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Abstract
In this paper, is discussed control of CML system,

that is derived from dynamics of evolutionary process-
algorithm, i.e. CML used in our experiments reflect
dynamics of evolutionary algorithm. The reflection is
done so the dynamics of evolution is converted to the
network and network to CML. Evolutionary dynamics,
used here for control, is based differential evolution al-
gorithm. The aim is to show, that dynamics of evolu-
tionary processes can be modeled, visualized and con-
trolled as the CML system is. Control process can be
done by classical approach as well as by evolutionary
algorithm. This paper discuss mainly visualization of
evolutionary dynamics, its simple control and how does
it change under pinning signal in order to prepare back-
ground for the new and full control experiments.
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1 Introduction
Evolutionary algorithms (EA), copy natural processes,

described by Ch. Darwin and G. Mendel. They are
of discrete nature and can be used to solve compu-
tationally very hard problems. Since 70. they are
an important part of modern engineering and com-
puter science. The performance of EAs is one of
the important issues of this algorithm technology. In
our research (Zelinka, Tomaszek and Kojecky, 2016),
(Senkerik, Viktorin, Pluhacek, Janostik and Oplatkova,
2016), (Zelinka, 2016) or (Zelinka, 2015) we proposed
how can be EA converted into complex network (CN)
and consequently to the coupled map lattices (CML)
(Schöll and Schuster, 2008), (Zelinka, 2015), Fig. 1.
In our research, we are attempting to convert dynam-
ics of EA into a CN and then into a CML. CN could
be analyzed and can give us some information about
the dynamics of the EA, e.g., we can investigate for
example centralities (Kantarci and Labatut, 2013), to

figured out which vertex (i.e. an individual in the pop-
ulation) is most important in the algorithm. Also, we
can investigate diameter, clustering coefficient or some
advanced properties, as described in (Boccaletti, La-
tora, Moreno, Chavez and Hwang, 2006), (Holme and
Saramäki, 2012). According to these, we can improve
the algorithm to be better and to be able to find the op-
timal solution faster.
Both systems, i.e. CN and CML they can be con-

trolled by unconventional methods as for example EAs
are, (Zelinka, Celikovsky and Chen, 2010), (Zelinka,
2009). Thus a possibility how EA can control EA is
there and was already reported in (Zelinka, Senkerik
and Navrátil, 2006), (Zelinka et al., 2010). In this pa-
per, we discuss the next step, i.e. control of EA dynam-
ics via its CML visualization. The possibility to control
classical (i.e. chaos based) CML by EAs has been al-
ready reported in various papers. Different kind of be-
havior can be then observed and analyzed in such CML
as well as used in control (Schöll and Schuster, 2008).
The whole process is symbolically depicted in Fig. 1.

Figure 1. Motivation

In whole three kinds of experiments are reported here.
The differential evolution (DE), firstly presented by



Price and Storn in 1995 (Storn and Price, 1995), has
been selected for all of them. DE belongs to the class of
algorithms called evolution algorithms (EA). DE with
other algorithms like firefly algorithm (Yang, 2009),
genetic algorithm (Holland, 1992), particle swarm op-
timization (Kennedy, 2011), self-organizing migrating
algorithm (Zelinka, 2004), (Davendra, Zelinka et al.,
2016) create a powerful tool for solving many opti-
mization problems (Price, Storn and Lampinen, 2006),
including control of complex systems.
The primary goal of this article, based on our previ-

ous research (Zelinka, 2015), is to show, how we can
convert EA dynamics, mainly DE, into CN. Then con-
version of the CN into CML is discussed and demon-
strated, a) how behavior of the CML (i.e. EA) change
when pinning inputs applied and b) how can be mod-
ified the dynamic of EA through CML interaction and
feedback loop.

