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Abstract
In this paper, applying a canonical system with field

rotation parameters and using geometric properties of
the spirals filling the interior and exterior domains of
limit cycles, we solve the problem on the maximum
number of limit cycles for the classical Liénard polyno-
mial system which is related to the solution of Smale’s
thirteenth problem.
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1 Introduction
Consider polynomial Liénard equations of the form

ẋ+ f(x) ẋ+ g(x) = 0, (1.1)

where f(x) and g(x) are known respectively as the
damping and restoring coefficients. In the phase plane,
the representation of the Liénard equation (1.1) is given
by the dynamical system

ẋ = y, ẏ = −g(x) − f(x) y. (1.2)

There are many examples in the natural sciences and
technology in which this and related systems are ap-
plied [Bautin and Leontovich, 1990], [Gasull and Tor-
regrosa, 1999 – Smale, 1998]. Such systems are
often used to model either mechanical or biomedi-
cal systems, and in the literature, many systems are
transformed into Liénard type to aid in the investiga-
tions. Recently, e. g., the Liénard system (1.2) has been
shown to describe the operation of an optoelectronics
circuit that uses a resonant tunnelling diode to drive

a laser diode to make an optoelectronic voltage con-
trolled oscillator [Slight, Romeira, Liquan, Figueiredo,
Wasige and Ironside, 2008].
In this paper, applying the bifurcation methods devel-

oped in [Botelho and Gaiko, 2006 – Gaiko and van
Horssen, 2009, IJDSDE], we study a classical Liénard
polynomial system with respect to real variables and
parameters,

ẋ = y,

ẏ = −x+ (α0 + α1 x+ α2 x
2 + . . .

+α2k−1 x
2k−1+ α2k x

2k) y,

(1.3)

with a unique finite singular point at the origin, when
we set g(x) ≡ x in system (1.2).
In [Gaiko, 2003, 2008 and 2009], we have already pre-

sented a solution of Hilbert’s sixteenth problem in the
quadratic case of polynomial systems proving that for
quadratic systems four is really the maximum number
of limit cycles and (3 :1) is their only possible distribu-
tion. We have also established some preliminary results
on generalizing our ideas and methods to special cu-
bic, quartic and other polynomial dynamical systems.
In [Gaiko and van Horssen, 2004], e. g., we have con-
structed a canonical cubic dynamical system of Kukles
type and have carried out the global qualitative anal-
ysis of its special case corresponding to a generalized
Liénard equation. In particular, it has been shown that
the foci of such a Liénard system can be at most of sec-
ond order and that such system can have at most three
limit cycles in the whole phase plane. Moreover, unlike
all previous works on the Kukles-type systems, global
bifurcations of limit and separatrix cycles using arbi-
trary (including as large as possible) field rotation pa-
rameters of the canonical system have been studied. As
a result, a classification of all possible types of separa-
trix cycles for the generalized Liénard system has been
obtained and all possible distributions of its limit cycles



have been found. In [Gaiko and van Horssen, 2009,
IJBC and IJDSDE], we have completed the global qual-
itative analysis of a planar Liénard-type dynamical sys-
tem with a piecewise linear function containing an ar-
bitrary number of dropping sections and approximat-
ing an arbitrary polynomial function. In [Botelho and
Gaiko, 2006; Broer and Gaiko, 2010], we have carried
out the global qualitative analysis of a centrally sym-
metric cubic system which is used as a learning model
of a planar neural network and a quartic dynamical sys-
tem which models the dynamics of the populations of
predators and their prey in a given ecological system,
respectively.
In Section 2 of this paper, applying a canonical sys-

tem with field rotation parameters and using geomet-
ric properties of the spirals filling the interior and exte-
rior domains of limit cycles, we solve the problem on
the maximum number of limit cycles for system (1.3)
which is related to the solution of Smale’s thirteenth
problem [Smale, 1998].

2 Liénard polynomial system
Consider the Liénard polynomial system (1.3). It is

easy to see that system (1.3) has a unique finite sin-
gular point: an anti-saddle at the origin. At infinity,
system (1.3) for k ≥ 1 has two singular points: a node
at the “ends” of the x-axis and a saddle at the “ends”
of the y-axis. For studying the infinite singularities, the
methods applied in [Bautin and Leontovich, 1990] for
Rayleigh’s and van der Pol’s equations and also Eru-
gin’s two-isocline method developed in [Gaiko, 2003]
can be used. Following [Gaiko, 2003], we will study
limit cycle bifurcations of (1.3) by means of a canoni-
cal system containing only the field rotation parameters
of (1.3). The following theorem is valid.

