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Abstract 
To efficiently determine critical condition of noise-

induced bifurcation in nonlinear dynamical systems, a 
stochastic sensitivity function (SSF) around a 
deterministic periodic attractor is approximated based 
on stroboscopic mapping. Then the confidence ellipses 
are constructed and used to judge if it collides with 
some invariant sets of system in order to obtain the 
critical noise intensity of noise-induced transition 
phenomena. Furthermore, to effectively capture the 
larger stochastic transient behaviors over the critical 
noise intensity, an idea of evolving probabilistic 
vector (EPV) is introduced into the Generalized Cell 
Mapping method (GCM) in order to enhance the 
computation efficiency of the numerical method. The 
feasibility of the proposed methods is demonstrated 
through the study of a Duffing oscillator under 
external periodic excitation and additive noise. 
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1 Introduction 
   Noise is ubiquitous in nature and engineering 
systems that are all inherently nonlinear. Uncertain 
disturbances or noises on nonlinear dynamical systems 
often evoke some unexpected and even coherent 
responses. Various noise-induced behaviors have been 
found, such as noise-induced chaos [Zhang, et al., 
2011; Tél and Lai, 2010], stochastic bifurcation 
[Malick and Marcq, 2003; Xu, He and Fang, 2003], 
noise-induced intermittency [Suso and Ulrike, 2003;  
Bashkirtseva and Ryashko, 2013], noise-induced 
hopping [Arecchi, Badii and Politi, 1985; Suso and 
Ulrike, 2002] and so on. 
  In [Thompson, Stewart and Udea, 1994], the 
bifurcations of deterministic (dissipative) nonlinear 
dynamical systems are classified into three categories: 
safe, explosive and dangerous. The explosive 
bifurcations are defined as catastrophic global 
bifurcations with an abrupt enlargement of the 
attracting set but with no jump to remote disconnected 
attractor. The dangerous bifurcations are catastrophic 

bifurcations with blue-sky disappearance of the 
attractor with a sudden fast jump to a distant unrelated 
attractor. Undoubtedly, these two kinds of bifurcations 
have very important engineering meaning since they 
imply that abrupt and great change in the operation 
state of a machine or a system takes place with a 
continuous variation of a parameter that may even 
induce possible damage or destruction of the system. 
Since uncertain disturbance is usually unavoidable in 
real engineering environment, it is thus of great 
interest to exploit the condition when the bifurcations 
are induced by noise and the quantitative prediction 
that captures the transient responses of noise-induced 
large transition. Thees are the two purposes of the 
present paper. 
  It is well known that Monte-Carlo simulation (MCS) 
is a direct method to obtain the probabilistic 
distribution of a stochastic system, but it is too 
expensive in computations to be used for a systematic 
investigation. For the case of excitation under 
Gaussian white noise, the probabilistic description of 
the stochastic responses is governed by Fokker-
Planck-Kolmogorov (FPK). Several approximate 
methods on solving FPK equation have been 
developed, including Finite Element Method [Spencer 
and Bergman, 1993], exponential-polynomial closure 
method [Zhu, 2012], stochastic averaging procedure 
[Gu and Zhu, 2014], path integral method [Wehner 
and Wolfer,1983; Di Paola and Santoro, 2009], etc. 
   Based on the quasipotential theory, the stochastic 
sensitivity function, proposed by Bashkirtseva, can 
give an approximate analytical description of the 
probabilistic distribution. This method is easier than 
other FPK equation-based methods and has 
successfully applied to analysis the sensitivity of 
stationary point, 2D cycle, 3D cycle in differential 
dynamical systems. For discrete systems, the 
sensitivity of fixed point and periodic solution can 
also be analyzed using SSF [Bashkirtseva, Ryashko 
and Tsvetkov, 2010]. Moreover, SSF can help to 
stabilize the equilibrium in noise disturbed chaotic 
system [Bashkirtseva, Chen and Ryashko, 2012]. In 
this paper, a non-autonomous dynamical system is 
discretized into a discrete map by 1/N-period 
stroboscopic map. Through solving stochastic 



 
 

