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Abstract
Dynamics of non-stationary processes that minimize

the Kullback–Leibler divergence (follow the minimum
of the relative entropy principle) are considered. A set
of equations describing the system dynamics under the
mass conservation and energy conservation constraints
is derived. The existence and uniqueness of solution
are established, asymptotic stability of the equilibrium
is proved. Equations are derived based on the Speed-
Gradient (SG) principle originated in the control the-
ory.
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1 Introduction
In 1951, Solomon Kullback and Richard Leibler

[Kullback and Leibler, 1951] introduced a measure of
similarity between two discrete probability distribu-
tions P and Q as

D(P,Q) =
∑
i

P (i) ln

(
P (i)

Q(i)

)
. (1)

Typically P represents the actual distribution of data
or observations while Q represents a theory, model or
approximation of P .
This measure is called Kullback–Leibler (KL) diver-

gence and it is also known as information divergence
or relative entropy. It has found numerous applications
in many fields of science and sometimes is considered
as one of the most general concepts of modern science
[Pavon and Ticozzi, 2005].
The KL divergence is used in problems of informa-

tion theory, mathematical statistics and probability the-
ory (e.g. The Central Limit Theorem [Barron, 1986]).
It is also used in crystallography to ensure chemical

and structural integrity of the refined models [Murshu-
dov, Skubak and Lebedev, 2011]. In geoscience the KL
divergence is applied for automatic labeling of geospa-
tial objects [Akcay and Aksoy, 2008] and for automatic
change detection in multitemporal synthetic aperture
radar images [Inglada and Mercier, 2007]. It is also
actively used in signal processing and pattern recogni-
tion [Georgiou, 2002; Georgiou and Lindquist, 2003].
In [Kim and Kang, 2007] the KL divergence is applied
for unsupervised texture segmentation problem.

The concept of relative entropy comes from statistical
mechanics. The problem of minimizing of the relative
entropy has been extended by Solomon Kullback [Kull-
back, 1959] and Edwin Jaynes [Jaynes, 1989]. Despite
a large number of publications studying the minimum
of relative entropy, the dynamics of evolution and tran-
sient behavior of the physical systems are still not well
investigated.

In this paper we propose a hypothesis how a sys-
tem could evolve to the state with minimum value of
the KL divergence (relative entropy). based on the
Speed-Gradient (SG) principle [Fradkov, 1991; Frad-
kov, Miroshnik and Nikiforov, 1999; Fradkov, 2005;
Fradkov, 1979] originated in the control theory.

The SG principle has already been successfully ap-
plied in [Fradkov, 2008] to derive transient dynam-
ics for a system driven by maximum entropy princi-
ple. Applicability of the SG principle is experimen-
tally tested in [Fradkov and Krivtsov, 2010] for the
systems of finite number of particles simulated with
the molecular dynamics method. Continuous probabil-
ity distributions are considered in [Fradkov and Sha-
lymov, 2015a]. The dynamics of discrete systems for
the Tsallis entropy is discussed in [Shalymov and Frad-
kov, 2015b]. Continuous Tsallis entropy is investigated
in [Shalymov, 2016]. The Rényi entropy is investi-
gated from the SG-principle perspective in [Shalymov
and Fradkov, 2016b]. Applicability of SG-principle
to general thermodynamic systems is considered in
[Khantuleva and Shalymov, 2017]. State-of-the-art of
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the whole area of cybernetical physics is presented in
[Fradkov, 2017].
In this paper an approach proposed in [Fradkov, 2008;

Fradkov and Shalymov, 2015a] for Shannon entropy is
generalized to the case of relative entropy. A set of
equations describing dynamics of non-stationary (tran-
sient) states and describing a way and trajectory of the
system that minimizes its relative entropy is derived.
The evolution law of the system in general form is for-
mulated as:

Ṗ (t) = −γ(I −Ψ)A(t), (2)

where A(t) = (ln p1(t)
p∗1

, . . . , ln pm(t)
p∗m

)T , pi(t) is prob-
ability of the system location in state i for time t, p∗i is
desired probability for state i, I is an identity matrix,
Ψ is a symmetric matrix that depends on constraints
imposed, γ > 0 is a constant gain.
This paper extends the number of applications of the

SG-principle to entropy-driven systems by investiga-
tion of the KL divergence.
The paper is organized as follows. The next section

briefly formulates the SG-principle The 3th section de-
rives dynamics equation for the mass conservation con-
straint. The existence and uniqueness of solution is
verified, equilibrium stability is proved. The 4th sec-
tion contains results from 3th section extended to the
energy conservation constraint.