Theorem 2.1. The Liénard polynomial system (1.3)
with limit cycles can be reduced to the canonical form

ẋ = y ≡ P,

ẏ = −x+ (α0 + x+ α2 x
2 + . . .+ x2k−1

+α2k x
2k) y ≡ Q,

(2.1)

where α0, α2, . . . , α2k are field rotation parameters of
(1.3).

Proof. Let all parameters of system (1.3) with even
indexes vanish,

ẋ = y,

ẏ = −x+ (α1 x+ α3 x
3 + . . .

+α2k−1 x
2k−1) y,

(2.2)

and consider the corresponding equation

dy

dx
= F (x, y) ≡

−x+(α1 x+α3 x
3+. . .+α2k−1 x

2k−1) y

y
.

(2.3)

Since F (−x, y) = −F (x, y), the direction field of
(2.3) (and the vector field of (2.2) as well) is symmet-
ric with respect to the y-axis. It follows that for arbi-
trary values of the parameters α1, α3, . . . , α2k−1 sys-
tem (2.2) has a center at the origin and cannot have a
limit cycle surrounding this point. Therefore, without
loss of generality, all odd parameters of system (1.3)
can be supposed to be equal, e. g., to one: α1 = α3 =
. . . = α2k−1 = 1 (see also [Gaiko, 2006]).
To prove that the rest (even) parameters rotate the vec-

tor field of (2.1), let us calculate the following determi-
nants:

∆α0
= PQ′α0

−QP ′α0
= y2 ≥ 0,

∆α2
= PQ′α2

−QP ′α2
= x2y2 ≥ 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆α2k
= PQ′α2k

−QP ′α2k
= x2ky2 ≥ 0.

By definition of a field rotation parameter [Gaiko,
2003], for increasing each of the parameters α0,
α2, . . . , α2k, under the fixed others, the vector field of
system (5) is rotated in a positive direction (counter-
clockwise) in the whole phase plane; and, conversely,
for decreasing each of these parameters, the vector field
of (2.1) is rotated in a negative direction (clockwise).
Thus, for studying limit cycle bifurcations of (1.3), it

is sufficient to consider canonical system (2.1) contain-
ing only its even parameters, α0, α2, . . . , α2k, which
rotate the vector field of (2.1). The theorem is proved.
�

By means of canonical system (2.1), let us study
global limit cycle bifurcations of (1.3) and prove the
following theorem.

Theorem 2.2. The Liénard polynomial system (1.3) has
at most k limit cycles.

Proof. According to Theorem 2.1, for the study of limit
cycle bifurcations of system (1.3), it is sufficient to con-
sider canonical system (2.1) containing only the field
rotation parameters of (1.3): α0, α2, . . . , α2k.
Let all these parameters vanish:

ẋ = y,

ẏ = −x+ (x+ x3 + . . .+ x2k−1) y.
(2.4)

System (2.4) is symmetric with respect to the y-axis
and has a center at the origin. Let us input succes-
sively the field rotation parameters into this system
beginning with the parameters at the highest degrees
of x in parentheses and alternating with their signs, see
[Gaiko, 2006]. So, begin with the parameter α2k and
let, for definiteness, α2k > 0:

ẋ = y,

ẏ = −x+ (x+ x3 + . . .+ x2k−1

+α2k x
2k) y.

(2.5)



In this case, the vector field of (2.5) is rotated in the
positive direction (counterclockwise) turning the origin
into a nonrough unstable focus [Bautin and Leontovich,
1990].
Fix α2k and input the parameter α2k−2 < 0 into (2.5):

ẋ = y,

ẏ = −x+ (x+ x3 + . . .+ α2k−2x
2k−2

+x2k−1 + α2k x
2k) y.

(2.6)

Then the vector field of (2.6) is rotated in the oppo-
site direction (clockwise) and the focus immediately
changes the character of its stability (since its degree
of nonroughness decreases and the sign of the field
rotation parameter at the lower degree of x in paren-
theses changes) generating a stable limit cycle. Under
further decreasing α2k−2, this limit cycle will expand
infinitely, not disappearing at infinity (because of the
parameter α2k at the higher degree of x).
Denote the limit cycle by Γ1, the domain outside the

cycle by D1, the domain inside the cycle by D2 and
consider logical possibilities of the appearance of other
(semi-stable) limit cycles from a “trajectory concentra-
tion” surrounding the origin. It is clear that, under de-
creasing the parameter α2k−2, a semi-stable limit cycle
cannot appear in the domain D2, since the focus spi-
rals filling this domain will untwist and the distance
between their coils will increase because of the vector
field rotation.
By contradiction, we can also prove that a semi-stable

limit cycle cannot appear in the domain D1. Suppose it
appears in this domain for some values of the parame-
ters α∗2k > 0 and α∗2k−2 < 0. Return to initial system
(2.4) and change the inputting order for the field rota-
tion parameters. Input first the parameter α2k−2 < 0 :

ẋ = y,

ẏ = −x+ (x+ x3 + . . .+ α2k−2x
2k−2

+x2k−1) y.

