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Abstract
The dynamics of a two-dimensional system consti-

tuted by two masses subjected to elastic, gravitational
and viscous forces and constrained by a moving fric-
tional mono-lateral surface is investigated numerically
by means of a self-made code. The model, capable of
reproducing the hopping phenomenon of a windscreen
wiper, exhibits a time-varying dynamics which has a
non-smooth nature due to the impact and friction and
is affected by geometrical non-linearities. Various pe-
riodic motions are found and the dependence on the
problem parameters, in particular on the friction coef-
ficient, is investigated in detail.
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1 Introduction
This communication presents the main results of a nu-

merical study of the dynamics of the two-dimensional
mass-spring-damper system depicted in Fig. 1 [Lan-
cioni, Lenci and Galvanetto, 2007]. It consists of two
rigid bodies of massesm1 andm2 immersed in a ver-
tical downward gravitational field and constrained by
elastic springs, by viscous dashpots and by a mov-
ing frictional mono-lateral surface. This model, called
Frictional Impact Oscillator [Leine, Brogliato and Ni-
jmeijer, 2002], reproduces the hopping phenomenon
observed in many applications, such as the motion of
a piece of chalk pushed over a blackboard or that of
a robotic harm on a plane. The system can also be
seen as a simplified model of the transverse section
of a windscreen wiper blade moving on the glass of a

car. kϕ represents the stiffness of the rubber cantilever
in wiper blade, whileky measures the stiffness of the
wiper metal harm. The investigation of the dynamics is
useful to understand the causes of the hopping and, as a
result, to suggest the appropriate remedies to avoid this
unwanted motion.
The proposed model can be classified as a time vary-

ing system, because its dynamics is divided in three
different regimes: free-flight, slipping or sticking of
the massm1. Each motion is characterized by a dif-
ferent number of degrees of freedom, two, one and
zero, respectively. The resulting equations of motion
are complemented by appropriate transitions laws from
one regime to the next. In particular, for the impact of
them1 on the surface, we adopt the Poisson’s law pro-
posed in [Pfeiffer and Glocker, 1996] and analysed in
detail in [Pfeiffer and Foerg, 2005], where the introduc-
tion of restitution impulses allows for the bouncing of
massm1. The perfectly plastic impact law considered
in [Lancioni, Lenci and Galvanetto, 2007] is obtained
as a particular case when the normal restitution coeffi-
cient is set equal to zero.
The dynamics of the model are very intricate as a con-

sequence of the geometric nonlinearity in the motion
of the massm1, of the Coulumb dry friction for the
contact ofm1, and of the impact law. As analytical so-
lutions are possible only in a limited number of cases, a
numerical approach is pursued by means of a self-made
code.
We investigate the effects of the impact law on the

system dynamics by considering a completely inelastic
impact as well as a partially elastic impact. The dynam-
ical behaviours of these two cases are studied for differ-
ent values of the frictional coefficient. Completely dif-
ferent dynamics have been found, and their correspond-



Figure 1. Frictional Impact Oscillator.

ing bifurcation branches are connected by smooth and
non-smooth bifurcation points. Finally, some simula-
tions are performed by considering a sinusoidal belt ve-
locity to reproduce the motion of a windscreen wiper.

2 Regimes of motion and transition laws
We summarize in this Section the equations which

govern the motion and the transition from one regime
to the other, and we refer to [Lancioni, Lenci and Gal-
vanetto, 2007] for an extended treatment and an in-
depth discussion. For the two-mass system represented
in Fig. 1, the parameters chosen to describe the mo-
tion are the rotationϕ of the rigid bar connectingm1

and m2, and the distancey of m2 from the surface.
The normal and tangential contact forces between the
massm1 and the moving surface areλN andλT , re-
spectively. The problem unknownsϕ, y, λN andλT

are determined by the equations of motion

[
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(1)
and by the contact law betweenm1 and the sliding sur-
face. In (1)g is the acceleration of gravity, whileϕ0

andy0 define the configuration of unstressed springs.
The three different regimes of motion, and the con-

tact law betweenm1 and the surface, which provides
the two missing equations, are modeled as follows. Let
gN = y − l cos ϕ be the distance betweenm1 and the
surface, and leṫgT = lϕ̇ cos ϕ − v (herev = ṡ is the
velocity of the surface, see Fig. 1) be the relative hori-
zontal velocity. Note thatgN < 0 is not allowed by the
impenetrability condition of the moving surface.

2.1 Free-flight
In this case the massm1 is detached from the surface.

The contact forces vanish,λN = λT = 0, and the mo-
tion is determined by solving system (1) with respect
to ϕ andy. Condition of existence of this regime is
gN > 0.

