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Abstract— We study a nonlinear dynamical model defined in
terms of a non-holonomic distribution ∆ of polynomial vector
fields, satisfying the bracket generating condition of control
theory. The case when the Lie algebra span(∆) is nilpotent is
discussed. In low dimensional cases, the step-2 models classical
particles in homogeneous magnetic fields whereas the step-3
models the case of linear fields.

I. I NTRODUCTION

Certain nonholonomic dynamical systems can be described
in terms of distributions with a finite number of vector fields,
the structure of the spanned Lie algebra, that is, the Lie
algebra obtained by Lie bracketing iteratively the vector fields,
determines most of the relevant properties of the system.

We study a nonlinear dynamical model defined in terms
of distributions of polynomial vector fields satisfying the so-
called bracket generating condition, condition that guarantees
the existence of trajectories provided the base manifold is
connected. Examples of problems which can be expressed
in these terms can be found in plasma physics [1] and
nonholonomic mechanics [2].

Non-holonomic distributions are in the opposite side of
integrable ones, they provide the main object of study of
what is known as Carnot-Caratheodory or sub-Riemannian
geometries. A distribution∆ of rank k on a smooth n-
dimensional manifold M is a smooth rankk sub bundle of
the tangent bundle T M. The iteration of the Lie bracket of
vector fields in∆ yields the following flag of modules of
vector fields

∆1 ⊂ ∆2 ⊂ · · · ⊂ ∆l · · · ⊂ T M

here∆1 = ∆ and∆i+1 = ∆i + [∆,∆i]. The
distribution is said to be non-holonomic or bracket gener-

ating, if for eachp ∈ M, there exist a positive integerm for
which ∆m

p = Tp M. The firstm for which this occur is called
the degree of non-holonomy of∆ at p. Let nj(p) = dim(∆j

p),
the growth vector of∆ at p is defined as(n1, . . . , nm),
the distribution is said to be regular if the growth vector is
independent of the base point. In this case there is a graded
vector space associated to the above flag, defined as follows

N∆ = N1 ⊕N2 ⊕ · · · ⊕Nm,

whereNl = ∆l
p/∆

l−1
p . The Lie bracket induces the gradation

[Ni, Nj ] ⊂ Ni+j , andN∆ becomes a graded nilpotent Lie
algebra, for details see for instance, [3]. Therefore, it is natural
in this context, to begin for analyzing the situation for nilpotent
Lie algebras as we do in the present paper.

We consider that a regular non-holonomic distribution∆
is given once for all, and we takeG to be the Lie algebra
∆m

p = Tp M. Through all the paper we shall assume that
G is nilpotent. An inner product inG determines a natural
decompositionG = Hp⊕Vp, in terms of the horizontal vector
spaceHp = ∆p and the vertical vector spaceVp = H⊥

p .
An absolutely continuous curvet 7→ p(t), is said to be

horizontal, if ṗ(t) ∈ ∆(p(t)), almost everywhere. Chow-
Rashevski’s theorem [3], guarantees that any two points can
be connected by an horizontal curve, provided M is connected.
A sub-Riemannian metric on is defined by a smooth varying
inner productp 7→ 〈·, ·〉p in ∆(p). For horizontal curves
t 7→ p(t), the length and the energy functionals are defined
as usual

`(p) =
∫
〈ṗ, ṗ〉 1

2 , and E(p) =
1
2

∫
〈ṗ, ṗ〉,

respectively. For horizontal curves parametrized by arc-length,
the variational problems for the functionals̀ and E are
equivalent.

In this paper we consider nonlinear dynamical systems
given by a non-holonomic distribution of real vector fields.
We approach the problem as a sub-Riemannian geodesic
problem, that is, the one of minimizing functional` (or
equivalently functionalE), in the class of horizontal curves.
We use the Hamiltonian formalism to set the problem as
an optimal control problem, we integrate some cases of the
Hamiltonian equations and derive some geometric properties
of the geodesics.

Apart from this introduction this paper contains four sec-
tions, in section II we set the dynamical problem that plays the
role of archetype of the theory, and is related with variational
problems in nonlinear dynamics, for this case, we depict the
Lie algebraic structure and exhibit a gauge transformation
under which such structure remains invariant. In section III,
we write explicitly a Phillip Hall basis for the Lie algebra. This
basis clarifies the hierarchy of non-linear dynamical systems
proposed by R.W. Brockett and L. Dai in [4]. In sections



IV and V we apply the Pontryagin Maximum Principle for
deriving necessary conditions for minimizing trajectories, and
develop also some low dimensional examples in both step-
2 and step-3. At the end, in section VI we derive some
conclusions and discuss further research perspectives.

