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ABSTRACT

This paper is concerned with the problem of determination
of the finite or countable setΛ = {λ1,λ2, ...} of frequencies
belonging to an almost periodic signal{xk}. We seek a sim-
ple finite computational method in which a finite setΛn =

{λ (n)
1 ,λ (n)

2 , ...,λ (n)
Kn

} of estimators of frequencies is produced
at each stage n from the finite observation

{
x0, . . . ,x2n

}
of

the sequence. We also wantΛn converges toΛ but yet each
Λn is not too big.

We provide a method based on the local maxima of
weighted discrete Fourier transform of the finite observation
of the almost periodic sequence. The produced estimators
are taken from a finite grid

{
2π j/(Cn) : j = 0, . . . ,Cn−1

}

of [0,2π). They converge to the true frequencies with rate
O(n−1). We first consider that the signal is observed without
noise, and secondly with an additive noise. Then this method
is adapted to an almost periodically correlated signal also
called almost cyclostationnary signal.

1. INTRODUCTION

Many man-made signals, even natural ones, exhibit period-
icities. So in applies studies, the detection of the frequencies
from data is essential. To give an example in signal theory,
determination of the frequencies is often used for identifica-
tion problems (e.g. speech recognition [13]). Many other
applications can be found in communication theory, clima-
tology, econometry, to name but a few (see e.g. [2, 6, 12]).

The evolution of signal processing device entails a per-
manent need to perform more efficient methods for detect-
ing the presence of frequencies and estimating these frequen-
cies [5]. Thus there is a large amount of works on frequency
estimation or testing problem. In particular for trigonomet-
ric polynomial signals with additive noise (see e.g. the sur-
vey [1] as well as [4, 8, 10, 11, 14, 15, 16] for some of the
more recent papers). In recent papers, He [9, 10] has pro-
posed a method based on threshold for the local maxima of
the discrete Fourier transform of a signal with a finite num-
ber of frequencies. The comparison of these methods with
the strong local maxima introduced below is out of the scope
of this paper.

The aim of this paper is the determination of the set of
frequencies of an almost periodic sequence, using a simple
finite (few time consuming and with lower complexity) com-
putational method based on the local maxima of the discrete
Fourier transform (or more precisely a weighted version of
the discrete Fourier transform). An estimation procedure is
presented and the asymptotic properties of the estimates are

studied. Here we are not concerned with the testing problem.
Now we describe the goal of our method. For that we

introduce the notion of almost periodic sequence.

Almost periodic sequence. A sequence{xk} of complex
numbers is called almost periodic (in the sense of Bohr) if
for everyε > 0 the set

{
τ : supk |xk+τ −xk| < ε

}
is relatively

dense, or in more modern terms, hasbounded gaps. Almost
periodic sequences share many properties of almost periodic
functions [3]. For example, the Fourier coefficient

a(λ ) = lim
n→∞

1
n

n

∑
k=1

xk exp(−iλk)

exists for everyλ ∈ T ∼ R/2π ∼ [0,2π) and the set of fre-
quenciesΛ = {λ ∈ T : a(λ ) 6= 0} associated to the almost
periodic sequence{xk} is at most countable. The frequen-
ciesλ and coefficientsa(λ ), λ ∈ Λ, are uniquely determined
by the almost periodic sequence{xk} and for this reason it
is said that each almost periodic sequence has an associated
(unique) Fourier series,

xk ∼ ∑
λ∈Λ

a(λ )exp(iλk)

where∼ is not to be taken as equality except under addi-
tional assumptions. For example, any trigonometric polyno-
mial function is almost periodic and its set of frequenciesΛ
is finite. For any countable family{λν} taken fromT, and
any family{aν} of complex numbers such∑ν |aν |< ∞, then
an almost periodic the sequence{xk} is defined by

xk = ∑
ν

aν exp(iλνk).

Aim : Frequency determination. Suppose we are given
the sequence{xk} one element at a time; in other words, we
are given the finite sequences

{
x0, . . . ,x2n

}
for n = 1,2, . . . .

Now if we are told, a priori, that someλ belongs toΛ, then
the sequence

an(λ ) =
1
2n

2n

∑
k=1

xk exp(−iλk)

converges toa(λ ) 6= 0, and ifλ /∈ Λ then limnan(λ ) = 0.
Given the practical constraint of finite computations, we

wish to determineΛ by a limit of a sequence of operations,
each of which involves only a finite number of calculations.



