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Abstract
We present here an example of how to synchronize

physical systems inspired in biological models using
the Poincaré coupling. With this type of coupling one
is able to study the synchronization phenomena among
coupled systems by means of a detection of a thresh-
old without disrupting the monitored system. The idea
is to generate a coupling signal, triggered in discrete
periods of time as a response to the crossing events of
the monitored systems orbit with the previously defined
Poincaré plane. This type of coupling comes to satisfy
the needs of forcing a system for some specific inter-
vals of time, for example periodic, chaotic or random
events of triggering. In order to detect if the systems are
synchronized we use two methods: i) the auxiliary sys-
tem method measuring the Euclidean distance among
the forced systems, ii) the maximum conditional Lya-
punov exponent. An illustrative example is given by
computer simulations in order to demonstrate the ap-
proach proposed.
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1 Introduction
The idea of forcing a system by means of some cou-

pling signal in order to impose a desired behavior, has
been of great interest for the scientific community. The
applications may diverge in a vast range of areas, since
almost everything in nature and man-made artifacts
contain coupled subsystems: the cells in the human
body, the planets in the universe, cell phones in com-
munication systems, the metronomes on a boat, among
others.
Since the report of chaotic system from Lorenz

[Lorenz, 1963], many studies have been made in or-

der to synchronize or suppress the chaotic behavior
[Chen and Dong, 1992; Chen and Dong, 1993; Kap-
itaniak, 1995; Aguilar-Lópezet. al., 2010; Sambuco,
Sanjuán and Yorke 2012]. One of the most common
method to do so was the OGY method [Ott, Grebogi
and Yorke, 1990]. In which the dynamics of a chaotic
system is monitored, and each time that the orbit of this
system diverge form a preestablished vicinity, the sys-
tem is forced to returned to that vicinity. A recent cou-
pling method was proposed in [Ontañón-Garcı́aet. al.,
2013]. This method is based on the idea that a system
is monitored by a Poincaré plane previously defined,
and when the orbit of this system crosses the plane a
coupling signal is generated and applied to the forced
system. The main difference between this two methods
is that the OGY monitors and perturbs the same sys-
tem, while the Poincaré coupling monitors one master
system, but perturbs a different forced system.

Two important feature arise from this method: i) The
monitored system is never perturbed, as only its dy-
namic is being detected. ii) Time is considered in the
coupling signal, meaning that if the monitored system
presents a periodic orbit, the coupling will be applied
periodically, if the system is chaotic, then the coupling
will be applied chaotically in discrete events of time,
respectively. This attends to the needs of some bio-
logical systems, in which the time is important to con-
sidered in order to induced an specific behavior. For
example the pancreaticβ cells synchronize at specific
periods of time by the increase or decrease of sub-
stances such as intracellular calcium [Ontañón-Garcı́a
and Campos-Cantón, 2013]. It has also been dis-
covered that this particular biological system presents
chaotic behavior when coupled in the cluster of cells
[Lebrun and Atwater, 1985].

Taking this in consideration, we based this work on
the Poincaré coupling, and present an approach on how
to apply a coupling signal to the biological systems of
the β cell described by mathematical equations. To
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do so we considered the benchmark chaotic systems
Rössler and Lorenz as the monitored systems, in or-
der to generate a coupling signal and apply it in chaotic
discrete events of time.
This work is organized as follows: In the second sec-

tion, we make a brief description of the Poincaré cou-
pling method and the benchmark systems used as moni-
tored systems. The third section describes the unidirec-
tional coupling used in the experiment along with the
model of the mathematicalβ cell system. In the fourth
sections are the numerical results of the computer sim-
ulations. Conclusions are made in the last section.

2 Preliminaries on Poincaŕe Plane
Here we make a brief description of the Poincaré plane

as defined by [Ontañón-Garcı́aet. al., 2013]. An au-
tonomous system described as:

x′ = F (x), F : Rm → Rm (1)

is being monitored by a Poincaré planeΣ :=
{(x1,x2,x3) : α1x1+α2x2+α3x3+α4 = 0} where
α1, . . . , α4 ∈ R are coefficients of a hyperplane equa-
tion whose values are considered arbitrarily according
to the following discussion. We are interested in the
crossing events of the trajectory of the monitored sys-
tem Eq. (1) restricted to the projectionAx with Σ, cap-
tured by the points{ϕt0

m(x0), ϕ
t1
m(x0), ϕ

t2
m(x0), . . .} ∈

Σ at each crossing event. Whereϕti
m(x0) is the flow

restricted toAx. Therefore, we can specify the follow-
ing time series∆x0

= {t0, t1, t2, . . .}, which depends
on the initial conditions of the system in Eq. (1). The
location of the plane must be located in order to meet
the conditionAx

⋂

Σ 6= ∅, assuming that at least one
crossing event at timeti exists. Throughout this work
we have focused on the crossing events of the trajec-
tory of the monitored system withΣ in only one di-
rection. So the time series∆x0

contains each crossing
event that satisfydx1

dt
> 0. Following the above discus-

sion, we define a coupling signal as follows:

ξ(t) = Ae−τ(t−ti), (2)

whereA ∈ R is the amplitude of the signal and0 ≤
τ ∈ R represents an underdamping factor which allows
us to modulate the signal. Therefore the underdamped
signal is triggered with each crossing event of Eq. (1)
with Σ.

