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Abstract
In this work we address the problem of removing sun-

light caustic waves in underwater imagery obtained by
a monocular camera in motion in shallow water. A
heuristics for filter design is developed, from which
essential properties of the wavy water surface are ex-
ploited. The method employs optical flow techniques
and curvature predictions of pixel traces during the mo-
tion. The result is a practically clean image which is
much more coherent with the optical flow correspond-
ing to the scene motion. Design parameters are pre-
sented and guidelines to appropriately tune them are
given. The performance of the algorithm is demon-
strated in many case-studies involving synthetic video
sequences as well as film material of real subaquatic
scenarios.
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1 Introduction
Brightness fluctuations of a spatio-temporal scene ra-

diance exists in nature, particularly underwater. Es-
sentially, they are produced by sunlight flickers (caus-
tic noise) and scattering on the sea-bottom structure in
an uncontrolled and rather random manner. Patterns
of sunlight flickers depends on the surface waves dy-
namics, depth and wind speed. Typically, the shal-
low water imagery, is affected by the presence of these
dynamic patterns that strongly perturbed the scene
[?] [?]. Besides, in computer vision domain, one
finds a broad oceanic engineering applications involv-
ing vision-based system like 3D shape reconstruction
[?], [?] and 3D trajectory recovery of autonomous
navigation and SLAM (simultaneous localization and
mapping) [?], [?], among a wide list of other research

areas. These particular applications have motivated the
present paper.
Submerged objects on a dominantly textured sea-

bottom are illuminated by a natural random pattern [17,
32] which is spatially and temporally varying.
When estimating camera motion with respect to the

bottom structure, one searches for the traces of any
physical point of the bottom by tracking its correspond-
ing pixel from frame to frame [?]. Perturbed points,
mainly due to sunlight flicker, cause inconsistency on
motion analysis. As the path of each object point can
be tracked in the temporal sequence, it seems practical
to employ temporal filtering to achieve a de-flickered
video. The first realistic de-flicker algorithm was de-
veloped by Roosmalen in [?]. Generally, almost all of
the correspondence-based lighting techniques avoid the
difficult problem of tracking each individual moving
scene points [?], [?], [?]. On the contrary, [?] focus
on speeding up active vision techniques for fast scenes.
Employing special hardware, Digital Light Processing
(DLP) technology, the approach relies on controlling
illumination to modulate the light much faster than the
scene motion. The method simultaneously yields cam-
era pose estimation and dense 3D scene structure. Un-
derwater, this algorithm is also able to counteract of
scattering effects. However, due to the active nature
of the sensor, high power requirements are needed in
contrast to passive sensors.
The removal of spatio-temporal noise has been stud-

ied, for example in [?], mainly to remove brightness
error and fluctuation found in old film footage. The
method employs motion estimation together with vari-
ous other techniques in order to restore the footage. As
reported, the footage must not be degraded in a manner
that motion cannot be calculated with some degree of
precision.
Caustic wave filtering in underwater imagery was

studied in [?] [?].In [?] the method proposed consists



on using the spatial derivatives of the video frames,
instead of the raw frames. The idea behind this im-
plementation is that the derivatives of the brightness
changes will have sharp edges. This, in combination
of temporal averaging (median), would yield better re-
sults. This method requires a quasi-static scene, be-
cause the median averaging in time. Besides, the ap-
proach assumes that the brightness change found in the
scene will have sharp edges. Here, it can be noticed
that some caustic waves can be found to have smooth
spatial derivatives.
In [?] the method developed employs a simple motion

estimation. It is based on computing the image differ-
ence between a given reference frame and the tempo-
ral median of a registered set of neighbouring images.
A key observation is that this difference will have two
components with separable spectral content. One is re-
lated to the illumination field (lower spatial frequen-
cies) and the other to the registration error (higher fre-
quencies). The illumination field, recovered by low-
pass filtering, is used to correct the reference image. It
is claimed preservation of the image sharpness, even in
the presence of registration inaccuracies.
Other works like [?] [?] use a stereo camera set-up.

The authors recognize that the caustic wave actually
can be thought as a projected pattern in the sea bot-
tom. The stochastic nature of the caustic wave pro-
vides sufficient pixel surrounding differentiability, so
that the stereo camera set-up can recognize very accu-
rately the same point in the scene. Then using Struc-
ture From Motion (SFM) methods [?], the sea bottom
can be reconstructed and latter the caustic wave can be
filtered. This, of course, requires the use of dual cam-
era. Monocular camera implementations are desired in
many cases because of its low cost and widely avail-
ability.
In this work we address the problem of removing sun-

light caustic waves in shallow water images obtained
by a monocular camera in motion. A heuristics for
filter design is developed, which is based on essential
properties of the wavy water surface. The method em-
ploys optical flow techniques and curvature predictions
of pixel traces during the motion. The result is a clean
image with a much more coherent optical flow. De-
sign parameters are presented and guidelines to appro-
priately tune them are given. The performance of the
algorithm is demonstrated in many case studies involv-
ing synthetic video sequences as well as film material
of real subaquatic scenarios.

