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Abstract
Oscillations of arguments in non-linear dependencies

change the average values of respective functions. As
the simplest example, the harmonic oscillations of the
ball radius increase the average volume and surface area,
while the average radius remains unchanged. Despite
their elementary nature, such considerations are often ig-
nored, which may lead to inaccuracies and errors. This
paper presents a study of such effects in algebraic, ge-
ometric, and trigonometric relations, as well as in cer-
tain basic formulas of mathematical analysis. A number
of applications in solving technical problems are con-
sidered; in particular, the influence of parameter oscil-
lations on the efficiency of industrial operations. The
results of the study may be of interest for the theory of
vibrational processes and devices, and the theory of ac-
curacy, as well as for the theory of control and optimal
processes.
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1 Introduction
Oscillations of parameters in basic mathematical for-

mulas may change the average values of the functions
for these parameters quite significantly. For example,
under harmonic oscillations of the radius of a compress-
ible spherical particle, such as a bubble, its average (ef-
fective) surface area and volume increase due to the non-
linearity of their dependence on the radius. Such effects
are typical for all non-linear mathematical relations and
are therefore essential for all areas of engineering. This
raises the following two main questions: 1) what are
these effects, and how significant are they when solv-
ing a specific technical problem; and 2) can they be used

to achieve useful goals?
This paper provides a general overview of the corre-

sponding effects, establishes the main regularities, and
illustrates them in application to certain basic formu-
las of algebra, geometry, trigonometry and mathematical
analysis. The potential applications of these effects in
the theory of vibrational processes and devices, the the-
ory of accuracy, the theory of control and optimal pro-
cesses are then covered.

With regard to the first group of applications men-
tioned, it should be noted that the problems of oscil-
latory effects on dynamic systems described by dif-
ferential equations have currently been studied in de-
tail [Blekhman, 2000; Blekhman, 2012; Kremer, 2016;
Blekhman and Sorokin, 2016; Blekhman, 2018]. The
study presented here covers the simplest case of param-
eter oscillation effects on final relations (formulas). It is
also to these relations that the explanation of the above-
mentioned more complex effects may be reduced to. The
connection between the above and the concept of hid-
den parameters ([Blekhman, 2018], pp. 53–68) should
also be noted: oscillations of quantities may be regarded
as caused by hidden parameters, leading to unexpected
phenomena.

2 Oscillating argument function averaging
2.1 General case

Let us assume a sufficiently smooth function of several
variables

y = f (x1, x2, ..., xk)

with the variables xs subject to minor oscillations ∆xs

with respect to certain fixed values x10, ..., xk0, i.e.

xs = xs0 +∆xs. (1)
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The functions of ∆xs = ∆xs (xs0, t) shall be regarded
as periodic functions of time t (or another parameter)
with a period of T = 2π/ω, where ω is the frequency.

Expansion of the function f into a Taylor series near
the values of xs = xs0 renders

f (x) = f (x10, ..., xk0) +

k∑
s=1

∂f

∂xs
∆xs

+
1

2

k∑
s=1

k∑
r=1

(
∂2f

∂xs∂xr

)
∆xs∆xr + ...,

(2)

where the derivatives of the function f are calculated at
the point of x10, ..., xk0, and the implicit terms are of
more than the second order of smallness as compared to
∆xs. While assuming the small deviations of ∆xs, the
calculation will be reduced to the explicit terms only. Be-
sides, after the following averaging summands with odd
numbers ∆xs becomes zero and only terms of fourth and
higher orders relative to small deviations of ∆xs would
be included in Eq. (2). With the average values of the
function over a period of T in angle brackets, let us as-
sume that

⟨∆xs⟩ =
1

T

∫ T

0

∆xsdt = 0,

i.e. that the deviations of ∆xs average to zero.
Then, the averaging of expression (2) renders

⟨f (x)⟩ = F (x10, ..., xk0) = f (x10, ..., xk0)

+
1

2

k∑
s=1

k∑
r=1

(
∂2f

∂xs∂xr

)
⟨∆xs∆xr⟩ .

(3)

Here and below, all expressions for average values,
within the accepted accuracy, will use the equal sign in-
stead of ≈.

Assuming that the values of ∆xs change harmonically
with the same frequency of ω = 2π/T , but with different
amplitudes as and phases βs, i.e.

∆xs = as sin (ωt+ βs) , (4)

we obtain

⟨∆xs∆xr⟩ =
1

2
asar cos (βs − βr) ,

and then

F (x10, ..., xk0) = f (x10, ..., xk0)

+
1

4

k∑
s=1

k∑
r=1

(
∂2f

∂xs∂xr

)
asar cos (βs − βr) .

(5)

Note that the amplitudes as and phases βs may be func-
tions xs0. This is specifically indicated where neces-
sary. It should also be noted that the additional terms in
Eqs. (3), (4), and (5) are of the second order of smallness
with respect to the deviations ∆xs.

