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Abstract—We study a nonlinear dynamical model defined in whereN; = Aé/Alil. The Lie bracket induces the gradation
terms of a non-holonomic distribution A of polynomial vector [N, N;] C N,,;, and Na becomes a graded nilpotent Lie
fields, satisfying the bracket generating condition of control g 5aprg for details see for instance, [3]. Therefore, it is natural

theory. The case when the Lie algebra spgm\) is nilpotent is . . . . . - -
discussed. In low dimensional cases, the s{f[(ep22 models classicdl! thiS context, to begin for analyzing the situation for nilpotent

particles in homogeneous magnetic fields whereas the step-3Lie algebras as we do in the present paper.

models the case of linear fields. We consider that a regular non-holonomic distributin
is given once for all, and we také to be the Lie algebra
I. INTRODUCTION AZt = T, M. Through all the paper we shall assume that

Certain nonholonomic dynamical systems can be describ d> nilpotent. An inner product i determines a natural

in terms of distributions with a finite number of vector fields ecompositiony =, &V, n terms of the honzontfl vector
$paceH, = A, and the vertical vector spadg, = H,, .

the structure of the spanned Lie algebra, that is, the Li An absolutely continuous curve — p(t), is said to be
algebra obtained by Lie bracketing iterativelythevectorfieldﬁbrizontal it 5(t) € A(p(t)), almost eve;ywhere Chow-

determines most of the relevant properties of the system. Rashevski’s theorem [3], guarantees that any two points can

We s.,tud.y a nonlinear dynam|cal model defmgd n ternbse connected by an horizontal curve, provided M is connected.
of distributions of polynomial vector fields satisfying the SOA sub-Riemannian metric on is defined by a smooth varying

called bracket generating condition, condition that gu::lrant(-:-lﬁﬁer productp — (-,-), in A(p). For horizontal curves

the existence of trajectories provided the base manifold IS | (1), the ]I)ength éné’ the en]:ar.gy functionals are defined

connected. Examples of problems which can be expressaedufual’

in these terms can be found in plasma physics [1] an&

nonholonomic mechanics [2]. R 1 ..
Non-holonomic distributions are in the opposite side of p) = /<p’p>2’ and £(p) = §/<p’p>’

mtegrgble ones, they provide the main object Of. study _?éspectively. For horizontal curves parametrized by arc-length,

what is known as Carnot-Caratheodory or sub-Riemanni variational problems for the functionals and & are

geometries. A distributionA of rank £ on a smooth n- equivalent

dimensional manifold M is a smooth rarik sub bundle of In this paper we consider nonlinear dynamical systems

the ta”gem b.undle ,T M. The |terat.|on of the Lie bracket Oéiven by a non-holonomic distribution of real vector fields.
vector f_|elds inA yields the following flag of modules of \;., approach the problem as a sub-Riemannian geodesic
vector fields problem, that is, the one of minimizing functiondl (or
equivalently functionak), in the class of horizontal curves.
AlcA?c...cA-.CcTM We use the Hamiltonian formalism to set the problem as
L i1 ; ; an optimal control problem, we integrate some cases of the
hereA* = A and A" = A" + [A, A’]. The Hamiltonian equations and derive some geometric properties
distribution is said to be non-holonomic or bracket genegs the geodesics.
ating, if for eachp € M, there exist a positive integen for  aApart from this introduction this paper contains four sec-
which A7* = T, M. The firstm for which this occur is called tjons, in section 11 we set the dynamical problem that plays the
the degree of non-holonomy df atp. Letn;(p) = dim(A}),  role of archetype of the theory, and is related with variational
the growth vector ofA at p is defined as(ni,...,nm), problems in nonlinear dynamics, for this case, we depict the
the distribution is said to be regular if the growth vector i§je algebraic structure and exhibit a gauge transformation
independent of the base point. In this case there is a gradffdier which such structure remains invariant. In section IIl,
vector space associated to the above flag, defined as folloyg write explicitly a Phillip Hall basis for the Lie algebra. This
basis clarifies the hierarchy of non-linear dynamical systems
NA=N&No® - B Ny, proposed by R.W. Brockett and L. Dai in [4]. In sections