2 Working Hypothesis
The main hypothesis that is argued in order to out-

line a strategy for removing sunlight flickers from sub-
aquatic scene imagery, relies on some physical obser-
vations of the wave formation mechanism. Addition-
ally the phenomena of reflection, refraction and diffrac-
tion of sun rays crossing over the wavy boundary layer
that account finally the light flicker in shallow water.

Figure 1. Illustration of dynamics characteristics of different sun-
light flicker

The fluctuations of the sea surface depends on many
factors, mainly the coastal and oceanic landforms, wa-
ter depth, and wind and flow conditions. Waves have
a certain amount of randomness. They can be de-
scribed as a stochastic process in combination with the
physics governing their generation. The spectrum of
ocean waves which might be related to sunlight flick-
ers is roughly limited to the band of 0.1 to 10 Hz., i.e.,
comprehending ordinary to ultra gravity waves.
Certainly, flickers can be seen as deformable areas of

well illuminated points that shrugs or grows (or even
vanishes) randomly in time. The kinematics of a ran-
domly moving flicker system on the sea-bottom can be
explained by an optical flow field of associated pixels
that moves randomly as well. We will conceived this
moving flicker system as points with random displace-
ments at different velocities.
In Fig.??, some simulation results employing syn-

thetic videos are illustrated. Herein, different sun-
light flicker patterns over an uniform background are
presented on the left column. Each pattern contains
a particular spectrum with different frequency band.
Thus, the spectra contribute meaningfully to describe
the flicker dynamics from a statistical point of view.
In this respect, it is convenient to plot the variables
v(x, y) vs. ∆ψ2(x, y), where v is the mean value in
L1-norm of the module of the optical flow at a fixed
pixel (x, y) during the whole video. Equivalently, ∆ψ2

is the mean value in L1-norm of the direction change



Figure 2. Block diagram of the de-flickering filter

of the flow at (x, y) during the video. Indeed ∆ψ2 =
∆[∆(ψ/∆t)]∆t, i.e., the second derivative of the flow
passing through the pixel (x, y) at time t. The plots are
depicted on the right column of the chart.
In the second column of the figure, one can see the

areas formed by the states v and ∆ψ2 for all pixels
(x, y) of the frame. The areas become dominantly more
widespread in the direction of ∆ψ2 . This character-
izes the strong change of direction of the optical flow,
which evolves randomly in time. The wider the fre-
quency band of the pattern spectrum the wider the area
will be. The second pattern from above is the most
changing in direction like a ”random walk” stochastic
process.
There exists however some patterns of caustic waves

that have a marked directional component of velocity
which is produced by the wind at the water surface.
Accordingly this case is described by an area which is
elongated vertically and close to the v axis. This pattern
dynamics will be analysed later as a case study.
When the scene imagery stems from a moving camera,

two process take place in a superimposed way, namely
the moving landscape scene and the moving sunlight
flickers. Discarding high frequency vibrations in the
camera (e.g.,shakes or sudden turns), the moving im-
age of the first process can be described by an optical
flow field that is much more congruent and smooth than
corresponding one of the second process.
In summary, the useful characteristic of the complete

optical flow field is not just the diversity of both the
rate vector modules or directions, but rather the marked
changes of their directions. In other words, an optical
flow field sequence that shows paths of rapid change of
direction, these should correspond to trails of undesired
flicker. The remainder of the paper describes the way
to exploit this flicker dynamics characteristic as design
criteria in order to remove or efficiently attenuate them
from the video.