II. A MODEL FOR NON-HOLONOMIC DYNAMICAL SYSTEMS

There is an non-holonomic dynamical system that stands
for an archetype of our discussion. It consists of the nonlinear
dynamical system inRn+1 determined by a non-holonomic
contact distribution distribution∆ = {X1, . . . , Xn}. By taking
coordinates(x, y) ∈ Rn × R, horizontal curves in general
satisfy

(ẋ, ẏ) =
n∑

j=1

αj(x, y)Xj(x, y),

for certain smooth functionsα1, . . . , αn, and the vector fields
in general are written as follows

Xi(x, y) =
n∑

j=1

f ij∂xj + ξj∂y

for certain smooth functionsf ij andξj , i, j = 1, . . . , n.
Privileged coordinates can be found in such a way that the

distribution is written in the so-called normal form, that is
f ij = δij (Kronecker delta), for details on normal forms, see
for instance [5]. In conclusion, horizontal curvest 7→ q(t) =
(x(t), y(t)) are solutions of the system

q̇ =
n∑

i=1

ẋiXi(q),

whereXi = ∂xi + ξi∂y, with ξ = ξ(x) = (ξ1(x), . . . , ξn(x))
smooth function that does not depend ony and ẏ = 〈ẋ, ξ〉
with the standard inner product ofRn.

The first degree Lie brackets of the distribution are easily
calculated as follows

Xij := [Xi, Xj ] = gij∂y, with gij = ξi
xj
− ξj

xi

and for all i, j = 1, . . . , n. A lengthy but easy calculation
shows that Jacobi identity is written as follows

gjk
xi

+ gki
xj

+ gij
xk

= 0.

Since functionξ does not depend ony, then all fields
adXi1

adXi2
· · ·adXik

(Xj), for k > 0 commute among
themselves. In consequence the Lie algebraG spanned by the
distribution is solvable, filtered and graded, for details on these
definitions see for instance [6].

Furthermore, together with the anti commutativity of the
Lie bracket, the Jacobi identity bounds the number of linearly
independent vector fields obtained by Lie bracketing the
elements of∆. In fact, we start by defining the fields of depth
r with r ≥ 1 to be the fields

Xκ = adXκr
adXκr−1

· · ·adXκ2
(Xκ1)

with multi index κ = (κr, κr−1, . . . , κ1) andκj = 1, . . . , n.
If all fields are distinct and of depth one, the Jacobi identity

is a condition relating fields of depth three. For more than one
field of depth two, the identity is trivial. Moreover, when two
fields, sayXi andXj , are of depth one, and the third one, say
X, is of depths ≥ 1 then

[Xi, [Xj , X]] = [Xj , [Xi, X]],

expression that relates fields of depths+ 2, which is just the
statement of the commutativity of the partial differentiation. In
conclusion, the Jacobi identity states that forr > 3 the order
of the κi for i > 3 in Xκ is irrelevant.

Any sufficiently smooth functionx 7→ ψ(x) determines a
gauge transformationξ 7→ ξ + ∇ψ, under which the fields
are mapped toXi + ψxi

∂y, and the Lie algebraG remains
invariant.

In terms of differential forms, associated to∆ we have the
connection 1-formA = dy−〈ξ, dx〉, and the curvature 2-form

K = 2dA =
∑
j,k

gjk dxj ∧ dxk.

In this formulation,dK = 0 corresponds to the homogeneous
Maxwell equations (Jacobi identity) for this problem. Further,
A is a higher dimensional analog of thevector potentialand
dA is the corresponding analog of themagnetic field. The
above gauge transformation leads to

A 7→ A− dφ and K 7→ K.

In consequence, by means of gauge transformations we can
add to our convenience exact differentials leaving both, the
equations of motion and the curvature, invariant.