2 Experiment Design
2.1 Used Evolutionary algorithms
For experiments has been used differential evolution

(Price et al., 2006) that is a population-based optimiza-
tion method that works on real-number-coded individ-
uals and can be regarded like discrete dynamical sys-
tem. Its brief description (Price et al., 2006) is as
follows. EA works with population, that consist of
N possible solutions, called individuals. For each in-
dividual ~xi,G in the current generation G, DE gener-
ates a new trial individual ~x′i,G by adding the weighted
difference between two randomly selected individuals
~xr1,G and ~xr2,G to a randomly selected third individ-
ual ~xr3,G. The resulting individual ~x′i,G is crossed-over
with the original individual ~xi,G . The fitness of the
resulting individual, referred to as a perturbed vector
~ui,G+1, is then compared with the fitness of ~xi,G. If
the fitness of ~ui,G+1 is greater than the fitness of ~xi,G,
then ~xi,G is replaced with ~ui,G+1; otherwise, ~xi,G re-
mains in the population as ~xi,G+1. DE is quite robust,
fast, and effective, with a global optimization ability.
It does not require the objective function be differen-
tiable, and it works well even with noisy, epistatic and
time-dependent objective functions. For more about
DE see (Price et al., 2006).

2.2 Parameters and cost function
During the experiments, we set DE (Storn and Price,

1995) parameters like this: D = 50, NP = 30,
CR = 0.8, F = 0.9, Generations = 1000,
SearchingSpace = [−104, 104]D . To initialize DE
dynamics and keep it active for longer time, Rastri-
gin function (1) has been selected for our experiments.
The use of this function (as well as another test cost
functions) and algorithm setting guarantee that DE will
not converge quickly and thus its dynamics can be ob-
served and recorded longer time.

10D

D∑
i=1

x2i − 10 cos (2πxi) (1)

2.3 Complex network design
EAs work with population, i.e. set of vectors that are

called individuals, that are under mutual interactions.
It can be recorded like network (social, complex,...).
In CN then edges represent interactions between indi-
viduals, vertices represent individuals in a population,
and vertices properties give us information about indi-
viduals (i.e. quality, fitness, ...), e.g., DE with 50 indi-
viduals can be represented as CN with 50 vertices, and
degree property of node i tell us, how many individu-
als individual interacted with individual i. CN can be,
for example, created from DE dynamics so that in DE-
Rand1Bin for the creation of noise vector are required
three individuals i1, i2 and i3. With them and selected
individual i a trial vector is created. If cost value of this
vector is better than cost value of individual i this indi-
vidual is replaced with the trial vector and three edges
with weight equals to one from vertex i1, i2 and i3 are
added to vertex i. If the edge exists we just raise its
weight, Fig. 2 that finally lead to the emergence of net-
work, as visible in Fig. 4.

Figure 2. Conversion DE to CN

In such model, edges only raising its weight, but
in many real-world networks connection between two
vertices getting weaker, e.g., when for example ants
travel they are releasing pheromones and thus they are
creating roads. The pheromones are vaporized in the
time. Their roads create a network and in this network
edges are roads between two places and these roads are
as stronger as how many ants go over them. So if ants
stop walking over one road, this road disappear. In our
model is forgetting realized as removing 5 percent of
each weight after each 10th generation.
This is not the only model that can be use. We can cre-

ate CN differently or for other algorithm. Some ideas
were presented in (Pluhacek, Senkerik, Viktorin and
Zelinka, 2016), (Zelinka, 2016), (Zelinka et al., 2016).



2.4 Used complex network properties
In this article, all experiments are based on the prop-

erty called OutStrength. OutStrength of selected vertex
is given as the sum of edges weights outgoing from this
vertex. We can count OutStrength of vertex i according
to equation (2) where wij is edge weight between ver-
tex i and vertex j, and V represents number of vertices.

OutStrengthi =

V∑
j,i 6=j

wij . (2)