 

sensitivity functions of periodic attractors in maps, 
confidence ellipses were constructed to describe the 
distributions of the random attractors. In this way, 
boundary value problems of matrix differential 
equations were avoided, while there were and only 
matrix algebra equations need to be solved. Thus, 
probabilistic distribution of periodic attractors can be 
analytically predicted when the explosive bifurcation 
occurs. 
  Generalized Cell Mapping method, which was 
pioneered by Hsu [Hsu, 1981 and 1987] in 1980s, may 
effectively deal with the global analysis of stochastic 
dynamic systems [Sun and Hsu, 1988] and capture 
noise-induced probability evolution for a invariant sets 
to another, especially for the dangerous bifurcations. 
But, like many other numerical methods for stochastic 
dynamics, the computational efficiency is still a 
crucial problem faced by GCM that needs to be solved 
with effort. In the study, we are interest in the 
probability distribution of the initial states localizes 
near a given deterministic attracting set. Thus, the 
traditional GCM that always deals with a priori 
defined sufficient large chosen region in the state 
space is not quite efficient for the analysis of the 
above problem. Therefore, the idea of evolving 
probabilistic vector (EPV) is introduced in this paper 
in order to enhance the efficiency of the GCM. By 
using EPV, only the one-step transition probability of 
the cells in the chosen region, whose probabilities are 
within a given fiducial probability, will be calculated, 
instead of all the cells within the chosen region in the 
state space. In this way, the dimension of the 
probabilistic vector in the present GCM method 
(GCM with EPV), which varies with the evolution of 
the stochastic response, is greatly reduced and usually 
much smaller than that of the corresponding fix-sized 
probabilistic vector. 

This paper is organized as follows: In Section 2, the 
algorithm to obtain SSF of periodic attractors in non-
autonomous nonlinear system is proposed by 
constructing 1/N-period stroboscopic map. Section 3, 
the idea of evolving probabilistic vector is proposed in 
order to enhance the efficiency of the GCM, and the 
corresponding algorithm is devised. In Section 4, the 
proposed methods are applied to a Duffing system 
under external periodic excitation and additive noise. 
Finally, conclusions are drawn in Section 5. 

2 Stochastic sensitivity function of periodic 
attractors  
   Consider a continuous non-autonomous dynamical 
system 

( )= tx f x,                      (1) 
When there is a periodic attractor with period T in the 
deterministic system (1), stroboscopic map at discrete 
times t=t0+k△t (k is positive integer) is often used to 
investigate the character of the attractor, which can be 
defined as 

( )1k t kϕ+ ∆=x x                     (2) 

However, though the algorithm to get SSF of fixed 
point of maps is raised in [Roy, 1995], for most of the 
nonlinear dynamical systems, the explicit expression 
of the 1-period stroboscopic map cannot be obtained. 
Note that, if △t→0, the linear approximation of map 
(2) can be taken in the interval [t0+k△t, t0+(k+1)△t] 

( )1 expk k kt+ = ∆x J x                    (3) 
where 

0,|
kk t t k t= = + ∆= ∂ ∂ x xJ f x  

is Jacobian matrix at point xk and time t0+k△t. 
So, the sampling time interval △t of stroboscopic 

map can be set to 
, 1t T N N∆ = 

           (4) 
and a new stroboscopic map can be written in the form 
(3). This new map is named a 1/N-period stroboscopic 
map. 
Through this new map, the original periodic attractor 
Г is discretized into a period-N cycle Г*={x1, … , xN} 
by N stroboscopic sections {Σ1, … , ΣN}. (see Fig. 1) 

 
Fig. 1 1/N-period stroboscopic map of a 2-dimensional non-

autonomous system 
Now consider system (1) subjects to stochastic 

disturbance 
( ) ( ) ( )= t tε+x f x, xσ ξ              (5) 

where ξ is n-dimensional Gaussian white noise, σ is 
n×n matrix which defines the relation between the 
noise and the system state, ε is the noise intensity. 

The 1/N-period stroboscopic map of system is 
written as 

( ) ( )1 expk k k kt ε+ = ∆ + ∆x J x x wσ        (6) 
where 

t∆ = ∆w ξ  
is an increment of Wiener process during time interval 
[t0+k△t, t0+(k+1) △t]. 
  According to [[Bashkirtseva, Ryashko and Tsvetkov, 
2010], if the deterministic period-N cycle in (3) is 
exponentially stable in its neighborhood, one can 
define 

( ) ( )
1 2 1

1 1 1 1 2 1 2

, , exp 1,...,T
k k k k k k k

N N
T T T T T

N N N N N N N N N N N

t k N
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=
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If the period-N cycle is attractor, it is always 
exponentially stable. The SSF of point x1 is then the 
unique solution of matrix equation 

1 1
T= +W BW B Q                     (8) 

and W2,W3,…WN can be calculated by the recurrence 
relation below 

1 1, , 1T
k k k k k k N+ = + = −W F W F Q   (9) 

After Wk is calculated, a confidence ellipse that 
represents the spatial distribution of stochastic states 
concentrated near point xk in stroboscopic section Σk 
can be obtained using the following equation 

( ) ( ) ( )( )1 22 ln 1T
k k k t Pε−− − = ∆ − −x x W x x     (10) 

where P≈1 is the probability, with which the points in 
the stochastic attractor are contained in the ellipse. 