3 Algorithm Description
The most basic method of filtering image noise in time

is to calculate a time-average of each pixel in the im-
age. More advanced methods are introduced in [?],
in which instead of using time average, the median in
the derivatives is employed yielding better results. A
mayor drawback of this kind of methods is that the im-
age sequence must depict a static scene subject to ran-

Figure 3. Sliding window with the last N frames and forward-
backward predictions of the trace of a physical point

dom (in time) noise. If the scene is not static (e.g., as
in vision-based navigation systems), the time average
of each pixel might produced distorted results, because
the pixel in the image now no longer correspond with
the same physical point in the scene.
An alternative could be the methods presented in [?],

[?], in which an image sequence, distorted by a low
power random noise, is filtered (for instance, employ-
ing average) in the dominant direction of the optical
flow in an open-loop manner, i.e., without feed-backing
the result in order to refine it. Therein, the optical flow
is conceived a vector with 3 dimensions, i.e., the mo-
tion on the x − y frame and the time direction t that
traces the rate of a pixel on its geometric trajectory.
Thus, employing this 3D vector in a non-static scene,
it is possible to know which pixels in the image corre-
spond to each physical point in the scene. In this way,
time averaging yields no longer distorted results. An
inconvenience of this method is that the noise in the im-
age must be random (in the optical flow direction) and
must have relatively low power, enough for achieving
accuracy in the optical flow calculation.
In the present work, a method for filtering an image

sequence of a highly disturbed, non-static scene is pre-
sented. The main difference with respect to the filtering
methods referenced so far, is the construction of feed-
back block containing previous information of the op-
tical flow field in order to refine the result in the next
step. This innovation include some design parameters
to enhance the stability and robustness in the filter per-
formance.
A block diagram of the algorithm is presented in

Fig.??.
The block termed volumetric filter can roughly be

thought as a volume that contains the traces of almost
all the physical points which are tracked in a number of
concatenated frames of the image sequence. The struc-
ture of the volumetric filter is depicted in Fig.??. It is
composed of N consecutive frames of the image se-
quence. They are embraced by a sliding window along
the discrete time axis t. For the sake of simplicity we



chose an odd value for N . The first frame in the win-
dow corresponds to the actual time point t. The frame
in the middle is the most important one, because it con-
tains all the pixel (x, y), which will be pivot points for
a series expansion.
The second block in order of importance is a trace pre-

dictor that helps to estimate the curvature of estimated
traces. The block containing an optical flow estima-
tor allows the de-flickering algorithm to establish cor-
respondence between pixels that are concatenated by
the trace. In this work the algorithm of Farnebäck is
employed for optical flow estimation [?]. Finally, a
block for de-blurring is included with the purpose of
achieving better results, however this inclusion is not
determinant for the quality of the results presented in
this work.
It is worth noticing in the structure of the Fig.?? con-

tains a feedback loop of previous information. In this
paper no discussions are carried out about the stabil-
ity of the algorithm. However in a practical sense, the
question of stability can be reformulated as a virtuous
or vicious cycle problem in the filtering process. Cer-
tainly, in the light of the posed rational heuristics and
the successful results obtained in this work, such an
analysis falls outside of the ends of this paper.
The next description goes into the details of the algo-

rithm working. Fig.?? will help the description.
The de-flickering algorithm starts with the construc-

tion of traces, it is the determination ofN pixels (x, y),
one pixel for every frame in the window, such that all
of them thread a most likely trace of a physical point
in the sequence (see the representation of the Trace 1
in Fig.??). The concatenation criterion begins with a
pixel (x, y) in the middle frame and predicts (N−1)/2
pixels forwardly and (N − 1)/2 pixels backwardly.
The trace predictor performs the pixel concatenation

employing a series expansion, more precisely a Taylor
series of order n for pivoting points (x, y) of the middle
frame. For evaluating derivatives, it is, ratios of differ-
ences up to order n, optical flow fields are useful. These
fields will be feed-backed, namely the optical flows at
t, (t− 1), ..., (t−N − 1).
Thus, the frame for (N + 1)/2, t0 = (N + 1)/2− 1),
n = 3 and the pixel (x(t0), y(t0)) , the pixel located
at one frame backwards, which is concatenated is ap-
proximately given by the series expansion:

x(t0 − ∆t) ≈ x(t0) +
1

2
(∆x(t0 − ∆t))(−∆t)+

1

6
(∆x(t0 − 2∆t) − (∆x(t0 − ∆t))(−∆t2)+

1

24
((∆x(t0 − 3∆t) − (∆x(t0 − 2∆t))−

(∆x(t0 − 2∆t) − (∆x(t0 − ∆t)))(−∆t3) (1)

and similarly for y(t0 − ∆t). The same is carried
out for more concatenated points located backwards,
namely (x(t0−2∆t), y(t0−2∆t)), ..., (x(t0)−((N+