2 Speed-Gradient Principle
Let us consider a category of physical systems which

dynamics is described by the system of differential
equations

ẋ = f(x, u, t), (3)

where x ∈ Cn is the system state vector, u is the vector
of input (free) variables t ≥ 0. The problem is to de-
rive the law of variation (evolution) of u(t) that satisfies
some criterion of “natural” behavior of the system.
A typical approach to derive such a criterion from

variational principles usually starts with specifying
some goal functional Q (x(t), t) (for example, the ac-
tion functional of the least action principle [Lanczos,
1962]). Functional minimization defines probable tra-
jectories of the system {x(t), u(t)} as points in the cor-
responding functional space.
The SG law of dynamics is formulated as follows:

u = −Γ∇uQ̇, (4)

where Q̇ is a rate of change of the goal functional along
the trajectory of the system (3), i.e. the speed Q̇ = dQ

dt .
We use application of the SG principle in the simplest

(yet the most important) case where a category of mod-
els of the dynamics (3) is specified as the relation:

ẋ = u. (5)

The relation (5) just means that we are deriving the
law of change of the state velocities. In accordance
with the SG principle, the goal functional Q (x(t), t)
needs to be specified first. It should be based on physics
of a real system and reflect its tendency to decrease the
current value. After that, the law of dynamics can be
expressed as (4).

3 Minimization of the KL Divergence with the
Speed-Gradient Method

Let us consider a discrete system with a set of m
possible states s1, . . . , sm. The system evolves some-
how with probability distribution over states P (t) =
{p1(t), . . . , pm(t)}, where pi(t) is a probability of the
system location in state i. P ∗ = {p∗1, . . . , p∗m} is a
desired distribution. Both P (t) and P ∗ satisfy the nor-
malization conditions:

m∑
i=1

pi(t) = 1, ∀t,
m∑
i=1

p∗i = 1. (6)

As a goal functional Q for SG method we use the KL
divergence that can be formulated as

Q(P, P ∗) = D(P (t), P ∗) =

m∑
i=1

pi(t) ln
pi(t)

p∗i
. (7)

Let us define a law of system dynamics as

ẋ = u(t), x = p(t). (8)

We have to define a function u(t).
According to the SG principle a rate of the KL di-

vergence change (7) has to be calculated first. Then a
gradient of a rate for function u has to be found. And
finally, control parameters has to be defined. These pa-
rameters are proportional to projection of gradient on a
surface of bounds (6).
First we calculate the rate of change for Q:

Q̇ =

m∑
i=1

(
ṗi(t) ln

pi(t)

p∗i
+ pi(t)

p∗i
pi(t)

ṗi(t)

)
=

m∑
i=1

ṗi(t)

(
ln
pi(t)

p∗i
+ 1

)
. (9)
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The constraint (6) implies that

m∑
i=1

ṗi(t) =

m∑
i=1

ui(t) = 0, ∀t. (10)

Based on (10) we get

Q̇ =

m∑
i=1

ṗi(t) ln
pi(t)

p∗i
=

m∑
i=1

ui(t) ln
pi(t)

p∗i
.

Calculating the speed-gradient of the function we find
that ∂Q̇

∂ui
= ln pi(t)

p∗i
.

The speed-gradient principle of motion according to
(4) forms
ui(t) = −γ(ln pi(t)

p∗i
) + λ, where γ is a positive scalar

value and λ is Lagrange multiplier selected to satisfy
the constraint (10).

m∑
i=1

(
−γ ln

pi(t)

p∗i
+ λ

)
= 0⇒ λ =

γ

m

m∑
i=1

(
ln
pi(t)

p∗i

)
.

(11)
Final system dynamics equation is

ṗi = γ

− ln
pi(t)

p∗i
+

1

m

m∑
j=1

ln
pj(t)

p∗j

 . (12)

Eq. (12) can be represented in more general form

˙P (t) = −γ(I −Ψ)A(t), (13)

where A(t) = (ln p1(t)
p∗1

, . . . , ln pm(t)
p∗m

)T , pi(t) is prob-
ability of the system location in state i, p∗i is desired
probability for state i, I is an identity matrix, Ψ is a
symmetric matrix m×m where each element is equal
to 1

m , i.e. ψij = 1
m .