At each computation stagen we compute a finite set of fre-
quencies

Λn
∆
=
{

λ (n)
1 ,λ (n)

2 , ...,λ (n)
Kn

}

taken from a finite grid
{

2π j/(Cn) : j = 0, . . . ,Cn−1
}

, using
only the finite subsequence

{
x0, . . . ,x2n

}
. The positive inte-

ger constantC is accurately chosen in the following. Next
we require that
(i) limn Λn = Λ, meaning that for everyλ ∈ Λ there is a sub-

sequence{λn j} with λn j ∈ Λn j and limj λn j = λ , and any
convergent sequence{λn} taken from the sets{Λn} (λn ∈
Λn for anyn) converges only to an element ofΛ.

(ii) Λn is not too big in the sense that convergent sequences
taken from the sets{Λn} converge only to elements ofΛ.
In other words,Λ is the limiting points of∪nΛn.
We note that the latter property is needed because the

finite setΛn =
{

2π j/(Cn) : j = 0, . . . ,Cn−1
}

(a set we can
specify without computing anything) satisfies the property(i)
but yet is too big in the sense that a convergent subsequence
to anyλ ∈ T can be found; i.e.,∪Λn = T.

Moreover, two difficulties appear here. First we do not
observe the complete sequence

{
xk
}

, but only a finite subse-
quence

{
x1, . . . ,xn

}
. Secondly we do not studyan(λ ) for λ

varying inT, but only in a finite grid.
For the non-random case we construct an algorithm for

determiningΛn that gives us the desired convergence. For
this purpose we select what we call thestrong local max-

ima of a weighted versiona(w)
n ( ·) of the discrete Fourier

transforman( ·). As weighting sequence
{

w(n)
k

}
, we use

Bartlett (triangular) kernel, for the strong shape of the maxi-
mum of its discrete Fourier transform, and for its tractability
in Fourier analysis. With this kernel, we obtain a better lo-
calization of the true frequencies, and we limit the number
of false estimates. Other weighting kernels can be used (e.g.
Parzen kernel), however for sake of simplicity we present our
study with Bartlett kernel.

Whenever the setΛ of frequencies of the sequence{xk}
is finite, that is we have a trigonometric polynomial, we can
isolate each frequency, and the convergence ofΛn is obtained
from the properties of the weighting kernel.

Whenever the setΛ is not finite, but countable, we can no
longer isolate each frequency, and we can obtain a sequence{

λ (n)
νn

}
of strong local maxima which converges to a pointλ

which is not a frequency of{xk}. Thus we need to study the

behavior of the sequence
{

a(w)
n
(
λ (n)

νn

)}
to decide whether the

limit point λ is a true frequency of the sequence{xk}.
Moreover we obtain that any frequencyλ ∈ Λ can be es-

timated by a sequence of strong local maxima with a rate of
convergence of orderO(n−1).

Next we suppose now that randomness is added to the
problem. First, rather than observing the almost periodic se-
quence{xk}, we observe the noisy sequence

yk = xk +zk

where{xk} is a non-random almost periodic sequence and
{zk} is an zero-mean random sequence with some asymptotic
independence. For simplicity of exposition we assume here
that the sequence{zk} is ρ-mixing. As before, at each stage
we compute a finite number of frequencies which are now

random variables
{

λ (n)
1 (ω),λ (n)

2 (ω), . . . ,λ (n)
Kn

(ω)
}

= Λn(ω)

from Yn(ω) = {y j(ω) = x j + zj(ω), j = 1,2, . . . ,n}. We
show that if supk E{z4

k} < ∞, then the same algorithm that
solves the non-random problem produces limn Λn(ω) = Λ
with probability one. The rate of convergence isO(n−1).

Finally, we apply the algorithm for the determination of
the frequencies of an almost periodically correlated random
sequence [7] also called almost cyclostationnary signal [6].
Now the frequencies are hidden in the covariance kernel of
the random sequence.

Notation. From now on we considerT
∆
= R/2π ∼ [0,2π)

with the metric dist(λ ′,λ ′′) = min
{∣∣λ ′−λ ′′+2kπ

∣∣ : k∈Z
}

.