Remark 2.1:The variational problem for the energy func-
tional E can be formulated by considering the Lagrangian
L = λ0‖ẋ‖2 + λ(ẏ − 〈ξ, ẋ〉). For λ0 6= 0, Euler-Lagrange
equations can be easily calculated:ẍ = λgẋ and λ̇ = 0,
here g = (gij) is a skew-symmetric matrix. The Lagrange
parameterλ is a constant of motion and the Euler-Lagrange
equations are gauge-invariant. However we pursue in this
paper the Hamiltonian formalism which is more appropriate
to tackle the problem as an optimal control one.

III. PHILLIP HALL BASIS FOR NILPOTENTL IE ALGEBRAS

The distribution introduced in the preceding section can
be studied by considering the Taylor series expansion around
the origin for the functionξ(x). The analytic case has been
studied among others by H. Sussmann et al [7], in the context
of the so-called motion planning problem for non-holonomic
mechanical systems. In a different perspective, R.W. Brockett
and L. Dai [4] have suggested a hierarchy of non-linear
dynamical systems by considering a cut off in the Taylor
series, that is, by taking polynomial vector fields in particular



coordinate systems. In such a case, the Lie algebraG is of
finite dimension and nilpotent.

Our treatment is more general, it is coordinate free and leads
naturally to the classification problem of isomorphism classes
of finite dimensional nilpotent Lie algebras. We consider a
rank n distribution∆, as that given in the preceding section,
but for general linearly independent polynomial functionsξi of
degreem. The corresponding Lie algebra is filtered, graded
and nilpotent of stepm + 1. A generic formulation of the
problem for nilpotent Lie algebras would be reached once
a basis for the commutators is explicitly given. For then
the underlying simply connected Lie group can be obtained
by means of the exponential map and the BCH formula,
privileged coordinates can be used to write a canonical basis
of invariant vector fields.

We start by counting the number of linearly independent
vector fields of depthr > 0, that is, the cardinality of∆r.
Elementary combinatorics arguments together with a careful
use of the Jacobi identity for brackets of different depths imply
that such a number is given by

Dn,r = r

(
n+ r − 1
r + 1

)
,

in consequence the Lie algebraG has dimension

n+ 1 + Dn+1,m −
(
n+m
m

)
.

Now we provide a basis forG, that has been introduced in
the general theory of free Lie algebras, namely the so-called
Phillip Hall basis [8].

Definition 3.1: A Phillip Hall basis of the Lie algebraG
generated by the distribution∆, is a totally ordered set{P,≺}
that satisfies the following three properties

1) TheXi belong toP
2) If A,B ∈ P and length(A) < length(B), thenA ≺ B
3) If C is not in ∆, then C ∈ P iff C = [A,B] with

A,B ∈ P, A ≺ B and eitherB ∈ ∆ or B = [D,E],
with D,E ∈ P, D � A andD ≺ E.

The following result provides a complete description of a
Phillip Hall basis forG by taking the total order≺ defined by
the depth of the brackets.

Theorem 3.1:A Phillip Hall basis for the step m+1 nilpo-
tent Lie algebraG consists of

1) n elements of∆ andDn,1 = n(n−1)/2 fields of depth
two: Xi1i2 = [Xi1 , Xi2 ], for i1 < i2,

2) Dn,2 = n(n2−1)/3 linearly independent fields of depth
three:

Xi3 i1 i2 = adXi3
adXi1

Xi2 , for i1 < i2 ≤ i3 and

Xi2 i1 i3 = adXi2
adXi1

Xi3 , for i1 ≤ i2 < i3,

3) Dn,r+2 fields of depthr + 3 for r = 1, . . . ,m− 3 :

Xji = adXjr
· · ·adXj1

adXi3
adXi1

Xi2 and

Xji′ = adXjr
· · ·adXj1

adXi2
adXi1

Xi3 ,

with j1 ≤ j2 ≤ · · · ≤ jr.

The proof of this result is based on a careful use of the
Jacobi identity together with elementary but lengthy count-
ing arguments, it shall be given elsewhere, we shall restrict
ourselves here to the following examples

Example 3.1:For the step-2 algebra inn variables, up to
isomorphisms, the basis is given by

[Xi, Xj ] = Xij , i < j i, j = 1, . . . , n

the remaining non-trivial elements of the algebra are the
following Xi2,i1 = −Xi1,i2 .

Example 3.2:For step-3 the basis is given by

[Xi1 , Xi2 ] = Xi1i2 , i1 < i2

[Xi3 , Xi1i2 ] = Xi3,i1i2 , i1 < i2 ≤ i3

[Xi2 , Xi1i3 ] = Xi2,i1i3 , i1 ≤ i2 < i3.