Equations (12) defines the dynamics of the transient
regime in the system. Its meaning is the movement of
the system state in the direction of the KL divergence
minimization (i.e. the equality between pi(t) and given
distribution p∗i ) with maximum possible rate. In equi-
librium state the expression ui = 0, ∀i is true. It

means that
m∑
i=1

ln pi(t)
p∗i

= m ln
pj(t)
p∗j

. This is possible

under condition pi(t)
p∗i

=
pj(t)
p∗j

for ∀i, j.

3.1 Solution Existence
Let us show the existence of a solution in (12). We

choose i0 :
pi0 (0)

p∗i0
= mini

pi(0)
p∗i

and suppose that

pi0 (0)

p∗i0
> 0. Consider

d(
pi0

(t)

p∗
i0

)

dt :

ṗi0(t)

p∗i0
=

γ

p∗i0

 1

m

m∑
j=1

ln
pj(t)

p∗j
− ln

pi0(t)

p∗i0

 =

γ

mp∗i0

ln

m∏
j=1

pj(t)
p∗j(

pi0 (t)

p∗i0

)m
 =

γ

mp∗i0

ln

m∏
j=1

(
pj(t)
p∗j

)

(
pi0 (t)

p∗i0
)

 .

(14)

Since pj(t)
p∗j

/
pi0 (t)

p∗i0
≥ 1 ∀j is true, then

γ
mp∗i0

(
ln

∏m
j=1 pj(t)∏m
j=1 p

∗
j

(
p∗i0
pi0 (t)

)m)
≥ 0, i.e. the ratio

pi0 (t)

p∗i0
does not decrease and therefore does not tend

to zero. Hence the right hand sides of (12) are smooth
and bounded the solution of equation (12) exists for all
t > 0.

3.2 Equilibrium Stability
Let us investigate a stability of obtained equation (12).
Consider an entropy-like function of Lyapunov

V (p) = Q(p, p∗)−Qmin(p, p∗). (15)

V (p) ≥ 0 since the KL divergence is always non-
negative [Kullback and Leibler, 1951].
Let us find a derivative of function (15)

V̇ (p) =

m∑
i=1

ṗi(t)

(
ln
pi(t)

p∗

)
=

γ

m

( m∑
i=1

ln
pi(t)

p∗i

)2

−m
m∑
i=1

(
ln
pi(t)

p∗i

)2
 .

(16)

We will use the Cauchy-Bunyakovsky-Schwarz
(CBS) inequality for vectors f = (f1, . . . , fm)T and
g = (g1, . . . , gm)T :

(∑
i

figi

)2

≤

(∑
i

(fi)
2

)(∑
i

(gi)
2

)
. (17)

Taking into account that a scalar value γ is positive
and using vectors f = (ln p1(t)

p∗ , . . . , ln pm(t)
p∗ ) and

g = (1, . . . , 1). we get that V̇ (p) ≤ 0. It is known
that equality in the CBS inequality is achieved when
multiplicity occurs, i.e. f = αg. In our case V̇ (p) = 0

is true only when ln pi(t)
p∗ = α ∀i, which means that
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pi(t)
p∗i

=
pj(t)
p∗j

for ∀i, j, i.e. in the state of equilibrium.
Thus, the law (12) provides a global asymptotic stabil-
ity for the minimum of KL divergence.

4 Total Energy Constraint
Let us consider a system with additional constraint for

the total energy conservation. We will consider a con-
servative case when energy does not depend on a time.
The new constraint may be described as

E =

m∑
i=1

pi(t)Ei, E =

m∑
i=1

p∗iEi, (18)

where Ei is the energy of a system in the state i, E is
the common energy of a system.
We consider a system ˙p(t) = u(t). For this system the

set of constraints can be defined as

m∑
i=1

uiEi = 0,

m∑
i=1

ui = 0. (19)

The problem is to find an operator u which satisfies
both constraints (6) and (18) at any time t. The evolu-
tion law should have the form

ui(t) = −γ
(

ln
pi(t)

p∗i

)
+ λ1Ei + λ2, i = 1, . . . ,m,

(20)
where λ1, λ2 are Lagrange multipliers determined by
substitution of (20) into (19).
To simplify further equations let us denote Ai(t) =

ln pi(t)
p∗i

. It follows from the condition (6) that∑m
i=1 ui = 0 ⇒ γ

∑m
i=1Ai(t) = λ1

∑m
i=1Ei +

λ2m⇒ λ2 =
γ
∑m

i=1 Ai(t)−λ1

∑m
i=1 Ei

m .