2. STRONG LOCAL MAXIMA ALGORITHM

The basic approach to obtaining the convergence ofΛn to

Λ is to computea(w)
n (λ ) on a uniform gridΠn and then to

place anyλ (n)
j ∈ Πn in the setΛn whenever an acceptance

criterion is satisfied. In this paper we investigate how well
the algorithm based on strong local maxima gives the desired
convergence.

2.1 Bartlett kernel

We observex0, . . . ,x2n, and determine the collection of am-
plitudes usingweightedFourier coefficient estimator

a(w)
n (λ )

∆
=

1
n

2n

∑
k=0

xkw
(n)
n−k exp(−iλk)

where {w(n)
k } is the Bartlett (triangular) weight sequence

given byw(n)
k = 1−|k|/n for |k| < n andw(n)

k = 0 otherwise.

The discrete Fourier transform of{w(n)
k } is

Wn(λ )
∆
=

n

∑
k=−n

w(n)
k exp(−iλk) =

sin2(nλ/2)

nsin2(λ/2)
.

Note that the functionWn( ·) is non-negative continuous
on R andWn(0) = n. It satisfiesWn(λ ) ≤ Wn(2π/(Cn)) for
anyλ such that dist(λ ,0) ≥ 2π/(Cn), C ≥ 2. This function
is decreasing on[0,2π/n] and

Wn
(
π/(Cn)

)

Wn(0)
∼

(
sin
(
π/(2C)

)

π/(2C)

)2

asn→ ∞, for anyC 6= 0. Thus for any 0< η < 1 there exist
Cη > 0 andnCη ≥ 0 such that for anyC >Cη and anyn> nη

η <

(
1−

π2

24C2

)2

<
Wn
(
π/(Cn)

)

Wn(0)
< 1.

For instance, there existsnC > 0 such that forn > nC,
Wn
(
π/(Cn)

)
/Wn(0) > .949 forC≥ 4

On the other hand, given 0< δ < π, we have

Wn(λ )

Wn(0)
∼ O

( 1
n2

)
,

asn→ ∞, where theO is uniform with respect toλ provided
dist(λ ,0) > δ .



2.2 Strong local maxima

For computing stagen, computea(w)
n (λ ) for the values of

λ taken on the uniform (equally spaced) gridΠn =
{

λ (n)
j =

2π j/(Cn) : j = 0, . . . ,Cn− 1
}

whereC is a fixed positive
integer. The constantC determines the density of the sam-
pling net and is chosen (qualitatively) so that several values

of Wn(λ
(n)
j ) near toWn(0) are present in the sample. We will

assignλ (n)
j to Λn if a(w)

n
(
λ (n)

j

)
is locally maximumand also

strong. More precisely

Definition 2.1 A frequency index j∗ is said to produce a
strong local maximumwith parameters K1,K2,K3 ∈ (1,∞)
if

∣∣a(w)
n
(
λ (n)

j∗
)∣∣≥

∣∣a(w)
n
(
λ (n)

j

)∣∣ for | j∗− j| ≤ K1,

and

∣∣a(w)
n
(
λ (n)

j∗
)∣∣≥ K3

∣∣a(w)
n
(
λ (n)

j

)∣∣ for K1 < | j∗− j| ≤ K2.

In this paper the pointλ (n)
j∗ ∈ T is called astrong local max-

imum.

At a strong local maximum, the amplitude
∣∣a(w)

n
(
λ (n)

j∗
)∣∣

is at leastK3 times larger than its neighbors except for those

nearby (| j∗− j| ≤ K1). Moreover, whenλ (n)
j∗ is a strong lo-

cal maximum then theλ (n)
j∗+ks for k = ±(K1 + 1), . . . ,±K2,

cannot be ones. Further ifλ (n)
j∗ and λ (n)

j∗+k are strong lo-

cal maxima for somek = ±1, . . . ,±K1 then
∣∣a(w)

N

(
λ (N)

j∗
)∣∣ =

∣∣a(w)
N

(
λ (N)

j∗+k

)∣∣.
The next proposition states that for any frequencyλν , the

algorithm of strong local maxima produces a sequence which
converges toλν . This shows only that strong local maxima
satisfy the first requirement for limn Λn = Λ.