IV and V we apply the Pontryagin Maximum Principle for

deriving necessary conditions for minimizing trajectories, and X, =ady_ady, ---ady. (X,,)
H : . Kr Kp—1 K2
develop also some low dimensional examples in both step- .
2 and step-3. At the end, in section VI we derive somdith multi indexx = (k;,kr—1,...,k1) andk; =1,...,n.
conclusions and discuss further research perspectives_ If all fields are distinct and of depth one, the Jacobi |dent|ty

is a condition relating fields of depth three. For more than one
Il. A MODEL FOR NON-HOLONOMIC DYNAMICAL SYSTEMS field of depth two, the identity is trivial. Moreover, when two

There is an non-holonomic dynamical system that stanfig!ds, sayX; and X;, are of depth one, and the third one, say
for an archetype of our discussion. It consists of the nonlinedn 1S of depths > 1 then

dynamical system inR™t! determined by a non-holonomic

contact distribution distributioh = {X1,..., X,,}. By taking [Xi, [X5, X1) = [X;, [X5, X],
ggg;%l/nates(x,y) € " x I, horizontal curves in general expression that relates fields of depth- 2, which is just the

statement of the commutativity of the partial differentiation. In
n conclusion, the Jacobi identity states that for 3 the order
(&,9) =Y aj(z,y)X;(z,y), of the x; for i > 3 in X, is irrelevant.
j=1 Any sufficiently smooth functionr — ¢ (x) determines a
gauge transformatiog — ¢ + Vi, under which the fields
are mapped toX; + ¢,,0y, and the Lie algebr& remains
invariant.
noo . In terms of differential forms, associated fowe have the
Xi(z,y) =Y [0z, + oy connection 1-form4 = dy— (¢, dz), and the curvature 2-form
j=1

for certain smooth functiong®” and¢’,4,5 =1,...,n. K =2dA = Zgjk dxj A dzy.
Privileged coordinates can be found in such a way that the gk
di.S.tI'ibUtiOH is written in the so-called normal form, that isn this formulation,d/C = 0 corresponds to the homogeneous
7 = ¢;; (Kronecker delta), for details on normal forms, seaxwell equations (Jacobi identity) for this problem. Further,
for instance [5]. In conclusion, horizontal curves- q(t) = A is a higher dimensional analog of thector potentialand
(z(t),y(t)) are solutions of the system dA is the corresponding analog of theagnetic field The
above gauge transformation leads to

for certain smooth functionsq, ..., «,, and the vector fields
in general are written as follows

! ; @ A— A—dyp and K~ K.

where X; = dz; + &0y, with € = £(z) = (€(x),...,£"(x)) In consequence, by means of gauge transformations we can
smooth function that does not depend grandy = (%,£) add to our convenience exact differentials leaving both, the
with the standard inner product éi". equations of motion and the curvature, invariant.

The first degree Lie brackets of the distribution are easily Remark 2.1:The variational problem for the energy func-
calculated as follows tional £ can be formulated by considering the Lagrangian

L = Xo|lZ]|? + Ay — (£, 4)). For Ay # 0, Euler-Lagrange

X X0 X iig ith g9 — ¢ p equations can be easily calculatedl:= \gi and A = 0,
ij = iy Njl = ¢ Yy, WIth g™ = x;

i hereg = (¢%) is a skew-symmetric matrix. The Lagrange
and for alli,j = 1,...,n. A lengthy but easy calculation parameter\ is a constant of motion and the Euler-Lagrange