From the second condition (18) we get that

− γ
m∑
i=1

Ai(t)Ei + λ1

m∑
i=1

E2
i + λ2

m∑
i=1

Ei = 0⇒

− γ
m∑
i=1

Ai(t)Ei + λ1

m∑
i=1

E2
i +

(
γ
∑m
i=1Ai(t)− λ1

∑m
i=1Ei

m

) m∑
i=1

Ei = 0⇒

λ1 = γ
m
∑m
i=1Ai(t)Ei −

∑m
i=1Ai(t)

∑m
i=1Ei

m
∑m
i=1E

2
i − (

∑m
i=1Ei)

2 .

Now substitute expression for λ1 into expression for

λ2 obtained from the first constraint (6):

λ2 =
γ

m

m∑
i=1

Ai(t)−

γ

m

m
∑m
i=1Ai(t)Ei + (

∑m
i=1Ei)

2∑m
i=1Ai(t)

m
∑m
i=1E

2
i − (

∑m
i=1Ei)

2 ⇒

λ2 = γ

∑m
i=1Ai(t)

∑m
i=1E

2
i −

∑m
i=1Ai(t)Ei

∑m
i=1Ei

m
∑m
i=1E

2
i − (

∑m
i=1Ei)

2 .

Finally we get for λ1 and λ2 :

 λ1 = γ
m

∑m
i=1 ln

pi(t)

p∗
i
Ei−

∑m
i=1 ln

pi(t)

p∗
i

∑m
i=1 Ei

m
∑m

i=1 E
2
i −(

∑m
i=1 Ei)

2

λ2 = γ
∑m

i=1 Ai(t)
∑m

i=1 E
2
i −

∑m
i=1 Ai(t)Ei

∑m
i=1 Ei

m
∑m

i=1 E
2
i −(

∑m
i=1 Ei)

2

(21)
Given (21) we obtain the common equation of system

dynamics based on (20):

ui(t) = −γ
(

ln
pi(t)

p∗i

)
+γm∑m

i=1 ln pi(t)
p∗i

Ei −
∑m
i=1 ln pi(t)

p∗i

∑m
i=1Ei

m
∑m
i=1E

2
i − (

∑m
i=1Ei)

2

Ei+

γ

∑m
i=1Ai(t)

∑m
i=1E

2
i −

∑m
i=1Ai(t)Ei

∑m
i=1Ei

m
∑m
i=1E

2
i − (

∑m
i=1Ei)

2 .

(22)

Equations (22) are defined when m
m∑
i=1

E2
i −(

m∑
i=1

Ei

)2

6= 0. It is not true only if all energies Ei

are equal (a confluent case). The existence of solution
for (22) is possible to show by the similar way as it was
shown for the case of one constraint.
Law of evolution (22) can be represented in abbrevi-

ated form:

Ṗ = −γ(I −Ψ)A(t), (23)

where A(t) = (ln p1(t)
p∗1

, . . . , ln pm(t)
p∗m

)T , pi(t) is prob-
ability of the system location in state i, p∗i is desired
probability for state i, I is an identity operator, Ψ is a
symmetric m×m matrix defined as follows

ψij =
1

m
+

ẼiẼj

‖E‖2 − 1
m (1E)2

,

where Ẽi = Ei + 1
m

∑m
i=1Ei, 1 = (1, . . . , 1)T and

E = (E1, . . . , Em)T is a vector of energies.
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4.1 Stability of Equilibrium
Further we examine the equilibrium of obtained equa-

tion (22). Let us find the equilibrium state of the system
(20) and investigate its stability. In the state of equilib-
rium it is true that:
γ(− ln pi(t)

p∗i
) + λ1Ei + λ2 = 0, i = 1, . . . ,m.