Proposition 2.2 Let
{

xk
}

be an almost periodic sequence
and letλν be one of its frequencies. Then there exists a se-

quence of strong local maxima
{

λ (n)
νn

}
determined by the al-

gorithm of strong local maxima using the Bartlett kernel with
C≥ 2,K1 = 3C,K2 = 4C,K3 = 10, which converges toλν as
n→ ∞, and verifies

dist
(
λ (n)

νn ,λν
)
≤

π
Cn

and
∣∣∣a(w)

n
(
λ (n)

νn

)∣∣∣> .8
∣∣aν
∣∣,

for any n> n0. The integer n0 can be chosen large enough

for there is no strong local maximumλ (n)
j ∈ Λn such that

π
Cn

< dist
(
λ (n)

j ,λν
)
≤

8π
n

.

Hence we obtain that, forn > n0, n0 being sufficiently large,

anyλν ∈Λ admits at most two strong local maximaλ (n)
νn such

that dist
(
λ (n)

νn ,λν
)
≤ 2K2π/(Cn) = 8π/n. If there are two,

they are the two nearest points of the grid from each side of

λν , and they have the same modulus
∣∣∣a(w)

n
(
λ (n)

νn

)∣∣∣.

3. Λ IS FINITE

WheneverΛ is finite, the sequence
{

xk
}

is a trigonometric

polynomial. As described above, we computea(w)
n (λ ) for

the valuesλ = λ (n)
j = j 2π/(Cn) , j = 0,1, . . . ,Cn−1, where

C is a positive integer. Then using the properties of the dis-
crete Fourier transform of the Bartlett kernel, we state that
convergent sequences taken from theΛns converge only to
elements ofΛ whenΛ is finite.

Proposition 3.1 If
{

xk
}

is an almost periodic sequence with
Λ finite, and ifΛn is determined by the algorithm of strong
local maxima using the Bartlett kernel with C≥ 2,K1 =
3C,K2 = 4C,K3 = 10, then every convergent sequence taken
from the sets

{
Λn
}

converges to an element ofΛ.

From Propositions 2.2 and 3.1, we deduce that limn Λn =
Λ, for Λ finite.

Results of simulation. In order to help our understanding
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Figure 1: ◦ : cardΛ = 50 randomly chosen amplitudes
and frequencies without additive noise.+ : frequencies
and amplitudes determined by strong local maxima with
n = 1024,C = 4, K1 = 16,K2 = 13,K3 = 100.
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Figure 2: ◦ : cardΛ = 50 randomly chosen amplitudes
and frequencies without additive noise.+ : frequencies
and amplitudes determined by strong local maxima with
n = 8192,C = 4, K1 = 16,K2 = 13,K3 = 100.



of the situation, the algorithm of strong local maxima was
implemented in MATLAB code. For programming conve-
nience we also took the sequence{xk} to be real. Then we
set cardΛ = 50 and choose the frequencies from a uniform
distribution on[0,π] and the amplitudes from a uniform dis-
tribution on[0,1].

In figures 1 and 2 wheren = 1024 and 8142, there are 27
and 48 frequencies identified. However, even atn = 8142,
there are a few frequencies that are not yet resolved. We
need to take a greater value ofn to separate them.

4. Λ IS COUNTABLE

Let
{

xk
}

be an almost periodic sequence. Then we know
that its set of frequenciesΛ is at most countable, sayΛ ={

λ1, . . . ,λν , . . .
}

and it admits a Fourier series representation

xk ∼ ∑ν aν exp(iλνk), with ∑ν
∣∣aν
∣∣2 < ∞. Moreover there

exists a sequence of trigonometric polynomials
{

σN
}

such
that limN σN(k) = xk uniformly with respect tok ∈ Z. The
trigonometric polymonials can be chosen such that

σN(x) =
n(N)

∑
ν=1

rN,ν aν exp(iλνx),

and with the notationrN,ν = 0 for ν > n(N), we have 0≤
rN,ν ≤ 1 for anyν , and limN ↑ rN,ν = 1 (see e.g. [3]). Then
limN rN,ν aν = aν , and for anyN the setΛN of frequencies

of σN is finite,ΛN
∆
=
{

λν ∈ Λ : rN,ν aν 6= 0
}
⊂ Λ. Hence for

anyN we write

a(w)
n (λ ) = a(w)

N,n(λ )+R(w)
N,n(λ ),

where

a(w)
N,n(λ )

∆
=

1
n

2n

∑
k=0

σN(k)w(n)
n−k exp(−iλk)

R(w)
N,n(λ )

∆
=

1
n

2n

∑
k=0

(
xk−σN(k)

)
w(n)

n−k exp(−iλk).