1)/21)∆t), y(t0 − ((N + 1)/2 − 1)∆t)). It is notic-
ing that the optical flow fields provide all incremental
changes ∆(∆(...(∆x))...) and ∆(∆(...(∆y))...).
The forward predictions are equally calculated with

the same series expansion for times (t0 + ∆t)...(t0 +
((N + 1)/2 − 1)∆t).
This concatenation of the N points is calculated ex-

haustively, embracing all pixels (x, y) of the middle
frame.
The final result is a set of traces in the frame volume.
At this stage the volumetric filter will attempt to re-

trieve the information of the image in the middle with-
out caustic. To this goal, the brightness of each trace
will be averaged employing the median value of the
trace pixels intensities. The employment of median
in the case of a finite N has certain advantage over
the mean average because it converges faster than the
mean value [?]. This median value of the brightness
is assigned to the middle frame intensity, leading to
a reconstructed image as output. This cleaned image
is the basis to calculated the optical flow field at time
t0. We have mentioned a step more after the image re-
construction, this is a de-blurring process in order to
define a more accentuated sharpness of the frame con-
tours. Nevertheless, this step is not performed in the
case studies we will present below.
Clearly, by processing the information in this way, the

algorithm will produce a delay of N/2 frames. Taking
into account the actual the state-of-art in camera tech-
nology, for the typical frame rates close to 30 frames
per second, this delay is small and will most likely not
affect seriously decisions in the most real-time appli-
cations of vision-based system, such as for instance in
robotics, as a part of the control decisions carried out
in a visual servoing system.

4 Solution for illogical traces
The calculation of traces by the presented predic-

tion approach do not guarantee that some predicted
trace pixels fall outside the volume (see the Trace 2
in Fig.??). Thus, the brightness averaging will fail
because there are no brightness value for these non-
existent trace points.
These inconsistencies are edge effects and are typical

by predictions of high order.
A simple solution to avoid these illogical traces con-

sists in replacing the brightness value for points outside
the volume by zero and afterwards in employing the
median instead of the mean value. This type of averag-
ing is more realistic to counteract these edges effects.

5 Initial conditions
The problem of the initial condition by camera in mo-

tion creates an undesired transient. The problem can be
partially sorted out employing the following procedure.
Rather than assume a null optical flow at the begin-

ning, one can employed the first optical flow field using
the first two dirty images for as long as the first clean



optical flow field emerges. Thereafter, the de-flickering
algorithm will start working normally.
Thus, the transient behaviour at the beginning of the

filtering algorithm can be reduced significantly.

6 Assumptions
The efficiency of the algorithm applied to a given sub-

aquatic scenario will depend on three necessary condi-
tions, namely:
I) The scene is globally illuminated and the flickers

create dynamic illumination changes over the scene
II) The temporal frame density is high enough in order

to capture smooth motions of the scene
III) The caustic waves have certain randomness
Condition I points out the existence of other light

sources aside from the refracted sunlight. This may
be due to the light backscattering in the water column
causes a smooth global illumination. Besides, external
illumination and/or multiple reflection of textured ob-
jects on the scene contributes to a global illumination.
In this way one assumes that there will be a partially
visible area in complement with the remaining over il-
luminated area that compose the scene. Condition I is
fulfilled the most of the time.
Condition II is necessary for retrieving the scene mo-

tion with approximately the same sharpness as in the
original video. Sudden movements of the scene may
cause blurred images since the filtering process em-
ploys temporal averaging for remove the noise.
Condition III is important to accentuate the reliabil-

ity of the working hypothesis, under which the filtering
objectives can be achieved. Certainly, the randomness
is a characteristic of the wavy water surface and not of
the scene motion which is more predictable.

7 Design parameter
There are two main design parameters to be tuned in

order for the algorithm to perform satisfactory and be
robust, namely the window size N on the one hand and
the order n of the interpolator on the other hand.
additionally, there are proper parameters of the opti-

cal flow method particular employed with our methods.
These were chosen conforming to the suggested default
values.
The first setting for N is related to the frequency band

width of the spectrum of the caustic wave process. The
parameter N is should be set according to an inverse
relation with respect to the band width of the flicker
dynamics.
In any case, for a smooth and dominantly slow motion

of the scene with respect to the flicker dynamics, a suit-
able value is N = 9. For rapid movements of the scene
with a high camera frame rate, N = 3 is adequate.

8 Case studies
With the goal to illustrate the performance of the

method, four case studies are investigated. They could

Figure 4. Pipe tracking

Figure 5. Navigation over ruins underwater

classify into different subaquatic scenarios with a per-
turbed moving scene.
The specific videos contains the navigation over: a) a

pipe with uniformly distributed patterns laid on a flat
sea bottom, b) ruins of a construction underwater, c) a
sequence of an irregular terrain underwater.
In all scenarios, the figures are arranged as follows.