Thus,

pi(t) = Ce−µEi , (24)

where µ = −λ1Ei

γ and C = p∗i exp(
λ2

γ ). After substi-
tution λ1 and λ2 multiplier γ is reduced, i.e. state of
equilibrium does not depend on γ. Value of C satisfies

the normalization condition C−1 = m
m∑
i=1

e−µEi . It

is possible to show that the obtained value delivers the
minimum of the KL divergence.
Let us show that function V (p) (15) is the Lyapunov

function for the system (22) and that the state of equi-
librium is the only one stable state in the non-confluent
case. We calculate the derivative of functional (15) for
the system (22):

V̇ =

m∑
i=1

uiAi(t) =

m∑
i=1

(
−γAi(t)2 + λ1EiAi(t) + λ2Ai(t)

)
=

−
m∑
i=1

γAi(t)
2+(

γ

∑m
i=1Ai(t)

∑m
i=1E

2
i −

∑m
i=1Ai(t)Ei

∑m
i=1Ei

m
∑m
i=1E

2
i − (

∑m
i=1Ei)

2

)
(

m∑
i=1

EiAi(t) +

m∑
i=1

Ai(t)

)
.

Let us denote the expression m
∑m
i=1E

2
i −

(
∑m
i=1Ei)

2
= B. Then we get

V̇ =
γ

B

(
m∑
i=1

Ei

)2 m∑
i=1

Ai(t)
2

− γ

B

m m∑
i=1

E2
i

m∑
i=1

Ai(t)
2 +m

(
m∑
i=1

Ai(t)Ei

)2


− γ
B

2

m∑
i=1

Ai(t)

m∑
i=1

Ei

m∑
i=1

Ai(t)Ei+

γ

B

( m∑
i=1

Ai(t)

)2 m∑
i=1

E2
i

 .

(25)

Now let us multiply (25) by m
m and for the expres-

sion in parentheses add and subtract a new member
(
∑m
i=1Ei)

2
(
∑m
i=1Ai(t))

2:

V̇ =
γ

m ∗B

(
m

m∑
i=1

EiAi(t)−
m∑
i=1

Ei

m∑
i=1

Ai(t)

)2

− γ

m ∗B

m m∑
i=1

Ai(t)
2 −

(
m∑
i=1

Ai(t)

)2


m m∑
i=1

E2
i −

(
m∑
i=1

Ei

)2
 .

(26)

Let us introduce a new scalar product function for two
vectors f = (f1, . . . , fm)T and g = (g1, . . . , gm)T as

〈f, g〉 = m

m∑
i

figi −
m∑
i

fi

m∑
i

gi (27)

Properties of the scalar product (27) with proofs are
provided in section A.
As (27) is scalar product then the CBS inequality (17)

is true for it:

〈f, g〉2 ≤ 〈f, f〉〈g, g〉 (28)

Due to the properties of (27) (see section A) it can be
shown that an equality in (28) takes place only when
∃λ, µ ∈ R : f = λg + µ.
Using inequality (28) for vectors f = (A1, . . . , Am)T

and g = (E1, . . . , Em)T we get for (26) that V̇ (β) ≤
0. And V̇ (β) = 0 occurs for the only one case when
∃λ, µ ∈ R : Ai = λEi + µ for all i. Due to (20) at the
equilibrium state of the system the following equalities
hold:

γ(−Ai(t)) + λ1Ei + λ2 = 0, i = 1, . . . ,m. (29)

Which means that for equilibrium state the final distri-
bution of points satisfy the equation

Ai(t) = λEi + µ,

where λ = λ1

γ , µ = λ2

γ for λ1 and λ2 defined in (21).
It follows that there is only one distribution which cor-

responds to the equilibrium state of the system (20).

5 Numeric Experiments
Consider a discrete system which consists ofN identi-

cal particles distributed over m cells. Particles can mi-
grate from one cell to another. In case when the mass
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a. Dynamics of distributions

b. Dynamics of control variables

Figure 1: Dynamics of the system with 50 states and
uniform desired distribution

conservation constraint holds it is true that
∑m
i=1Ni,

which can be normalized as
∑m
i=1

Ni

N = 1. State si of
this system denotes a number of particles contained in
the cell with number i.
Energy conservation constraint can also be repre-

sented as

m∑
i=1

Ni
N
Ei = E.

Our goal is to control the behavior of the system so as
to achieve the desired (given apriori) distribution in a
finite time. In Sections 3 and 4 we have derived equa-
tions (12) and (22) which describe dynamics of the sys-
tem under a given set of constraints.
Consider a system with two constraints where desired

distribution is set as uniform distribution and the num-
ber of states (cells) is set as 50. As initial distribution
we take any non-degenerate one. En example of initial
distribution for the system with 10 states is shown in
Figure (3). Energy levels are set as Ei = i.
Evolution dynamics of corresponding distributions

(i.e. how the number of particles contained in one cell
change in time) is shown on Figure (1.a).
Figure (1.b) shows evolution of control variables.
Diagram of the KL Divergence changing in time is

shown in Figure (2).
From Figures (1) and (2) we see that the KL Diver-

gence goes to zero together with control variables as
the desired (goal) distribution is reached.