(2.7)

Fix it under α2k−2 = α∗2k−2. The vector field of (2.7)
is rotated clockwise and the origin turns into a non-
rough stable focus. Inputting the parameter α2k > 0
into (2.7), we get again system (2.6), the vector field
of which is rotated counterclockwise. Under this ro-
tation, a stable limit cycle Γ1 will immediately appear
from infinity, more precisely, from a separatrix cycle of
the Poincaré circle form containing infinite singulari-
ties of saddle and node types [Bautin and Leontovich,
1990]. This cycle will contract, the outside spirals
winding onto the cycle will untwist and the distance
between their coils will increase under increasing α2k

to the value α∗2k. It follows that there are no values of
α∗2k−2 < 0 and α∗2k > 0, for which a semi-stable limit
cycle could appear in the domain D1.
This contradiction proves the uniqueness of a limit cy-

cle surrounding the origin in system (2.6) for any val-
ues of the parameters α2k−2 and α2k of different signs.

Obviously, if these parameters have the same sign, sys-
tem (2.6) has no limit cycles surrounding the origin at
all.
Let system (2.6) have the unique limit cycle Γ1. Fix

the parameters α2k > 0, α2k−2 < 0 and input the third
parameter, α2k−4 > 0, into this system:

ẋ = y,

ẏ = −x+ (x+ x3 + . . .+ α2k−4x
2k−4

+x2k−3 + . . .+ α2k x
2k) y.

(2.8)

The vector field of (2.8) is rotated counterclockwise,
the focus at the origin changes the character of its sta-
bility and the second (unstable) limit cycle, Γ2, imme-
diately appears from this point. Under further increas-
ing α2k−3, the limit cycle Γ2 will join with Γ1 forming
a semi-stable limit cycle, Γ12, which will disappear in a
“trajectory concentration” surrounding the origin. Can
another semi-stable limit cycle appear around the ori-
gin in addition to Γ12? It is clear that such a limit cycle
cannot appear either in the domain D1 bounded on the
inside by the cycle Γ1 or in the domain D3 bounded
by the origin and Γ2 because of the increasing distance
between the spiral coils filling these domains under in-
creasing the parameter α2k−4.

To prove the impossibility of the appearance of a
semi-stable limit cycle in the domain D2 bounded by
the cycles Γ1 and Γ2 (before their joining), suppose the
contrary, i. e., for some set of values of the parameters,
α∗2k > 0, α∗2k−2 < 0, and α∗2k−4 > 0, such a semi-
stable cycle exists. Return to system (8) again and input
first the parameters α2k−4 > 0 and α2k > 0:

ẋ = y,

ẏ = −x+ (x+ x3 + . . .+ α2k−4x
2k−4

+x2k−3 + α2k x
2k) y.

(2.9)

Both parameters act in a similar way: they rotate the
vector field of (2.9) counterclockwise turning the origin
into a nonrough unstable focus.
Fix these parameters under α2k−4 = α∗2k−4, α2k =
α∗2k and input the parameter α2k−2 < 0 into (2.9) get-
ting again system (2.8). Since, by our assumption, this
system has two limit cycles for α2k−2 > α∗2k−2, there
exists some value of the parameter, α12

2k−2 (α∗2k−2 <
α12
2k−2 < 0), for which a semi-stable limit cycle, Γ12,

appears in system (2.8) and then splits into a stable cy-
cle, Γ1, and an unstable cycle, Γ2, under further de-
creasing α2k−2. The formed domain D2 bounded by
the limit cycles Γ1, Γ2 and filled by the spirals will en-
large since, on the properties of a field rotation param-
eter, the interior unstable limit cycle Γ2 will contract
and the exterior stable limit cycle Γ1 will expand under
decreasing α2k−2. The distance between the spirals of
the domain D2 will naturally increase, which will pre-
vent the appearance of a semi-stable limit cycle in this
domain for α2k−2 < α12

2k−2.