Figure 6. Navigation over ruins underwater

On the first row, a dirty image and the filtered one
are depicted side by side. Down below, their optical
flow fields. At the foot of the figure on the left, the
reconstructed sunlight flickers, which were isolated in
an own frame by subtracting the clean image from the
dirty one.
On the right of the row, the plot at each coordinate

(x, y) of the mean velocity v(x, y) versus the change
of direction 2 (x, y) for both the dirty image and the
isolated flicker image.
The parameters are set according the guidelines men-

tioned above. For all runs presented in the paper, fol-
lowing setting was employed: N = 9 and n = 3. Also
for the Gaussian filter employed in a preprocessing step
in the optical flow technique [?] one selects σ = 2. The
video size was 320x240 pixels.
Now we are able to analyse each case separately.
In fig.??, in the illustration for the video of a pipe on

the almost flat sea-bed, one notices a practical complete
removal of the flickers. This result manifested through-
out the video, see [Link to videos]. Also, the posterior
flicker reconstruction seems to correspond to the real
caustic. Some evidence of this efficiency is given from
the different optical flow fields, where that correspond-
ing the clean image, contains the kinematics of the pipe
only.
The plot of the states mean velocity versus direction

changes shows differentiated areas but due to the dif-
ferent velocity ranges but similar range of direction
changes. This case is a very particular one because the
motion of the flickers have a constant velocity com-
ponent with constant direction, even though this is a
weak one. The filtering success is in this case effective

because the scene motion is more dominant than the
translation of the flickers.
Fig.?? depicts a complex case of spatio-temporal ra-

diance changes superimpose with white spots of the
seabed. Even though the scene spots is in motion the
filter is able to recognize the flickers and the spots. This
is seen in the state plot, where the areas for the scene
and flickers are markedly differentiated, if not in the
velocity range, though they are quite different in the di-
rection changes. The results can also be appreciated
in [?]. One notices on the optical flow field of the
perturbed image, marked changes of velocity vectors.
They are the evidence of the caustic waves presence,
that are completely remove by the algorithm as it can
be observed on the right in the corresponding optical
flow field.
The results of case c) are illustrated in Fig.??. The

difference between flicker kinematics and scene motion
is appreciated in the last plot. Despite the irregularities
in the terrain, the illumination changes are attenuated
and the scene is restored preserving the image quality.
The results can also be appreciated in [?].

9 Conclusions
A real-time approach for de-flickering videos is pre-

sented, in where the scene was perturbed by sunlight
caustic wave. Besides, the scene is assumed to be in
smooth motion. The approach requires a monocular
simple camera. The strategy for filter design was based
on useful essential characteristics of the caustic waves
that are not directly related to their typical frequency
spectra, but rather to the property of diverse and rapid
changes of direction of flicker traced pixels, like in
a ”random walk ” stochastic process. The method is
based on a volumetric filter and a predictor which work
together with a block that calculates optical flow fields,
which are feed-backed to the volumetric filter. The first
result is an almost clean image without flickers and the
second one is a much more coherent optical flow field
in relation to the pure scene motion.
The coherence of all pixel assignations correspond-

ing to all possible traces of physical points is ensured
by a high order predictor inside a sliding window of
the volumetric filter. Among all possible traces identi-
fied, there exists a small set which is inconsistent with
real paths. These edge effects are particularly dealt
with in differentiated manner. Thus possible traces
contributes to an averaged brightness on the recon-
structed image, and inconsistent traces contributes with
a smaller brightness average value.
Also guidelines to tune adequately the design param-

eters are give.
We tested the proposed approach on video sequences

with artificially added flicker, as well as on natural real
flicker film material. Test results obtained showed that
the proposed method produced a very good flicker cor-
rection in smooth moving scenes comparable with the
movements related to underwater vehicles motions, on



which a camera is pinned.
It is worth noticing that even with the employment of

large windows sizes in the volumetric filter, the im-
age sequence is reconstructed without mayor distor-
tion. This is not just only due to the smoothness of
the camera movements, but also to the accurate recon-
struction of the pixel traces provided by the high-order
series expansion employed in the predictor.
Some drops of performance occurs by camera shakes

or rapid displacements in relation to the camera frame
rate. This undesired effects are subject of the present
research that include on-line adaptation of the window
size for different dynamics of the scene motion and the
employment of de-blurring techniques.
Even when the motivation and adaptation of the al-

gorithm was thought to applications in 3D trajectory
recovery of autonomous navigation and SLAM (simul-
taneous localization and mapping), we believe that it
can be re-engineered for other areas of the Computer
Vision.
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