The remaining non-trivial elements of the algebra are again
Xi2,i1 = −Xi1,i2 together with

[Xi1 , Xi2i3 ] = Xi3,i1i2 −Xi2,i1i3 , i1 < i2 < i3,

with i1, i2, i3 = 1, . . . , n.

IV. OPTIMAL CONTROL AND EXTREMAL CURVES

We consider nowG to be the simply connected Lie
group that corresponds to the nilpotent Lie algebraG with
order of nilpotencym + 1, generated by the rankn non-
holonomic distribution∆. A smooth varying inner product
g 7→ 〈·, ·〉g is defined in the planes span∆(g) by declaring the
set{X1(g), . . . , Xn(g)} orthonormal. The variational problem
associated to the kinetic energyE , is equivalent to the sub-
Riemannian geodesic problem onG, which in turn, can be
formulated as the following left invariant optimal control
problem on the groupG

ġ = u1X1(g) + · · ·+ unXn(g), E(g) → min. (1)

Here the admissible control lawsu = (u1, . . . , un) are taken
to be measurable and bounded. The family of such control
laws shall be denoted asU .

We profit on the symplectic structure of the cotangent
bundle T ∗G to derive necessary conditions for the optimal
controls. It is known thatT ∗G ' G × G∗, then we take
coordinates(g, p) ∈ T ∗G. Each left invariant vector fieldX
determines a HamiltonianHX(g, p) = p(X(e)), wheree ∈ G
is the group identity. The Poisson bracket for Hamiltonians
determines then a dual Lie algebra structure in the sense that
{HX ,HY } = H[X,Y ], for any pair of left invariant vector
fieldsX andY , for details see for instance [9].

Let Hi denote the HamiltonianHXi
for eachi = 1, . . . , n.

We consider the co vectorh = (H1, . . . ,Hn) As usual
in optimal control theory, one incorporates the energy to
the dynamics to define the following control-parametrized
Hamiltonian



Hλ,u = −λ
2
‖u‖2 + 〈u, h〉.

In this paper we consider only the normal case that corre-
sponds toλ = 1, although the abnormal case ,λ = 0, is
relevant and must be studied.

Pontryagin Maximum Principle [10], tells us that a solution
t 7→ (g, u) of the problem (1) is optimal, if it is the projection
of a solution(g, p) ∈ G × T ∗G of the Hamilton equations
corresponding toHu, along which the inequality

Hu ≥ Hν (2)

holds a.e., for allν ∈ U .
Solutions of the Hamiltonian system corresponding to the

HamiltonianHu are customarily called extremal curves.
For the Phillip Hall basis forG depicted in the preceding

section, we have the corresponding dual basis forG∗ for which
we shall adopt the following notation

{H1, . . . ,Hn︸ ︷︷ ︸
h

,

H︷ ︸︸ ︷
Hi1,i2 ,Hi3i1i2 ,Hi2i1i3 ,Hji,Hji′︸ ︷︷ ︸

H

.}

In consequence the co vector can be written as follows

p = (h,H,H) ∈ Rn × so∗n ×RJ ,

whereJ = Dn,2 +Dn,3 + · · ·+Dn,m−1.
The optimality condition of the Maximum Principle given

by (2), implies thatui = Hi, for all i = 1, . . . , n, therefore
the system Hamiltonian is quadratic

H =
1
2

(
H2

1 + · · ·+H2
n

)
,

and the first Hamiltonian equation writes as follows

dg

dt
= H1X1(g) + . . .+HnXn(g).

The second Hamiltonian equation is by far more complicated,
it is obtained by differentiating along the extremal, that is,
by Poisson bracketing the entries of the co vector with the
HamiltonianH, for instance,Ḣi = {Hi,H} readily implies

ḣT = H hT ,

the skew-symmetry ofH yields the energy conservation law
Proposition 4.1:The system HamiltonianH is constant

along the extremal.
Proof: A direct differentiation along the extremal yields

Ḣ = H1{H1,H}+ · · ·+Hn{Hn,H} = 〈hT ,Hh〉 = 0.

The step-2 has been studied by R.Brockett [11], and
A.M.Vershik and V. Gershkovich [2], a coordinate-free
presentation together with a complete integration has been
presented in our previous paper [12]. The general case with

nilpotencym+1, shall be presented elsewhere, here we sum-
marize the general step-2 and present some low dimensional
particular cases.