2.5 CML design
CN based on EA dynamics could be analyzed

(Skanderova and Fabian, 2015), (Davendra, Zelinka,
Metlicka, Senkerik and Pluhacek, 2014), (Senkerik
et al., 2016), or can be converted into CML. In the
CML the row can be understand the property of CN (in
our case OutStrength) or and this is another approach,
row reflect time evolution of the CN edge. To create
CML from CN is quite simple. As an interaction be-
tween vertices - individuals in evolution (i.e. weights
of edges) is ε connection transferring pining between
vertices (rows in CML) while vertex behavior of CN
in time is in fact captured like row in CML. Compar-
ing to the CML from school books (Schöll and Schus-
ter, 2008), this CML is much more complex, because
ε connections change in time its strength as well as
joined vertices, see Fig. 3. Beside this philosophy, CN
as CML can be visualized so that each row represent
one edge in the CN, Fig. 5. Both approaches has been
used here.
On Fig. 5 the CLM of all edges for DE in ver-

sion/strategy DERand1Bin is depicted. Changes on
edges during the time, during all generations, are visi-
ble. Each line represents one edge, so each line repre-
sents interactions between two selected individuals. On
lines 1 to 9, we can see edges from vertex number 1 to
all other vertices. On lines 11 to 19, we can see edges
from vertex 2 to all vertices. Black lines are separators,
and self-loops are not included. On this figure of CML
weights are represented by color. Maximal weight is
around the value of 10 and it is represented by yellow
color, and we can observe some yellow dots during the
algorithm run. These dots represent many positive in-
teractions between individuals connected by this edge
in a short time. Zero weight is represented by black
color, and we can see many zero weights between gen-
erations 4000 and 5000. During these generations, we
create only a few new better individuals.
Edges conversion into CML is better for a lower num-

ber of individuals. With a bigger number of individu-
als number of possible interactions growth, and a num-
ber of lines in CML growth too. As already suggested,
we can convert edges into lines of CML, or each line
of CML can represent selected property. For a bigger
number of individuals, we select the second option, as
we can see on Fig. 6. On this figure, we can see Out-
Strength CML of all vertices during the whole algo-

rithm for Rastrigin function. Strength is represented
by a color. Maximal strength is around value of 20
and it is represented by yellow color. Zero value is
represented by black color. We can see that maximal
strength reach individuals at the beginning of the al-
gorithm. Then after few generations, strength is for
all individuals mostly under the value of 10, and only
some individuals reach higher strength for several gen-
erations.

3 Results
3.1 Experiment 1
In order to control EA dynamics (via its CML), it is

important to realize, what the feedback and what in-
fluence EA dynamics is. CML is only the result of
EA and it only visualizes the progress of some prop-
erty of EA via CN. One possibility is to select individ-
uals with probability according to CML state and val-
ues. Individuals in DE in next generations will be se-
lected still randomly, but each with the different prob-
ability (based on CML values). We visualize in CML
OutStrengt, so we will select individuals according to
this property. The individual with bigger strength will
be selected more often than the individual with lower
strength. It can be stated, that individual i will be
selected with probability p according to equation (3).
Prop represents some CN property, in our case Out-
Strength.

pi =
Propi∑V

j,i 6=j Propj
(3)

If there is no edge in the graph, we will not be able
to select individuals according to this equation. Also if
some individuals reach zero strength, we will not able
to select them, so we add constant c to the equation, to
ensure, that each individual has at least small chance to
be selected (4).

pi =
c+ Propi

c ·NP +
∑V

j,i 6=j Propj
(4)

During our experiments, for demonstration, we set up
c = 1, but we can select any other number. If we se-
lect huge number, this version of DE will behave like
classical DE. If we select lower number, DE will se-
lect individuals according to CML, but with 0 value,
we can reach state, where we will not be ale to select
individuals.
Selection of the individuals with probability feedback

is created, and DE dynamics change in the next gener-
ations according to its CML. CML of such version we
can see in Fig. 7. According to the classical version
of DE, strength reaches values of 100 for some individ-
uals. Maximal value for classical version were 20, so
some individuals reach 5 times bigger strength. In Fig.



Figure 3. Principal conversion from CN to CML via pendulum analogy. An interaction between vertices (individuals in evolution) is ε connec-
tion transferring pining, vertex behavior of CN = row in CML.

Figure 4. An example of network based on DERand1Bin dynamics

8 we can see same CML, but the range is changed. All
values higher than 20 are represented by yellow color.
The difference between the uncontrolled DE and DE
with feedback is now more visible, see Fig. 6. It is
visible that individuals reach much higher strength on

version of the algorithm with feedback. Many individ-
uals have strength higher than 20 during the algorithm
for a long time and for many generations.