shows that Jacobi identity is written as follows equations are _gauge-invariar!t. How_eve_r we pursue in_this
paper the Hamiltonian formalism which is more appropriate
gﬁf I g’;j i g;i —0 to tackle the problem as an optimal control one.
Since function¢ does not depend op, then all fields II1. PHILLIP HALL BASIS FOR NILPOTENTLIE ALGEBRAS
ady, ady,, ---ady, (X;), for k& > 0 commute among The distribution introduced in the preceding section can
themselves. In consequence the Lie algebispanned by the be studied by considering the Taylor series expansion around
distribution is solvable, filtered and graded, for details on thetige origin for the function¢(x). The analytic case has been
definitions see for instance [6]. studied among others by H. Sussmann et al [7], in the context
Furthermore, together with the anti commutativity of thef the so-called motion planning problem for non-holonomic
Lie bracket, the Jacobi identity bounds the number of linearijechanical systems. In a different perspective, R.W. Brockett
independent vector fields obtained by Lie bracketing ttend L. Dai [4] have suggested a hierarchy of non-linear
elements ofA. In fact, we start by defining the fields of depthdynamical systems by considering a cut off in the Taylor
r with » > 1 to be the fields series, that is, by taking polynomial vector fields in particular



coordinate systems. In such a case, the Lie algébria of The proof of this result is based on a careful use of the

finite dimension and nilpotent. Jacobi identity together with elementary but lengthy count-
Our treatment is more general, it is coordinate free and leadg arguments, it shall be given elsewhere, we shall restrict

naturally to the classification problem of isomorphism classesirselves here to the following examples

of finite dimensional nilpotent Lie algebras. We consider a Example 3.1:For the step-2 algebra in variables, up to

rank n distribution A, as that given in the preceding sectionisomorphisms, the basis is given by

but for general linearly independent polynomial functignsef

degreem. The corresponding Lie algebra is filtered, graded (X, X=X, 1<j 4,j=1,...,n

and nilpotent of stepn + 1. A generic formulation of the o o

problem for nilpotent Lie algebras would be reached ondB® rémaining non-trivial elements of the algebra are the

a basis for the commutators is explicitly given. For thefpllowing Xi, i, = =X, i, S

the underlying simply connected Lie group can be obtainedExa@mple 3.2:For step-3 the basis is given by

by means of the exponential map and the BCH formula,

privileged coordinates can be used to write a canonical basis Xi, Xi] = X iy <o

of invariant vector fields. e e St
We start by counting the number of linearly independent [Xiss Xivia] = Xigiris 11 <2 <4

vector fields of depth- > 0, that is, the cardinality ofA”. [(Xiy, Xiyis) = Xigiyig, 11 <ig <i3.

Elementary combinatorics arguments together with a caretHIw remaining non-trivial elements of the algebra are again
use of the Jacobi identity for brackets of different depths impl% _ X together with
— T Nig,ia

that such a number is given by t2:81
-1 . . .
Dn,r =T ( " :_: 1 > 5 [XilaX’izis} = Xiaﬂi’iz - Xiz,hisv 1 <12 <13,
in consequence the Lie algebgahas dimension with 4y, 42,13 = 1,...,n.
n+m IV. OPTIMAL CONTROL AND EXTREMAL CURVES
nt b+ Dnyim — ( m ) We consider nowG to be the simply connected Lie

group that corresponds to the nilpotent Lie algeBrawith
Ebder of nilpotencym + 1, generated by the rank non-

olonomic distributionA. A smooth varying inner product
g (-,-)g is defined in the planes spaifg) by declaring the
set{X1(g),...,Xn(g)} orthonormal. The variational problem
associated to the kinetic enerdy is equivalent to the sub-
Riemannian geodesic problem @n which in turn, can be
formulated as the following left invariant optimal control
problem on the groug-

Now we provide a basis fog, that has been introduced in
the general theory of free Lie algebras, namely the so-call
Phillip Hall basis [8].