2.2 Contact regimes
In the next two regimes,m1 is in contact with the sur-

face. The contact conditions aregN = ġN = g̈N = 0,
and allows to writey and its derivatives in terms of the
variableϕ:

y = l cosϕ, ẏ = −lϕ̇ sin ϕ,
ÿ = −l(ϕ̇)2 cos ϕ− lϕ̈ sin ϕ.

(2)

Thus, y is no longer an unknown in these regimes.
The Coulumb friction law governs the behaviour in the
tangential direction and defines two possible situations:
slip or stick.

2.2.1 Slip In this case the relative tangential veloc-
ity is not null. If ġT > 0, thenλT = −µλN (pos-
itive slip, µ is the Coulumb friction coefficient) and if
ġT < 0, thenλT = +µλN (negative slip). The remain-
ing variables andϕ andλN are determined by (1).

2.2.2 Stick In this case the relative tangential ve-
locity is null, ġT = 0, the system has no more degrees
of freedom, and its dynamics is completely determined
by the motion of the surface. Equations (1) are used to
evaluate the contact forcesλN andλT , which have to
satisfy the condition|λT | ≤ λN , which is the condition
of existence of this regime.

2.3 Transition laws
The transition from one regime to the other is gov-

erned by the following conditions: the slip motion
passes to stick wheṅgT becomes equal to0; the op-
posite transition from stick to (negative/positive) slip
occurs whenλT becomes equal to±µλN ; the mass
m1 detaches whenλN = 0 and the motion moves from
slip or stick to free-flight.
The transition from free-flight to other regimes is

governed by the Poisson’s impact law [Pfeiffer and
Glocker, 1996; Lancioni, Lenci and Galvanetto, 2007].
Within the infinitesimal time interval[t0, t2] of an im-
pact, we distinguish two phases: a phase of compres-
sion[t0, t1] and a phase of expansion[t1, t2]. The Pois-
son law states that normal impulse in the expansion
phase isΛNe = εNΛNc, whereΛNc is the impulse
in the compression phase andεN ∈ [0, 1] is the restitu-
tion coefficient. WhenεN = 0, the impact is perfectly
plastic, as assumed in [Leine, Brogliato and Nijmei-
jer, 2002]. The impact laws are obtained by integrating
the motion equations (1) within the compression and



expansion time intervals and their detailed expressions
are given in [Lancioni, Lenci and Galvanetto, 2007].
We just notice here that forεN > 0 the massm1 al-
ways bounces and the transition to the laid regimes
happens through a “chattering” process [Demeio and
Lenci, 2006]. In the numerical code we conventionally
end the chattering when the time distance between two
consecutive impacts is smaller than a given tolerance.

3 Numerical simulations
Here we show only few numerical results. A more

extended set of simulations is reported in [Lancioni,
Lenci and Galvanetto, 2007]. We consider two dif-
ferent impact laws: a fully inelastic impact by set-
ting εN = 0, and a partially elastic impact by setting
εN = 0.2. The dynamics of the two models are anal-
ysed by varying the dry friction coefficientµ. The other
parameters are [Leine, Brogliato and Nijmeijer, 2002]:
m1 = 0.1kg, m2 = 1kg, l = 1m, ky = 100N/m,
kϕ = 100Nm, cy = 10N/(ms), cϕ = 0, ϕ0 = π/8,
y0 = 1m.
Fig. 2 reports the bifurcation diagrams of the max-

imum angular velocityϕ̇max as function ofµ. The
Poincaŕe maps are determined by considering the inter-
section of the trajectory with the surfaceϕ̇ = 0 when
ϕ̈ > 0.
For small values ofµ we observe only an equilibrium

branch in a slip mode. By increasingµ, the equilibrium
undergoes an Hopf bifurcation atµ = 0.40977, after
which a periodic oscillation in slip mode appears (see
Fig. 2(b)). The equilibrium point forµ = 0.3 and
the periodic oscillation forµ = 0.4098 are reported
in Fig. 3. At µ = 0.40983 the slip periodic branch
disappears and the dynamics jump on another branch of
solutions. This branch involves free-flight and impacts,
and thus the path forεN = 0 is different from that for
εN = 0.2. It is worth to note how the transition from
contact motions to detached motions occurs through a
hysteretic loop (see Fig. 2(b)), which is defined by the
region of coexistence of the two solutions. In the case
εN = 0.2, the detached motion consists of a sequence
of periodic bounces ofm1 on the moving surface. Its
orbit is denoted as “bouncing” in Fig. 3(a).
In the caseεN = 0, an interesting phenomenon is ob-

