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Abstract

It is shown that adding noise to a chaotic system the
motion may turn regular and is terminated in some of
the fixed points. Analysis with the aid of the Lyapunov
exponents affirms the fact that chaotical motion is re-
ally supressed. Computer simulations are carried out
for the Duffing equation and the forced motion of the
pendulum.
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1 Introduction

Chaotic behavior of dynamical systems under stochas-
tic excitation has attracted great attention in the last
time. From the numerous papers about this topic we
cite here the followings.

The papers [Kisliakov, 1996] and [Kapitaniak and
El Naschie, 1991] are devoted to the philosophy of
stochastical chaos relations. It is noted [Kapitaniak and
Fl Naschie, 1991] and [Bontempi, Casciati and Far-
avelli 1991] that the problem is quite complicated and
itis often impossible to distinguish between these types
of behavior. Nonlinear systems exhibiting chaotic,
noisy chaotic and random behaviors are analysed in
[Lin and Yim, 1996].

In several papers the analysis is carried out for con-
crete differential equations as the Duffing equation
[Wei and Leng, 1997] and [Liuva and Zhu, 2001],
Duffing-Van der Pol equation [Feng, Xu, Rong and
Wang, 2009] and [Huang, Zhu, Ni and Ko, 2002].
Some authors [Bontempi, Casciati and Faravelli 1991],
[Wei and Leng, 1997], [Huang, Zhu, Ni and Ko, 2002],
[Yang, Xu, Sun, 2006] have shown that by adding noise
we may stabilize the system.

In most of the papers additional, multiplicative or
bounded Gaussian noise is applied. In the present pa-
per the way for introducing the noise is somewhat dif-
ferent. We assume that the forcing term in equations of
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motion has the form fcos(wt) where f is the amplitude
and ¢ denotes time. The quantity w can be intepreted as
the angular velocity of some driver. By physical rea-
sons w is not strictly constant but carries some stochas-
tic oscillations. By this reason we assume that w is a
narrow-band random variable. This approach was ap-
plied in [Lepik, 2003] and [Lepik, 2005]. In these pa-
pers a chaotic case of the Duffing equation was exam-
ined. It turned out that by adding noise to the angular
velocity w the initially chaotic motion becomes regular
and is terminated in one of the focuses. This unex-
pected result was controlled and applied to some other
dynamical systems in the papers [Lepik, Hein, 2005],
[Hein, Lepik, 2007]; the aim of the present paper is to
resume and develop the results of these papers.

2 Modeling stochastic vibrations
In this paper the following type of equations

Z +g(t,x,z) = fcoswt o<t<T (D

is considered. Here ¢ is a prescribed function and w(t)
the angular velocity of some driver. By physical rea-
sons w is not strictly constant but carries out some
stochastic oscillations

w(t) = wo [1 + a€(1)], 2)

where £(t) denotes the Gaussian noise with zero mean
and standard deviation 1. The coefficient 0 < o < 1
characterizes the noise intensity; for o = 0 the motion
is deterministic.

Due to the inertia of the driver stochastic oscillations
cannot change abruptly and some smoothness of w(¢)
must take place. By this reason we propose the follow-
ing model. We choose a number of time instants /N



in which the motion is disturbed. For simplicity sake
we assume that these instants are distributed uniformly
over the whole interval ¢ € [0, 7] and

T
tj:jﬁ,jil,Q,...,Ns. 3)

In view of (2) we can calculate w(¢) for the instant ¢;.
Making use of the cubic spline interpolation for the
points ¢; we find a stochastic realization for the mod-
eled angular velocity @(¢). The corresponding modeled
external force is

ft) = fcosla(t),1]. )

By integrating (1) with the aid of the Runge-Kutta
method we find a stochastic realization for «(¢). By
repeating this procedure v times we calculate the mean
%, (t) and standard deviation from the formulae

-Tm(t) = % Z;'Izl 1,(1) (t)vl
Dla(t)] = 73 320, 20 ) —an@)?, ¢ ()
o =+/D(z(t)).

If Ns; is a small number we have low-frequency
stochastic excitations; if NV is a relatively great number
high-frequency excitations are obtained. The modeled
angular velocity &(t) and external force f for N, = 3
and N, = 20 are plotted in Fig.1.
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Figure 1. Modeled angular velocity (0 and external force f: (a)-(b)
for Ny = 3; (¢)-(d) for Ny = 20.