Then we apply the same arguments as in Section 3 for the
trigonometric polynomial sequence{σN( ·)}. Thus the claim
of Proposition 2.2 remains valid for any almost periodic se-
quence

{
xk
}

.
However, consider the almost periodic sequence{xk} de-

fined byxk = ∑ν aν exp(iλνk) with Λ = {λν = 1−1/ν : ν ∈
N
∗} andaν = 1/ν2. Then 1/∈ Λ and the set of strong local

maxima converges toΛ = Λ∪{1}. So Proposition 3.1 is not
generally valid. Neverthless, a localization property is still

proved using thresholds on
∣∣a(w)

n
(
λ (n)

j

)∣∣.

Lemma 4.1 Assume that for some fixed a> 0, the closed
interval B(λ , r) contains no frequencyλν such that|aν |> a :

B(λ , r)∩Λ(a) = /0whereΛ(a) ∆
=
{

λν ∈Λ : |aν |> a
}

. Then for
anyε > 0 there exists an integer nε such that for any n> nε ,
the closed interval B(λ , r) contains no strong local maximum

λ (n)
j ∈ Λn with

∣∣a(w)
n
(
λ (n)

j

)∣∣ > a+ ε : B(λ , r)∩Λ(a+ε)
n = /0

whereΛ(a+ε)
n

∆
=
{

λ (n)
j ∈ Λn :

∣∣a(w)
n
(
λ (n)

j

)∣∣> a+ ε
}

.

Hence we easily deduce that for anya> 0, every conver-

gent sequence of strong local maxima from the sets
{

Λ(a)
n
}

converges to an element ofΛ.
Finally, whenever

{
λn
}

is a sequence of strong local
maxima which converges to someλ0 ∈ T, we cannot say
whether the limitλ0 belongs toΛ. In order to eliminate the

points ofT\Λ we study the behavior ofa(w)
n
(
λn
)

asn→ ∞.
We state the following characterization of the frequency set.

Theorem 4.2 Let
{

xk
}

be an almost periodic sequence with
frequency setΛ. An elementλ0 ∈ T is a frequency, that is
λ0 ∈ Λ, if and only if there is a sequence of strong local max-
ima

{
λn
}

which converges toλ0 and such that

limsup
n→∞

∣∣a(w)
n
(
λn
)∣∣= a0 > 0.

Furthermore ifλ0 = λν ∈ Λ then we have0 < a0 ≤ |aν |.

Then we deduce

Corollary 4.3 If a sequence of strong local maxima
{

λn
}

converges to someλ0 /∈ Λ then

lim
n→∞

a(w)
n
(
λn
)

= 0.

Remark that thanks to Proposition 2.2, for any frequency
λν ∈ Λ, there exists a sequence of strong local maxima{

λ (n)
νn

}
which converges toλ0 and such that

∣∣a(w)
n
(
λ (n)

νn

)∣∣ ≥
.8|aν | for sufficiently largen. Thus for this sequence

.8|aν | ≤ liminf
n→∞

∣∣∣a(w)
n
(
λ (n)

νn

)∣∣∣≤ limsup
n→∞

∣∣∣a(w)
n
(
λ (n)

νn

)∣∣∣≤ |aν |.

5. THE RANDOM CASE

Working now in a stochastic context, we first consider the
fundamental case of a non-random signal with an additive
noise. Then we fit our analysis to the case of an almost peri-
odically correlated stochastic sequence.

5.1 Almost periodic sequence observed with noise

Here we prove that the strong local maxima algorithm using
the Bartlett kernel also produces the desired result when we
only observe

yk = xk +zk

where{xk} is a non-random almost periodic sequence and
{zk} is a sequence of zero-mean random variables defined on
a probability space(Ω,F ,P).