DERand1Bin - Rastrigin function

"out3_1.txt" u ($2):($1+1):($3) matrix
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Figure 5. CML of all edges (interactions between individuals) for DERand1Bin

DERand1Bin - Rastrigin function

"out3_2.txt" u ($2):($1+1):($3) matrix
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Figure 6. OutStrength CML of all vertices (individuals) for DERand1Bin

DERand1Bin with feedback - Rastrigin function
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Figure 7. OutStrength CML of all vertices (individuals) for DERand1Bin with feedback

3.2 Experiment 2

The second experiment was focused on question
whether DE can be controlled through CML similarly
as in (Zelinka et al., 2010). CML can be also classi-
cally controlled as was described in (Schöll and Schus-
ter, 2008). In that case of CML control suitable control
inputs, so-called pinning values, has to be calculated.
Each individual i.e. each line of CML can be affected
by pinning input. This input changes the probability
of selecting an affected individual, and the algorithm
changes its behavior. With added pinning we can select

individuals according to equation (5). Pingi is control
input for individual i. Other variables are same as in
previous equations.

pi =
c+ Propi · Pingi

c ·NP +
∑V

j,i 6=j Propj · Pingj
(5)

With these pinning inputs we can affect the algorithm.
On Fig. 9 is captured CML of DE with pings that
has been periodically changed between sites. After
each 500 generations a ping has been changed ran-



DERand1Bin with feedback - Rastrigin function
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Figure 8. OutStrength CML of all vertices (individuals) for DERand1Bin with feedback - smaller range

DERand1Bin with feedback and random pings - Rastrigin function
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Figure 9. CML of DERand1Bin with feedback and random pings

DERand1Bin with feedback and random pings - Rastrigin function
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Figure 10. CML of DERand1Bin with feedback and random pings - smaller range

domly in the interval [0, 3], thus, the dynamic of DE
also changed and the maximal strength raise again. The
maximal value of strength is now 450, so much bigger.
In more close look, we can see how algorithm change
its behavior after change of pings. For better compar-
ison the range of this CML has been changed, so all
values higher that 20 are represented by yellow color.
This CML with change range as visible on Fig. 10.

3.3 Experiment 3
To show, that the dynamic of algorithm change, the

last simple experiment was done. In this experiment,
individuals were divided into two groups, and one
group was excited by strong ping = 3 and the sec-
ond group inhibited by weak ping = 0.1. After each
500 generations the ping between those two groups
has been exchanged. Result of this experiment is on

Fig. 11. We can see, that ping really changes the al-
gorithm dynamics. CML behavior was divided into
two groups, one group with strong pings and one group
with weak pings, after each 500 generations, when the
pings changed, the groups behavior also change.

4 Conclusion
In this paper, is reported progress on the research of

three areas evolution algorithms, complex network, and
CML. Possibility on control of EAs dynamics via its
CN and CML visualization was sketched and three sim-
ple experiments were performed in order to show that
CML derived from EAs dynamics behave in the same
way as the classical CML and thus it shall be control-
lable, even by unconventional methods as reported in
(Zelinka, 2009) or in (Schöll and Schuster, 2008).
Conversion of EA into a CN and to the CML has been



DERand1Bin with feedback and 01 pings - Rastrigin function
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Figure 11. CML of DERand1Bin with feedback and pings on two groups

revised and reported. The control of DE, which select
individuals according to its CML has been discussed.
This gives us the opportunity to control DE (generally
any EA), that can be controlled through CML by its
control inputs - pinning sites. We also showed how
such CML looks like on selected property called Out-
Strength in each version of DE (classical DE, DE with
feedback, DE with random pings and DE with pings on
two groups).
Based on this, CML can be created according to many

other CN properties like degree, closeness centrality,
clustering coefficient and many others. Also different
models of CN and different algorithms can be used. An
investigation on how various type of pining can affect
the algorithm and its performance can be further done.
Not only for CML with OutStrength, but also for other
properties as well.
The future research will be focused on full control of

EA dynamics in the same manner as in (Zelinka, 2009),
(Schöll and Schuster, 2008).
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