Definition 3.1: A Phillip Hall basis of the Lie algebr&
generated by the distributiafy, is a totally ordered s€tP, <}
that satisfies the following three properties

1) The X; belong toP

2) If A,B e P and lengtfid) < length B), then A < B

3) If Cis notinA, thenC € P iff C = [A, B] with

A,B € P, A< B and eitherB € A or B =[D,E],

with D.Ee€eP, D <AandD < E. g=u1X1(9)+ - +u,Xn(g), E(g) — min. (1)
The following result provides a complete description of a o
Phillip Hall basis forG by taking the total ordex defined by Here the admissible control laws= (u1, ..., u,) are taken
the depth of the brackets. to be measurable and bounded. The family of such control
Theorem 3.1:A Phillip Hall basis for the step m+1 nilpo- 1aws shall be denoted a&.
tent Lie algebrag consists of We profit on the symplectic structure of the cotangent

h bundle T*G to derive necessary conditions for the optimal
controls. It is known thatl™*G ~ G x G*, then we take
coordinates(g, p) € T*G. Each left invariant vector fieldd
determines a Hamiltoniai x (¢, p) = p(X(e)), wheree € G

1) n elements ofA andD,, ; = n(n—1)/2 fields of dept
two: X’ilig = [Xil,XiQ], for ’il < ig,
2) D, 2 =n(n?>-1)/3 linearly independent fields of depth

three: is the group identity. The Poisson bracket for Hamiltonians
Xiyii, = ady, ady, Xi,, fori; <ix <izand determines then a dual Lie algebra structure in the sense that
Xiyivis = ady, ady, Xi,, for i < iy <is, {_HX,HY} = Hixyy, fgr any pair_ of left invariant vector
i fields X andY’, for details see for instance [9].
3) Dn,r42 fields of depthr +-3 for r =1,...,m —3: Let H; denote the Hamiltoniail , for eachi =1, ..., n.
X;; = ady, ---ady, ady, adx, X,, and We cc_>nsider the co vectoh = (Hi,...,Hy,) As usual
X., — adv -.-adv adv ads X, in optimal .control thgory, one mcqrporates the energy to
gi Kir oy g O8Ny Hdas the dynamics to define the following control-parametrized

with j; < jp < -+ < jp. Hamiltonian



nilpotencym + 1, shall be presented elsewhere, here we sum-
How = _é||u||2 + (u, h). marize the general step-2 and present some low dimensional
2 particular cases.
In this paper we consider only the normal case that corre-For step-2 the co vector writes as= (h, H) and H = 0,
sponds toA = 1, although the abnormal cas& = 0, is therefore a complete set of of integrals of motion allows the

relevant and must be studied. complete integration. the extremal curves are given by
Pontryagin Maximum Principle [10], tells us that a solution
t— (g,u) 'of the problem (1)*|s optimal, if it is the pr01e9t|on tis (W), H(t)) = (exp(tH)hT, H(0)).
of a solution(g,p) € G x T*G of the Hamilton equations
corresponding td+,,, along which the inequality If o C iR is the spectrum off, and r its characteristic
polynomial, thenu € o determines its spectral projector
Hy > H, 2)
1
holds a.e., for alb € U. T II @-1mw),
Solutions of the Hamiltonian system corresponding to the ve(o—{u})

Hamiltonian?,, are customarily called extremal curves.  and the Lagrange-Sylvester formula yields
For the Phillip Hall basis foiG depicted in the preceding
section, we have the corresponding dual basigjfofor which exp(tH) = Z ethr,,

we shall adopt the following notation o

from these expressions we can pursue the geometric analysis

,—L of geodesics.
{Hy,...,Hy, Hy\ iy, Higiyiy, Higiyiy, Hji, Hjir .}
Y v V. GEOMETRIC PROPERTIES OF GEODESICS FOR ST
In consequence the co vector can be written as follows As mentioned above the general step-2 case is already com-
plete, in previous papers [12] we present the low dimensional
p=(h,H,H) € R" x so’ x R’, casesn = 2 andn = 3, that model classical particles in
the plane and three-dimensional space respectively. In the first
where.J = Do+ Dpg + -+ Dy o ~ case the field points orthogonally to the plane, whereas in the
The optimality condition of the Maximum Principle givensecond it has an arbitrary direction. Here we develop the case
by (2), implies thatu; = H;, for all i = 1,...,n, therefore st gien-3 that models a classical particle and linear magnetic
the system Hamiltonian is quadratic fields with nontrivial slope, surprisingly this corresponds to
1, ) the formulation of the famous Cartan five dimensional Pfaffian
H=3 (HY +---+ Hy), system [13].