3 Examples
For the first example the Duffing equation
=y,
Y= —py — gz + rz> + f cos wt} ©)

is taken. Here p, q, r, f, w are the prescribed constants.

Computer simulation was carried out for p =
025, = —1,r = 1,5 = 03,wp = 1,z(0) =
0,y(0) = 1. In this case the system has two stabil fixed
points x = +£1,y = 0, which are foci [Lepik, Hein,
2005]. The motion is chaotic. Computer results for the
deterministic case o = 0 are plotted in Fig. 2.
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Figure 2. Duffing equation in the deterministic case: (a) time his-

tory; (b) phase diagram.

For the stochastic case the valuesa = 0.2and N, = 3
or Ng = 20 were taken. The mean x,,(¢) and stan-
dard deviation o(t) were calculated from 20 stochas-
tic realizations; the results are plotted in Fig. 3. It
follows from this Figure that by adding noise the mo-
tion turns regular and is terminated in one of the foci
z==1,y=0.
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Figure 3. Duffing equation in the stochastic case: (a)-(b) for Ny =
3; (0)-(d) for Ny = 20.

Assuming g = 0 in (6) the Ueda equation is obtained.
This equation has only one fixed point z = y = 0



which is a degenerated focus [Lepik, Hein, 2005].
Computer results for p = 0.05,¢q = 0,r = 1,f =
7.5,wyp = 1 and for high-frequency excitations are
plotted in Fig. 4. No convergence between different
stochastic realizations is observed; the standard devia-
tion o also differs essentially from zero values.
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Figure 4. Ueda equation: (a)-(b) time history and phase diagram for
the deterministic case; (c) stochastic realizations for &; (d) standard

deviation.

For the next example let us consider the mathematical
pendulum which is driven by the force fcoswt. The
equations of motion can be put into the form [Lepik,
Hein, 2005]:

T=y,
. 7
y= —sinz(1l + acoswt) — by } @

Fixed points of (7) are x = km,y = 0 where k is an
integer. It is shown in [Parker, Chua, 1989] that if &
is an even number the fixed points are stable foci and
saddle points if k is odd. Computations were carried
outfora = 8, b= 1,wy = 0.57,2(0) = 2,4(0) = 0;
the results are plotted in Fig. 5. The deterministic mo-
tion is irregular, it consists of successive librations and
rotations. The phase diagram has a rather complicated
form. As to noisy motion (high frequency excitations
were assumed) then it is very simple: the vibrations
die away soon and the motion terminates in the focus
= —2T.

4 Establishing chaos by means of Lyapunov expo-
nents

The computer simulations showed that after adding
noise chaotic motion may turn regular. The question
arises is this noisy motion chaotic or not. The answer
can be given by applying the Lyapunov exponents: if
the largest Lyapunov exponent is negative the motion
is regular, otherwise it is chaotic.
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Figure 5. Driven pendulum (7): (a)-(b) deterministic case; (c)-(d)

stochastic case for &« = 0.2.

Figure 6. Lyapunov exponents versus parameters for the Duffing

equation (6):— deterministic case, — — — stochastic case.
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Figure 7. Lyapunov exponents versus parameters for the driven

pendulum (7):— deterministic case, — — — stochastic case.



For calculating the largest Lyapunov exponent versus
time we have used the Wolf’s algorithm [Wolf, Swift,
Swinney, Vastano, 1985]. Most interesting are the plots
of Lyapunov exponents versus parameters in the equa-
tions (6) and (7). For getting such diagrams all system
parameters except one are fixed. Calculations were car-
ried out for Ny = 20, a = 0.2; the largest Lyapunov
exponent was calculated for ¢ = 50 (Duffing equation)
and for ¢ = 200 (pendulum); a mean of 6 stochastic
realizations was taken. The results are plotted in Figs 6
and 7.

It follows from these diagrams that in all cases the val-
ues of the largest Lyapunov exponents are considerably
reduced. In most cases A < 0 and the chaotic motion
is annihilated (an exception is Fig 7a were the motion
remains chaotic for a > 1).

5 Conclusion

Forced vibrations of dynamical systems for which the
angular velocity is stochastic are investigated. Com-
puter simulation shows that if the system has stabil
fixed points then the chaotic motion is suppressed, be-
comes regular and is terminated in one of the fixed
points. Similar results hold also for other dynamical
equations discussed in [Lepik, Hein, 2005] and [Hein,
Lepik, 2007].
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