In a classical way we assume that the random vari-
ables{zk} satisfy some asymptotic independence. For sim-
plicity of exposition we assume here that{zk} fulfills the
ρ-mixing property that is limk→∞ ρ(k) = 0 whereρ(k) :=
sup{|corr[ f ,g]|} where the supremum is taken over allf ∈
F s

−∞ ∩ L2(P), g ∈ F ∞
k+s∩ L2(P) ands∈ Z, with F t

s being
the σ -field generated by{zk : s≤ k ≤ t}. For example, any
stationary Gaussian sequence isρ-mixing, as well as anyM-
dependent sequence.

At each stage of the strong local maxima algorithm we
compute

a(w∗)
n (λ ,ω) =

1
2n

n

∑
k=0

(
xk +zk(ω)

)
w(n)

n−k exp(−iλk)

= a(w)
n (λ )+b(w)

n (λ ,ω)



for anyλ ∈ T and anyω ∈ Ω.
In order to show that the strong local maxima algorithm

applied to the observation{yk} gives the desired sequence of
frequency sets, we note that the first term of the right hand
side of the previous equality is no random, and can be stud-
ied as previoulsy. The second one is negligible and we first
show the convergence in quadratic mean and almost sure of

b(w)
n (λ ) to 0 uniformly with respect toλ in T asn→ ∞.

Lemma 5.1 Assume that the sequence{zk} is ρ-mixing
andsupk E

[
|zk|

4
]
< ∞.

i) Then

lim
n→∞

sup
λ∈T

∣∣∣a(w∗)
n (λ ,ω)−a(w)

n (λ )
∣∣∣= 0 q.m.

ii) Assume in addition thatρ(n) = o(n−1/2) as n→ ∞ then

lim
n→∞

nε sup
λ

∣∣∣a(w∗)
n (λ ,ω)−a(w)

n (λ )
∣∣∣= 0 q.m. if ε < 1/4,

and

lim
n→∞

nε sup
λ

∣∣∣a(w∗)
n (λ ,ω)−a(w)

n (λ )
∣∣∣= 0 a.s. if ε < 1/8.

Then we readily verify that the results of the non-radom
case can be easily translated in our noisy setting. Proposi-
tion 2.2 is adapted in the following way

Proposition 5.2 Assume that the noise{zk} is ρ-mixing with
ρ(n) = o

(
n−1/2

)
as n→ ∞, and supk E

[
|zk|

4
]
< ∞. For any

frequencyλν ∈ Λ of the signal{xk}, there exists a sequence

of random variables
{

λ̂ (n)
νn

}
such that

i) λ̂ (n)
νn takes its values in

{
2π j/(Cn) : j = 0, . . . ,Cn−1

}
,

ii) lim
n→∞

P
[
λ̂ (m)

νm is a SLM for any m≥ n
]

= 1 where the

strong local maxima (SLM) are determined by the algo-
rithm of strong local maxima using the Bartlett kernel with
C≥ 2,K1 = 3C,K2 = 4C,K3 = 10,

iii) dist
(
λ̂ (n)

ν ,λν
)
≤ 2π/n+π/(Cn) everywhere,

iv) lim
n→∞

P
[∣∣∣a(w∗)

n
(
λ̂ (n)

ν
)∣∣∣> .8

∣∣aν
∣∣
]

= 1.

As a converse result we state the following.

Proposition 5.3 Assume that the noise{zk} is ρ-mixing,
supk E

[
|zk|

4
]

< ∞. Let {λn} be a sequence of random vari-
ables such that
i) λn takes its values in

{
2π j/(Cn) : j = 0, . . . ,Cn−1

}
,

ii) lim
n→∞

P
[
λm is a SLM for any m≥ n

]
= 1 where the strong

local maxima (SLM) are determined by the algorithm of
strong local maxima using the Bartlett kernel with C≥
2,K1 = 3C,K2 = 4C,K3 = 10.

iii) the sequence{λn} converges a.s. to some random vari-
ableλ0,

iv) P

[
limsup

n→∞

∣∣∣a(w∗)
n
(
λn
)∣∣∣= a0

]
= 1 for some random

variable a0 such that a0 > 0 a.e.