2.1 Monitored Systems
Two benchmark chaotic systems are considered in this

article as the monitored systems. The Rössler system
given by:

ẋ1R = −x2R − x1R,
ẋ2R = x1R − 0.2x2R,
ẋ3R = 0.2 + x3R(x1R − 5.7),

(3)
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Figure 1. a) Projection of the monitored a) Rössler system onto the

plane(x1R, x2R), b) Lorenz system onto the plane(x1L, x2L).
Both systems are intersected by the Poincaré planeΣR andΣL,

respectively marked in green. The points of each crossing event

{ϕt0
m(x0), ϕ

t1
m(x0), ϕ

t2
m(x0), . . . } are marked with asterisk.

wherex1R, x2R andx3R are the states of the system.
Figure 1 a) shows a projection of the Rössler system
onto the plane(x1R, x2R) intersected by the Poincaré
plane withα1 = 0.5934, α2 = −1.1636, α3 = 0, α4 =
−2.4068marked with green, and all the crossing events
ti of each intersection of the Rössler system with the
planeΣR are marked with asterisk. The Lorenz system
is given by:

ẋ1L = 10(x2L − x1L),
ẋ2L = 25x1L − x2L − x1Lx3L,
ẋ3L = x1Lx2L − 8/3x3L,

(4)

wherex1L, x2L andx3L are the states of the system.
Figure 1 b) shows a projection of the Lorenz System
onto the plane(xL, yL) intersected by the Poincaré
plane with α1 = −0.179, α2 = −0.1739, α3 =
0, α4 = 0.0246marked with green, and all the crossing
eventsti of each intersection of the Lorenz system with
the planeΣL are marked with asterisk.

3 Unidirectional Coupling
Throughout the work we will consider a unidirectional

coupling among the monitored system and the forced
system. Since some of the states of the monitored sys-
tem are involved in the coupling, then this system is
also a master system. The forced system takes the
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Figure 2. Projection of theβ cell system from Eq.(6) onto the

(y1, y2) plane, without coupling

form:

y′ = G(x,y), G : Rm ×Rn → Rn (5)

where y ∈ Rn stands for the state vector of the
slave system, andG(·) is the dynamics of the system
(5). Here we considered the mathematical model of a
single cell coupled in a cluster of cells described by
[Pernarowski, 1998], which is given as follows:

ẏ1 = ay31 + by21 + cy1 − y2 − y3,
ẏ2 = dy31 + by21 + ey1 − y2 − 3,
ẏ3 = fy1 + gy3 + h,

(6)

wherey1 is the membrane potential,y2 is a channel
activation parameter for the voltage-gated potassium
channel, andy3 are concentrations of agents which reg-
ulate the BEA, such as intracellular calcium, concentra-
tion of calcium in the endoplasmic reticulum and ADP.
Herea = −1/12, b = 3/8, c = 37/64, d = 13/12,
e = −155/64, f = 1/100, g = 477/50000 and
h = −1/400 are specific values for which the system
exhibits square-wave bursting analogous to the BEA in
the pancreatic beta cell. Figure 2 depicts the projection
onto the(y1, y2) plane of theβ cell system.
This system is coupled unidirectionally by the master

system (1) in the following way:

y′ =





ẏ1
ẏ2
ẏ3



+ k





x1ξ(t)− y1
0
0



 . (7)

wherek ∈ R is the coupling strength. We will consider
the following parameters for the numerical simulation:
A = 1, k = 1, τ = 0.0031.

4 Numerical Results
To detect synchronization in the scheme proposed,

we use the auxiliary system approach presented by
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Figure 3. a) Coupling signalξ(t) from Eq. 2 generated from the

monitored Rössler system. b) Projection onto the(y1, y2) plane of

the forced system. c) Euclidean distancedn(y(i), z(i)).

[Abarbanel, Rulkov and Sushchik, 1996], in which
a systemz′ = y′ is coupled in the same way as
(7) but initialized with a set of initial conditionsz0
wherey0 6= z0. If both system converge ast →
∞ and the distance between them given by the Eu-
clidean normdn

(

{y(i)}i∈{1,...,n}, {z(i)}i∈{1,...,n}

)

=
1
n

∑n

i=1 ‖y(i) − z(i)‖ → 0, wheren stands for the
number of iterations in the numerical simulation made
with a fourth-order Runge Kutta method, then we say
that the master and slave systems are coupled.