3 GCM with evolving probabilistic vector  
In this part, GCM with evolving probabilistic vector 

will be developed to capture large stochastic transition 
of a nonlinear system under noise. 
  The response of a N-dimensional nonlinear system 
subjected to additive and/or multiplicative Gaussian 
white noise excitations is well known to be a diffusion 
Markov process. Based on the Generalized Cell 
Mapping method, the probability evolution of the 
stochastic system is described by a homogeneous 
Markov chain in the cell space as 

( ) ( 1)n n⋅ = +P p p                  (11) 
where p(n) denotes the probabilistic vector describing 
the probability of each cell at nth step, and P the one-
step transition probability matrix of the stochastic 
system. The element Pij and pi(n) can be determined 
by following formulae 

0( , , ) ( , ,0)

( ) ( , )
i i

i

ij j jC C

i C

P p t t d p d

p n p n d

τ

τ

= =



= 


∫ ∫
∫

x x x x x x

x x
      (12) 

where τ=t-t0 denotes a mapping time step; Ci is the 
domain occupied by ith cell in RN, and p(x, τ|xj, 0) and 
p(x, nτ) represent the one-step transition probability 
and the probability under n-steps mapping in RN, 
respectively. 

A Gauss-Legendre quadrature is applicable to 
estimate the above integral in domain Ci. This means 
that probabilities in ith cell are discretely expressed by 
that at Gauss quadrature points in the cell. Therefore, 
based on this rule 

1 1
( , ,0), ( ) ( , )

i is s
k k

ij k j i k
k k

P A p p n A p nτ τ
= =

= =∑ ∑x x x
 
(13) 

where xj is the geometrical center of jth cell; xk is the 
kth Gauss quadrature point, si is the number of Gauss 
quadrature points in ith cell, and Aj is the quadrature 
factor. 
  To release the difficulty of huge time-consumption in 
solving nonlinear stochastic equations based on 
sampling methods, like straightforward MCS to 
estimate the one-step transition probability matrix Pij, 
a short-time Gaussian approximation approach 
proposed in [Sun and Hsu, 1990] is adopted. Thus, the 
distribution can be approximately specified by the 

mean and the variance, which can be evaluated by 
integrating moment equations from t=0 to t=τ. 
  Borrowing the idea from Point Mapping under Cell 
Reference method [Jiang, 2011 and 2012], the cells in 
the chosen region will be classified into active cells 
and inactive cells. An active cell represents the cell 
whose probability density function (PDF) is within the 
prescribed fiducial probability, and an inactive cell is 
the cell whose PDF is outside the prescribed fiducial 
probability, as shown in Fig. 2. In simulation, the 
inactive cells can be neglected in the computation of 
the short-time mapping, that is, Pirpr=0 when rth cell 
is an inactive cell (see Fig. 2(b)). 

 
(a) 

 
(b) 

Fig. 2 Schematic representations of fiducial probability and active 
cell, inactive cell, sink cell: (a) fiducial probability; (b) Active cell, 

inactive cell, sink cell. 
So the probabilistic vector p(n) in the present work 

is no longer a vector with a fixed length N as in the 
traditional GCM, rather its length will vary and equal 
the number of active cells. Then the evolving 
probabilistic vector is governed by 

( ) 0
1,2,3,...

( ) ( 1)
ij j

ij j i

P p n when j r
j N

P p n p n when j r

= = = = + ≠  
(14) 

4 Stochastic responses in noise-induced Duffing 
oscillator 

To demonstrate the capability of above proposed 
methods, a Duffing system under external periodic 
excitation and additive noise 

2( ) cos ( )x cx k x x B t w t+ + + = +        (15) 
where w(t) a Gaussian white noise stochastic process 
as defined as 

[ ( )] 0E w t = , 
2[ ( ) ( )] ( )wE w t w t tτ σ δ+ =      (16) 

where σw is the noise intensity. Let us fix the 
parameters c=0.25, B=8.50 and k= -0.12. For the 



 
 

 

deterministic case, namely σw =0, the forced Duffing 
system has a stable period-3 motion and a chaotic 
saddle, as shown in Fig. 2(a). 
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(b) 

Fig. 2 (a) Global dynamical structure of Duffing system when 
c=0.25, B=8.50, k=-0.12, σw=0.0, triangular stands for period-3 
attractor, dots for chaotic saddle; (b) σw=0.05, blue curves stands for 
confidence ellipses, black and red curves for stable and unstable 
manifolds of chaotic saddle. 