For step-2 the co vector writes asp = (h,H) and Ḣ = 0,
therefore a complete set of of integrals of motion allows the
complete integration. the extremal curves are given by

t 7→ (h(t)T ,H(t)) = (exp(tH)hT
0 ,H(0)).

If σ ⊂ iR is the spectrum ofH, and π its characteristic
polynomial, thenµ ∈ σ determines its spectral projector

πµ =
1

π′(µ)

∏
ν∈(σ−{µ})

(H − Iν),

and the Lagrange-Sylvester formula yields

exp(tH) =
∑
µ∈σ

etµπµ,

from these expressions we can pursue the geometric analysis
of geodesics.

V. GEOMETRIC PROPERTIES OF GEODESICS FOR STEP-3

As mentioned above the general step-2 case is already com-
plete, in previous papers [12] we present the low dimensional
casesn = 2 and n = 3, that model classical particles in
the plane and three-dimensional space respectively. In the first
case the field points orthogonally to the plane, whereas in the
second it has an arbitrary direction. Here we develop the case
of step-3 that models a classical particle and linear magnetic
fields with nontrivial slope, surprisingly this corresponds to
the formulation of the famous Cartan five dimensional Pfaffian
system [13].

We consider the rank-two distributionD in R5 with coor-
dinates(x, y, z, u, v) given by the vector fields

X̃1 = ∂x+ z∂u+ y∂z

X̃2 = ∂y +
z

2
∂v,

the non-trivial Lie brackets are as follows

[
X̃1, X̃2

]
=

y

2
∂v − ∂z =: X̃3[

X̃1, X̃3

]
= ∂u =: X̃4[

X̃2, X̃3

]
= ∂v =: X̃5.

The growth vector ofD is (2, 3, 5). This system is usually
called a system of Cartan type, it has been largely studied
beginning with E. Cartan [13], who showed their relation
with the exceptional Lie algebraG2. A modern treatment can
be found for instance in [14].

Let us denote asN5 Lie group corresponding to this Lie
algebra. This group can be represented byR5 endowed with
the following group law



(α1, α2, α3, α4, α5)(β1, β2, β3, β4, β5)
= (α1 + β1, α2 + β2, α

′
3, α

′
4, α

′
5),

where

α′3 = α3 + β3 +
1
2
(α1β2 − α2β1)

α′4 = α4 + β4 +
1
2
(α1β3 − α3β1)

− 1
12

(β1 − α1)(α1β2 − α2β1)

α′5 = α5 + β5 +
1
2
(α2β3 − α3β2)

− 1
12

(β2 − α2)(α1β2 − α2β1).

The groupN5 acts on itself by left multiplication leaving
the following two vector fields invariant

X1 = ∂x− y

2
∂z −

(xy
12

+
z

2

)
∂u− y2

12
∂v,

X2 = ∂y +
x

2
∂z +

x2

12
∂u+ (

xy

12
− z

2
)∂v.

A direct calculation shows that

[X1, X2] = ∂z +
x

2
∂u+

y

2
∂v := X3.

There is a rotational action onN5, which is encoded in the
left invariant vector field

W = x∂y − y∂x+ u∂v − v∂u,

which satisfies the following commuting relations

[X1,W ] = X2,

[X2,W ] = −X1,

[X4,W ] = X5,

[X5,W ] = −X4,

these brackets allows us to consider the semi-direct sumN5⊕
so2 from which the action ofN5 ∝ SO2 becomes transparent.

VI. CONCLUSION AND PERSPECTIVES

We have presented a model for non-holonomic system that
leads naturally to the consideration of nilpotent Lie algebras
of arbitrary nilpotency degree. We depict a Phillip Hall basis
for the Lie algebra generated by means of a non-holonomic
distribution of vector fields, that determine the problem. By
using the Hamiltonian formalism we set the problem as
a geodesic sub-Riemannian problem or equivalently, as an
optimal control one. Necessary condition of the Pontryagin
Maximum Principle provides tools for analyzing geometric
properties of the geodesics, The case of step-3 in five variables
is analyzed in this formalism. Further investigation on levels
of higher degrees of nilpotency in arbitrary dimensions have to
be pursued, as well as examples of this theoretical framework
in particular non-holonomic dynamical systems.
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