4.1 Rössler as Master System
First we use the chaotic Rössler system given by

Eq. (3) as the monitored master system. The
sets of initial conditions for the systems arex0 =
[−1.1, 1.15, 0.6116], y0 = [−0.5, 0.1, 0.6116] and
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z0 = [−7, −8, 24]. The resulting coupling signalξ(t)
with this configuration is shown in Figure 3 a). Fig-
ure 3 b) depicts the projection onto the(y1, y2) plane
of the forced system after the coupling, and in Figure
3 c) it can be seen the Euclidian distancedn between
the forced system and the auxiliary system. The sys-
tems initialized with different initial conditions loose
their transient states aftern = 120, 000 iteration. Note
thatdn ← 0 after this value showing their convergence.
With this and with the maximum conditional Lyapunov
exponent which is−0.0327, we can assure that the
control signal forces the systemsy′ andz′ to oscillate
equally meaning both systems are synchronized with
the master system.

4.2 Lorenz as Master System
Changing now the monitored system as the Lorenz

system given by Eq. (4) results in the coupling signal
depicted in Figure 4 a). Using the same sets of initial
conditions as above outcome in the attractor depicted in
Figure 4 b), where a projection onto the(y1, y2) plane
is shown. From Figure 4 c) it can be observed that dis-
tance between the attractorsdn also converge to zero
after a transient state, for this case150, 000 iterations.
The maximum conditional Lyapunov exponent for this
system is−0.0236 meaning that also the master and
forced systems are synchronized.

4.3 β cell as Master System
Based on the results shown above we decided to im-

plement one last experiment, considering theβ cell
given by Eq. (6) as a monitored systemx′. By locating
the sameΣL Poincaré plane withα1 = −0.179, α2 =
−0.1739, α3 = 0, α4 = 0.0246 we obtained the fol-
lowing results. Figure 5 a) shows the coupling signal
ξ(t) generated by the crossing events of this monitored
system withΣL. Figure 5 b) depicts the projection onto
the (y1, y2) plane of the resulting forced system, and
the Euclidean distancedn betweeny′ and z′ can be
appreciated in Figure 5 c). The forced systems con-
verge after200, 000 iterations, and the maximum con-
ditional Lyapunov exponent is−0.0704 therefore the
master and forced systems are also synchronized.

5 Conclusion
We demonstrated in this work that with the Poincaré

coupling and a unidirectional coupling, one is able to
generate a coupling signal sent from the master to the
slave system, each time that the master system crosses
the previously defined plane. This coupling is capable
of synchronize a biological system described by math-
ematical models. The coupling signal was applied in
chaotic intervals of time due to the2 chaotic monitored
systems, and periodically when theβ cell was mon-
itored. The stability of the systems was determined
through the Lyapunov exponents.
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Figure 4. Coupling signalξ(t) from Eq. 2 generated from the

monitored Lorenz system. b) Projection onto the(y1, y2) plane

of the forced system. c) Euclidean distancedn(y(i), z(i)).
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Hernández-Suárez, R. (2010). High order sliding-
mode dynamic control for chaotic intracellular cal-
cium oscillation.Nonlinear Analysis: Real World Ap-



CYBERNETICS AND PHYSICS, VOL. 2, NO. 4, 2013 221

1 1.1 1.2 1.3 1.4

x 10
5

−0.5

0

0.5

1

1.5

n

ξ(
t)

a)

−2 −1 0 1 2

−4

−3

−2

−1

0

y
1

y 2

b)

0 0.5 1 1.5 2 2.5

x 10
5

0

10

20

30

40
c)

n

d n

Figure 5. Control signalξ(t) from Eq. 2 generated from the mon-

itoredβ cell system. b) Projection onto the(y1, y2) plane of the

forced system. c) Euclidean distancedn(y(i), z(i)).

plications 11, pp. 217–231.
Chen, G.R. and Dong, X. (1992). On feedback control

of chaotic nonlinear dynamic systems.Int. J. Bifurca-
tion Chaos, 02, pp. 407–411.

Chen, G.R. and Dong, X. (1993). On feedback control
of chaotic continuous-time systems.IEEE Trans. Cir-
cuits Syst. I, 40, pp. 591–601.

Kapitaniak, T. (1995). Continuous control and syn-
chronization in chaotic systems.Chaos, Solitons and
Fractals 6, pp. 237–244.

Lebrun, P. and Atwater, I. (1985). Chaotic and irreg-
ular bursting electrical activity in mouse pancreatic
β-cells .Biophys. J. Biophysical Society, 48, pp. 529–
531.

Lorenz, E.N. (1963). Deterministic nonperiodic flow.J.
Atmos. Sci., 20, pp. 130-141.
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