4.1 Sensitivity analysis 
It is not hard to imagine that the stochastic 

responses will mainly concentrate around the 
deterministic attractors when the noise intensity is 
sufficient small. The method proposed in Section 2 is 
employed to investigate the confidence ellipse of the 
three attractors. Let N=300, △t =T/N=0.02π and the 
fiducial probability P=99.99%. By increasing the 
noise intensity, the size of confidence ellipses 
increases. When σw=0.05, the ellipses begin to touch 
the unstable manifold of the chaotic saddle (see 
Fig.2b). To check our prediction, let us first take noise 
intensity σw=0.03, and MCS are used to show its 
validity. The confidence ellipse is found to be in very 
good agreement with MCS results (see Fig. 3). 

However, as the noise intensity increases, say to 
σw=0.05, noise-induced intermittency occurs that most 
of response realizations are still concentrated around 
the deterministic attractors, but a portion of the 
response realizations go around the structure of 
chaotic saddle (Fig. 4). Now, the quantification of the 
probabilistic distribution of noise-induced bifurcation 
can not be well predicted by the stochastic sensitivity 
function technique. 
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Fig. 3 The confidence ellipses predicted by SSF when noise 
intensity σw=0.03. 
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Fig. 4 The confidence ellipses predicted by SSF when noise 
intensity σw=0.05. 

The interesting domain of x and x  is taken to be 
[1.5, 4.2]×[-3.0, 6.0], and covered by 500×500 cells 
with 0.0054×0.018 resolution on the chose region. In 
the subsequent discussion, the initial condition is 
taken at point (3, 1) with probability one in this 
section. 
  In this part, we are interested in noise-induced 
transition responses. Fig. 5 shows that response PDF 
corresponding to noise-induced intermittency is more 
accurately illustrated contrasting with Fig. 4. It is 
interesting to note from Fig. 6 that when σw=0.15, the 
stochastic responses around P-3 attractor have a 
significant qualitative change, by which the most of 
response realizations start to flee away from the 
vicinity of P-3 attractor and evolve along the chaotic 
saddle and then go back to P-3 attractor repeatedly. 

 
Fig. 5 The stable-state PDFs predicted by GCM-EPV when noise 
intensity σw=0.05. 
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(c) 

Fig. 6 The stable-state PDFs predicted by GCM-EPV when noise 
intensity σw=0.15: (a) at t=T; (a) at t=2T; (a) at t=3T. 

When the noise intensity is further increased, say to 
σw=0.20, the stable-state PDF of the stochastic 
response will fill into the structure of chaotic saddle 
gradually to form a stochastic chaotic attractor as 
shown by Fig. 7. 

 
Fig. 7 The stable-state PDFs predicted by GCM-EPV when noise 
intensity σw=0.20. 

5  Conclusions 
To efficiently capture critical condition of periodic 

attractors in noise-induced nonlinear dynamical 
systems, the sensitivity of the periodic attractors is 

analyzed by discretize the non-autonomous system 
into a discrete 1/N-period stroboscopic map. In order 
to obtain the critical noise intensity of noise-induced 
transition phenomena, SSF is used to judge if the 
corresponding confidence ellipse is in touch with the 
manifolds of certain saddle-typed invariant sets. In 
this way, boundary value problems of matrix 
differential equations were avoided by solving only 
matrix algebra equations. SSF can give an 
approximate analytical description of the distribution, 
while its implementation is easy. The effectiveness of 
this method is verified by comparing the confidence 
ellipses with the stochastic attractors through the 
Monte Carlo simulation. 

To validity investigate the lager stochastic transition 
and bifurcation of nonlinear dynamical systems after 
the critical condition, an idea of evolving probabilistic 
vector is introduced into the Generalized Cell 
Mapping method to enhance the computation 
efficiency of the numerical method. By using EPV, 
both computation consumption and memory storage 
are much more reduced to make the method even 
more suitable for detection of large stochastic 
transition in stochastic systems. Final, a Duffing 
oscillator under external periodic excitation and 
additive noise is studied as an example of application. 
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