served near the bifurcation point atµ = 0.38957 (see
Fig. 2(c)). For decreasingµ, the solution is periodic of
the type free flight-slip-stick-slip up toµ = 0.38965.
Here, in one “period” the stick phase between the two
slip phases disappears, while it remains in the subse-
quent “period”. Thus, the solution is now of the type
free flight-slip-free flight-slip-stick-slip, and doubles
its real period. At a lower value ofµ the stick phase
disappears from two consecutive periods, and so on.
A cascade of these events occurs, in each of which
the motion periodicity increases of one, as well as the
number of consecutive “periods” without stick phase.
The generic periodi motion is constituted byi − 1
free flight-slip cycles and1 free flight-slip-stick-slip cy-

cle. These events accumulate on the final (bifurcation)
point, which corresponds to a motion with an infinite
period, and cause the disappearance of the residual at-
tractor.
For increasing values ofµ the motion is periodic of

the type free flight-stick-slip up toµ = 6450 and of the
type free flight-stick forµ > 6450.
We now setm1 = 0.4kg andkϕ = 25Nm, a case

in which the geometrical non-linearity plays a more
important role on the system dynamics. The bifurca-
tion diagrams are reported in Fig. 4. In this case,
the diagrams obtained withεN = 0 and εN = 0.2
practically coincide, also in the regions where there is
free-flight. The bifurcation curve is constituted by four
branches related to four different dynamical behaviors.
The branchµ < 0.353 is an equilibrium branch. The
next three branches correspond to periodic motions: for
0.353 < µ < 0.360 the motion is an oscillation in slip
mode, for0.360 < µ < 0.453 the periodic oscillation
involves also the stick mode, and forµ > 0.453 a more
complex free flight-slip-stick-slip motion takes place.
In Fig. 4(b) the bifurcation diagram is enlarged in cor-
respondence of the slip oscillating branch. The smooth
transition from equilibrium to periodic slip motion is a
Hopf bifurcation occurring atµ = 0.353. The orbits
in the ϕ − ϕ̇ phase space are reported in Fig. 5 for
different values ofµ, where we observe that the larger
is µ the larger is the diameter of the orbits. The mo-
tion experiences impacts only forµ > 0.453, and, as a
result, only in this region the periodic motion depends
on the impact law. However the orbits forεN = 0
and εN = 0.2 practically coincide since in the case
of εN = 0.2 the chattering process through which the
motion passes from free-flight to slip happens in a very
short time interval.
We now consider a sinusoidal surface velocity of the

form v = sin(πt/2) since our aim is to reproduce
the motion of windscreen wipers and to investigate the
hopping phenomenon, which usually takes place when
ϕ and v have opposite signs and produces undesired
noise and marks on the glass, reducing the visibility. To
analyze the influence of the friction on the hopping mo-
tion, two simulations are performed withµ = 0.5 and
µ = 0.3, respectively, and the results are shown in Fig.
6. We mainly observe that the hopping occurs only for
µ = 0.5. In this case, whenv < 0, the motion is essen-
tially in free-flight with short slip periods. These sim-
ulations reveal the well known fact that a large value
of the friction coefficient facilitates the hopping phe-
nomenon. In fact, according to common sense, in the
case of a windscreen wiper, the hopping occurs when
the glass is dirty and dry, i.e., whenµ has a large value.

4 Conclusion
Numerical simulations of the Frictional Impact Oscil-

lator reported in Fig. 1 have been reported with the aim
of highlighting the main aspect of its nonlinear dynam-
ics.



Both cases of constant and harmonic velocity of the
moving surface are considered. The former is that clas-
sically used in the literature, and permits to study in a
simpler way the most common bifurcations of the sys-
tem dynamics. The latter, on the other end, is more
close to the real applications, such as, for example, the
windscreen wiper, which actually motivate this study.
Various smooth and non-smooth bifurcations of equi-

librium points and of periodic orbits have been detected
and illustrated by the combined use of bifurcation dia-
grams and of phase portrait. An apparently new period-
adding phenomenon has been detected.
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Figure 2. Bifurcation diagrams.

Figure 3. Orbits in theϕ− ϕ̇ plane. Free-flight≡ solid line; slip≡ dotted line; stick≡ dashed line.



Figure 4. Bifurcation diagrams in the casem1 = 0.4kg andkϕ = 25Nm.

Figure 5. Orbits in theϕ − ϕ̇ plane in the casem1 = 0.4kg andkϕ = 25Nm. Free-flight≡ solid line; slip≡ dotted line; stick≡
dashed line.



Figure 6. Sinusoidal surface velocity. Phase portraits and time histories forµ = 0.5 andµ = 0.3.