Figure 2: KL Divergence dynamics of the system with
50 states and uniform desired distribution

Figure 3: Initial distribution for 10 states

Figure 4: Initial distribution for 10 states

Consider the system with 10 states and initial (non-
uniform) distribution shown in Figure (3).
Let us set the desired distribution as non-uniform dis-

tribution shown in Figure (4). Dynamics of system for
this desired distribution is shown in Figures (5) and (6).
Diagram of the KL Divergence changing in time for

non-uniform initial distribution is shown in Figure (6).

These experiments with artificial data confirm theo-
retical results obtained in Sections 3 and 4. Results for
the case when the system evolves under only one con-
straint (i.e. the energy constraint is not considered) are
almost the same.

6 Conclusions
The KL divergence is widely used in information the-

ory, signal processing, pattern recognition and many



86 CYBERNETICS AND PHYSICS, VOL. 6, NO. 2

a. Dynamics of distributions

b. Dynamics of control variables

Figure 5: Dynamics of the system with 10 states and
non-uniform desired distribution

Figure 6: KL Divergence dynamics of the system with
10 states and non-uniform desired distribution

other areas. We have derived a set of equations that
determine the dynamics of non-stationary (transient)
states and describe a way and trajectory of the system
that tends to the state with minimum of the KL diver-
gence (i.e. relative entropy).
The key point of our approach is using the SG-method

with the goal function chosen as the relative entropy of
the process. The results are formulated in Eq. (12),
(22) and in a more general form in (13),(23). We have
shown the existence of solution for the system (12). We
have established the stability of equilibrium and have
proved that there is only one distribution that corre-
sponds to the state of equilibrium. Mass conservation
and energy conservation constraints were considered.
The physical meaning of obtained laws of system’s

dynamics is moving along the direction of the KL di-
vergence minimization with the highest possible rate.
These laws allow forecasting the direction of evolution
of the system and can be useful to study dynamics of
non-equilibrium systems of both macroscopic and mi-
croscopic world.
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APPENDIX

A Extra Materials
Here we provide several properties of the functional
〈f, g〉 for two vectors f = (f1, . . . , fm)T and g =

(g1, . . . , gm)T from the section 4.1:

〈f, g〉 = m

m∑
i

figi −
m∑
i

fi

m∑
i

gi. (30)

Property 1. Linearity in the first argument
∀f, g, h ∈ Rm, ∀λ ∈ R 〈λf + g, h〉 = 〈λf, h〉 +
〈g, h〉.

Proof Using the linearity of the sum we obtain

〈λf + g, h〉 = m

m∑
i

(λfi + gi)hi

−
m∑
i

(λfi + gi)

m∑
i

hi =

=

(
m

m∑
i

λfihi −
m∑
i

λfi

m∑
i

hi

)

+

(
m

m∑
i

gihi −
m∑
i

gi

m∑
i

hi

)
=

= 〈λf, h〉+ 〈g, h〉.

Property 2. Symmetry
∀f, g ∈ Rm 〈f, g〉 = 〈g, f〉.

Proof

〈f, g〉 = m

m∑
i

figi −
m∑
i

fi

m∑
i

gi =

m

m∑
i

gifi −
m∑
i

gi

m∑
i

fi = 〈g, f〉. (31)

Property 3. Positiveness and the condition of zero
value
∀f ∈ Rm 〈f, f〉 ≥ 0, 〈f, f〉 = 0⇔ f = µ = const.

Proof Let us consider a scalar multiplication. CBS
(17) comes true for it: |(f, g)|2 ≤ (f, f)(g, g) and
|(f, g)|2 = (f, f)(g, g) ⇔ ∃µ ∈ R : f = µg. Sub-
stituting g = (1, . . . , 1)T we get

∣∣∣∣∣
m∑
i

fi

∣∣∣∣∣
2

≤ (f, f)

m∑
i

1 = m

m∑
i

f2i .

Thereby it is true that 〈f, f〉 = m
∑m
i f

2
i −

(
∑m
i fi)

2 ≥ 0. Moreover 〈f, f〉 = 0 ⇔ |
∑m
i fi|

2
=

(f, f)(1,1)⇔ ∃µ ∈ R : f = µ1, i.e. f = µ.


