(p) = 2−h, h > ε2 by using the Poincaré map associated to the Poincaré
section Σ− = {y = 0}. If a time interval under consideration is small compared
to 1/ε, the trajectory p(t) is close to the trajectory of the uncontrolled motion
with the same initial point. The Poincaré map P(u) : p 7→ p′, related to the
Poincaré section Σ− = {y = 0}, is close to the Poincaré map P(0) for the
uncontrolled motion. In order to take into account the arising deviation of order
O(ε) it is convenient to invoke equation (3.6) for energy change. Suppose tn are
the hitting instances for the section Σ−, pn = p(tn) = (xn, 0) is the sequence
of points arising under iteration of the Poincaré map, En = E(pn) are the
corresponding values of energy. Then

En+1 − En = ε

∫ tn+1

tn

yudt = ε

∫ tn+1

tn

udx(t). (3.9)

We fix the time instant tn, the point pn = (xn, 0), and study the influence of
the control chosen upon the right-hand side of (3.9). In this equation y = y(u, t)
depends on control weakly: y(u, t) = y(0, t) + O(ετn), where τn = tn+1 − tn is
the time interval between next hits of the section Σ−. We know from (3.8) that
in the low energy zone τn = O(log 1/ε), and this bound is sharp in the vicinity
of the standstill zone only; in the major part of trajectory τn is just bounded.
If the time tn is fixed the values of tn+1(u) and τn(u), like that of y, depend on
u weakly. Put

φn =

tn+1(0)∫
tn

|y(0, t)|dt =

tn+1(0)∫
tn

|dx(0, t)|.

This is a function of the initial position φn = φ(xn). An easy computation shows
that φ(x) = 2|x|. Thus, the right-hand side of (3.9) takes the form εφ(xn)Un +
o(ε), where Un is arbitrary subject to |Un| ≤ 1. In the upshot, if we pass to the
variables Xn = |xn| we obtain a one-dimensional discrete control system

cosXn − cosXn+1 = 2εXnUn + o(ε), |Un| ≤ 1, (3.10)

or, equivalently,

sinXn

2Xn
(Xn+1 −Xn) = εUn + o(ε), |Un| ≤ 1. (3.11)
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The obtained discrete system arises via the Euler approximation with step ε of
the continuous control system

sinX
2X

dX

dt
= U, |U | ≤ 1, (3.12)

so that Xn approaches X(nε). The use of control (3.7) corresponds to U ≡
−1. The minimum-time damping problem corresponds to minimization of the
functional

∑
n τn. After normalization

∑
n τn 7→ ε

∑
n τn and passage to the

limit ε → 0, if the initial position belongs to the low energy zone, we get the
problem of steering the system (3.12) to the point X(T ) = 0 coupled with
minimization of the functional

J− =
∫ T

0

τ−(X(t))dt→ min, τ−(X) =
∫ X

0

(cosφ− cosX)−1/2dφ. (3.13)

The finiteness of J− corresponds to the upper bound O(1/ε) for the duration of
controlled motion in the low energy zone.

High energies. Quite similar but simpler arguments prove that one can get to
the standstill zone from the high-energy zone in time of order O(1/ε).

3.5 Proof of theorem 2.3

To prove our main result on asymptotics of Nε we need two basic pieces: first,
the next “Sturm-like” strengthening of Corollary 3.1:

Theorem 3.2 Suppose ε is sufficiently small, t1, t2 are next zeroes of the ad-
joint variable ψ = ψ(t), and the optimal motion in the interval [t1, t2] of time
does not hit the standstill zone. Then, there exists a single time instant t between
t1, t2 such that y(t) = 0, so that the zeroes of y and the adjoint variable ψ are
intermittent.

Second, we use the reduction to the auxiliary one-dimensional control system
(3.12).

References

1. Pontryagin L.S., Boltyansky V.G., Gamkrelidze R.V., Mischenko E.F. Math-
ematical theory of optimal processes. Moscow: Nauka, 1983

2. Reshmin S.A.// Appl. Math. Mech, 2009, v. 73, no. 4, p. 562–572.
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