We consider the rank-two distributioP in R® with coor-

and the first Hamiltonian equation writes as follows . . .
q dinates(z, y, z, u, v) given by the vector fields

d
d{i’ = HiX1(9) + ...+ H, Xn(9).
X, = Oz + 20u+ydz
The second Hamiltonian equation is by far more complicated, - P
it is obtained by differentiating along the extremal, that is, Xy = Oy+ 58@,

by Poisson bracketing the entries of the co vector with tqﬁe non-trivial Lie brackets are as follows

Hamiltonian, for instance H; = {H;, H} readily implies

hT :H hT7 |:X1,X2i| = gavfaz = Xg

the skew-symmetry off yields the energy conservation law
Proposition 4.1: The system Hamiltoniar#{ is constant

along the extremal. {XQ’X?)} — v=: Xs.
Proof. A direct differentiation along the extremal yields

ou =: X4

5]

The growth vector ofD is (2,3,5). This system is usually
called a system of Cartan type, it has been largely studied
beginning with E. Cartan [13], who showed their relation

B with the exceptional Lie algebr@. A modern treatment can
The step-2 has been studied by R.Brockett [11], armk found for instance in [14].

A.M.Vershik and V. Gershkovich [2], a coordinate-free Let us denote asVs Lie group corresponding to this Lie

presentation together with a complete integration has bealigebra. This group can be representedilyendowed with

presented in our previous paper [12]. The general case witie following group law

H=H{H ,H}+-+ H,{H,,H} = (hT ,Hh) = 0.



(a1, az, a3, 04, a5)(B1, Ba, B3, B4, Bs) (1]
= (a1+ Bi, 02+ B2, 0, c), af), 2]
where
/ 1 [3]
ay; = az+ B3+ 5(041ﬁ2 —asfh)
1
ay = ou+pfa+t 5(04153 —a3f) X
1
- ﬁ(ﬁl - all)(alﬂz — o fh) [5]
oy = a5+ G5+ 5(04253 — a3 f32)
[6]
1
- 5(52 —ag)(a1fB2 — azfh). 71

The groupNs acts on itself by left multiplication leaving
the following two vector fields invariant

[8]
2
Y ry = Yy
= —_ = — —_— — —_ 9
X, ox — 20 (12—|—2)8u v o, [9]
x z2 Ty oz [10]
A direct calculation shows that [11]
X1, Xo] = 02 + ~0u+ Lov = X
[ 1, 2}— Z+§ U+§ v i= 3. [12]
There is a rotational action oN5, which is encoded in the
left invariant vector field
[13]
W = 20y — yOx + udv — vou,
which satisfies the following commuting relations (14]
[Xla W] = X21
(X2, W] = —Xi,
[X47 W] = X5a
[X57 W] = _X4a

these brackets allows us to consider the semi-direct 5ym
soo from which the action ofVy o« SO, becomes transparent.

VI. CONCLUSION AND PERSPECTIVES

We have presented a model for non-holonomic system that
leads naturally to the consideration of nilpotent Lie algebras
of arbitrary nilpotency degree. We depict a Phillip Hall basis
for the Lie algebra generated by means of a non-holonomic
distribution of vector fields, that determine the problem. By
using the Hamiltonian formalism we set the problem as
a geodesic sub-Riemannian problem or equivalently, as an
optimal control one. Necessary condition of the Pontryagin
Maximum Principle provides tools for analyzing geometric
properties of the geodesics, The case of step-3 in five variables
is analyzed in this formalism. Further investigation on levels
of higher degrees of nilpotency in arbitrary dimensions have to
be pursued, as well as examples of this theoretical framework
in particular non-holonomic dynamical systems.
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