Thus, there are no such values of the parameters,
α∗2k > 0, α∗2k−2 < 0, and α∗2k−4 > 0, for which sys-
tem (2.8) would have an additional semi-stable limit
cycle. Obviously, there are no other values of the pa-
rametersα2k, α2k−2, andα2k−4 for which system (2.8)
would have more than two limit cycles surrounding the
origin. Therefore, two is the maximum number of limit
cycles for system (2.8).
Suppose that system (2.8) has two limit cycles, Γ1

and Γ2 (this is always possible if α2k � −α2k−2 �
α2k−4 > 0). Fix the parameters α2k, α2k−2, α2k−4
and consider a more general system than (2.8) inputting
the fourth parameter, α2k−6 < 0, into (2.8):

ẋ = y,

ẏ = −x+ (x+ x3 + . . .+ α2k−6x
2k−6

+x2k−5 + . . .+ α2k x
2k) y.

(2.10)

For decreasing α2k−6, the vector field of (2.10) will be
rotated clockwise and the focus at the origin will imme-
diately change the character of its stability generating
a third (stable) limit cycle, Γ3. With further decreas-
ing α2k−6, Γ3 will join with Γ2 forming a semi-stable
limit cycle, Γ23, which will disappear in a “trajectory
concentration” surrounding the origin; the cycle Γ1 will
expand infinitely tending to the Poincaré circle at infin-
ity.
Let system (2.10) have three limit cycles: Γ1, Γ2, Γ3.

Could an additional semi-stable limit cycle appear with
decreasing α2k−6, after a splitting of which system
(2.10) would have five limit cycles around the origin?
It is clear that such a limit cycle cannot appear either
in the domain D2 bounded by the cycles Γ1 and Γ2 or
in the domain D4 bounded by the origin and Γ3 be-
cause of the increasing distance between the spiral coils
filling these domains after decreasing α2k−6. Consider
two other domains: D1 bounded on the inside by the
cycle Γ1 and D3 bounded by the cycles Γ2 and Γ3. As
before, we will prove the impossibility of the appear-
ance of a semi-stable limit cycle in these domains by
contradiction.
Suppose that for some set of values of the parameters
α∗2k > 0, α∗2k−2 < 0, α∗2k−4 > 0, and α∗2k−6 < 0,
such a semi-stable cycle exists. Return to system (2.4)
again, input first the parameters α2k−6 < 0, α2k−2 < 0
and then the parameter α2k > 0:

ẋ = y,

ẏ = −x+ (x+ . . .+ α2k−6x
2k−6 + . . .

+α2k−2x
2k−2 + x2k−3 + α2k x

2k)y.

(2.11)

Fix the parameters α2k−6, α2k−2 under the values
α∗2k−6, α

∗
2k−2, respectively. With increasing α2k, the

node at infinity will change the character of its stability,
the separatrix behaviour of the infinite saddle will be
also changed and a stable limit cycle, Γ1, will immedi-
ately appear from the Poincaré circle at infinity [Bautin
and Leontovich, 1990]. Fix α2k under the value α∗2k

and input the parameter α2k−4 > 0 into (2.11) getting
system (2.10).
Since, by our assumption, (2.10) has three limit cy-

cles for α2k−4 < α∗2k−4, there exists some value of the
parameter α23

2k−4 (0 < α23
2k−4 < α∗2k−4) for which a

semi-stable limit cycle, Γ23, appears in this system and
then splits into an unstable cycle, Γ2, and a stable cycle,
Γ3, with further increasing α2k−4. The formed domain
D3 bounded by the limit cycles Γ2, Γ3 and also the do-
main D1 bounded on the inside by the limit cycle Γ1
will enlarge and the spirals filling these domains will
untwist excluding a possibility of the appearance of a
semi-stable limit cycle there.
All other combinations of the parameters α2k, α2k−2,
α2k−4, and α2k−6 are considered in a similar way. It
follows that system (2.10) has at most three limit cy-
cles. If we continue the procedure of successive in-
putting the even parameters, α2k−8, . . . , α2, α0, into
system (2.4), it is possible first to obtain k limit cycles
(α2k�−α2k−2 �α2k−4 �−α2k−6 �α2k−8 � . . .)
and then to conclude that canonical system (2.1) (i. e.,
the Liénard polynomial system (1.3) as well) has at
most k limit cycles. The theorem is proved. �

Note that by the change of variables X = x and Y =
y+F (x), where F (x) =

∫ x
0
f(s) ds, system (1.2) with

g(x) ≡ x is reduced to an equivalent system

Ẋ = Y − F (X), Ẏ = −X (2.12)

which can be written in the form

ẋ = y, ẏ = −x+ F (y)
(2.13)

or
ẋ = y,

ẏ = −x+ β1 y + β2 y
2 + β3 y

3 + . . .

+β2k y
2k + β2k+1 y

2k+1.

(2.14)

Therefore, we can conclude (see also [Gaiko, 2006])
that Theorem 2.2 supports the conjecture of [Lins, de
Melo and Pugh, 1977] on the maximum number of
limit cycles for the Liénard polynomial system (2.14).
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