ThenP
[
λ0 ∈ Λ

]
= 1. Moreover0 < a0 ≤

∣∣aν
∣∣ a.e. on

{
λ0 =

λν
}

, λν ∈ Λ.

Results of simulation. We apply the strong local max-
ima algorithm to a signal which the sum of an non-random
almost periodic sequence{xk} and a noise{zk}. As in Sec-
tion 3 the almost periodic sequence{xk} has a finite number
of frequencies cardΛ = 50 which are chosen from a uniform
distribution on[0,π] and the amplitudes from a uniform dis-
tribution on[0,1]. Here the additive noise{zk} is a sequence
of independent, identically distributed random variablesfol-
lowing the zero-mean Gaussian law with unit variance.
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Figure 3: ◦ : cardΛ = 50 randomly chosen amplitudes
and frequencies with additive noise,σ = 1. + : frequen-
cies and amplitudes determined by strong local maxima with
n = 1024,C = 4, K1 = 16,K2 = 13,K3 = 100.
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Figure 4: ◦ : cardΛ = 50 randomly chosen amplitudes
and frequencies with additive noise,σ = 1. + : frequen-
cies and amplitudes determined by strong local maxima with
n = 8192,C = 4, K1 = 16,K2 = 13,K3 = 100.

In figures 3 and 4 wheren = 1024 and 8142, there are 9
and 33 frequencies identified. It is not surprising that in the
noisy context there are less identified frequencies than in the
non-random case in Section 3. Note that the identified fre-
quencies are among those which have the largest amplitudes.

5.2 APC process

Consider a real-valued zero-mean almost periodically cor-
related process{xk}, that is a zero-mean second order pro-
cess such that for anyτ ∈ Z the shifted covariance function



k 7→ E
[
xk+τxk

]
is almost periodic [7]. Then the spectral co-

variance of the process{xk} is defined by

a(λ ,τ)
∆
= lim

n→∞

1
n

n

∑
k=1

E
[
xk+τxk

]
exp(−ikλ )

for any τ ∈ Z and anyλ ∈ T. It is well known that the set

of frequenciesΛ ∆
=
{

λ ∈ T : a(λ ,τ) 6= 0 for someτ
}

is at
most countable. The problem here is the detection of the
frequencies inΛ.

In order to solve our detection problem letYτ ,k
∆
= xk+τxk,

Xτ ,k
∆
= E

[
xk+τxk

]
and Zτ ,k

∆
= xk+τxk −E

[
xk+τxk

]
for any τ

and anyk. Then we haveYτ ,k = Xτ ,k+Zτ ,k whereXτ = {Xτ ,k}
is a non-random almost periodic sequence andZτ = {Zτ ,k}
is a random sequence for anyτ. Whenever the process
{xk} is ρ-mixing, then for anyτ the processZτ is ρτ -
mixing with ρτ(k) = ρ(k− |τ|) for any k ≥ |τ|. Moreover
supk E

[
|Zτ ,k|

4
]
≤ 16supk E

[
|xk|

8
]
.

Under the hypotheses supk E
[
|xk|

8
]

< ∞, and ρ(n) =

o
(
n−1/2

)
the results of Section 5.1 can be applied for the

determination of the setΛτ =
{

λ ∈ T : a(λ ,τ) 6= 0
}

, for any
τ ∈ Z.

6. CONCLUSION

In this paper we present an algorithm for the estimation of the
frequencies of an almost periodically correlated sequences,
which applies even when we do not know whether the num-
ber of frequencies is finite or infinite. This algorithm is
based on the determination of the strong local maxima of
a weighted version of the discrete Fourier transform of the
sequence.

The Bartlett kernel with its good frequency localization
properties, is used as the weighting sequence. The Parzen
kernel, or higher order Bartlett kernels may be of interest for
future studies.

When the setΛ is finite the frequencies can be isolated,
and the algorithm works perfectly. When the setΛ is prop-
erly countable each frequency can no longer be isolated, and
we can obtain a sequence of strong local maxima which con-
verges to a point which is not a true frequency. The problem
is resolved using weighted Fourier coefficients.

In additive noisy context, when the noise presents asymp-
totic independence (e.g. a mixing property), this method still
applies. Of course it is less efficient. The detection of the
hidden frequencies of an almost periodically correlated se-
quence can be done with this algorithm.
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