2.2 Single variable case
Let us consider the simplest special case with one ar-

gument x1 = x that may be used to establish a number
of general patterns. In this case,

F (x0) = ⟨f (x0 + a sinωt)⟩

= f (x0) +
1

4
f ′′ (x0) a

2.
(6)

If f ′′ (x0) ̸= 0, which is expected, then, due to the os-
cillations of the argument, the value of ∆x added to the
function f is positive for a concave curve y = f(x) at
the point of x0 and is negative for a convex curve (see
Figure 1).

Similarly to [Blekhman and Sorokin, 2016], the
y = F (x0) curve may be referred to as a vibration-
transformed curve with respect to the initial y = f(x0)
curve. The vibration-transformed curve is smoother than
the initial curve, with the maximum points going down
and the minimum points going up (see Figure 2). The
same may be deduced from Figure 1.

Figure 2 also shows that argument oscillations shift
and may even eliminate the real roots of the equation
f(x0) = 0. Note that the latter is observed, for ex-
ample, for oscillatory effects in the Zeldovich–Frank-
Kamenetsky flame propagation model and the nerve im-
pulse propagation model [Blekhman and Sorokin, 2016].

(a)

(b)

Figure 1. Fragments of curves, solid lines for f(x0) and dotted
lines for F (x0): (a) showing f ′′ (x0) > 0, (b) showing
f ′′ (x0) < 0.
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Figure 2. Initial curve f(x0) (solid line) and vibration-transformed
curve F (x0) (dotted line).

2.3 Two variable case
In the case of two variables (x1 and x2), Eq. (5) may

be used to find

F (x10, x20) = f (x10, x20) +
1

4

[
a21

∂2f

∂x2
1

+

2a1a2 cos (β1 − β2)
∂2f

∂x1∂x2
+ a22

∂2f

∂x2
2

]
,

(7)

where the derivatives are calculated at the point of
(x10, x20).

Similarly to the simplest case considered above,
smoothing effects take place here. At the same time,
the vibration-transformed function depends on the phase
difference β1−β2. This is essential for the possibility of
control; in particular, for vibrational process machines
[Fradkov, 2007; Blekhman, 2012; Andrievskii et al.,
2016; Fradkov et al., 2016; Tomchina et al., 2018; Tom-
china et al., 2021; Tomchina, 2022] , when the function
F represents a characteristic of the process (see Sec. 4).

2.4 Feasible generalizations
The results obtained may be easily generalized for the

cases of any periodic and random effects. The case of
small deviations ∆x was covered above. It has been
shown that their contribution to the average value of a
function is of the order of a squared deviation ampli-
tude. In many cases, and in the case of finite devia-
tions, it is quite easy to find the vibration-transformed
function F . Therefore, for f(x) = x2 + bx + c,
F (x0) = x2

0+bx0+c+ 1
2x

2
1 is true at x = x0+x1 sinωt

and F (x0) = x3
0 + ax2

0 + (b + 3
2a

2)x0 + c + 1
2ax

2
1 is

true at f(x) = x3 + ax2 + bx + c, which is consistent
with Eq. (6). Correspondingly, the roots of the equation
f(x) = 0 also change and may be eliminated.

3 Certain examples of average values
All formulas given below are approximate and ob-

tained by using the two first terms of decompositions,
given in Eq. (5) and its special cases (6) and (7).

3.1 Algebra
With xs and ∆xs obtained using Eqs. (1) and (4), i.e.

a = a0+a1 sin(ωt+β1), b = b0+b1 sin(ωt+β2), (8)

the following is true:

⟨ab⟩ = a0b0 +
1

2
a1b1 cos(β1 − β2);〈a

b

〉
=

a0
b0

+
1

2

b21
b20

[
a0
b0

− a1
b1

cos(β1 − β2)

]
;〈

a2
〉
= a20 +

1

2
a21;

〈
a3
〉
= a30 +

3

2
a0a

2
1;〈

(a+ b)2
〉
= (a0 + b0)

2+

1

2

[
a21 + b21 + 2a1b1 cos(β1 − β2)

]
.

Scalar product of vectors
1) a = varia, b = varia, α = const. Here a and b

are defined by Eq. (8), α is angle between the oscillating
vectors a⃗ and b⃗.〈

a⃗ · b⃗
〉
= a0b0 cosα+

1

2
a1b1 cosα cos(β1 − β2).

Note that many physical quantities are expressed in
terms of scalar or vector products.

2) a = const, b = const, α = varia (α = α0 +
α1 sinωt). 〈

a⃗ · b⃗
〉
= ab cosα0(1−

1

4
α2
1).

3) a = varia, b = varia, α = varia (general case, three
variables).〈
a⃗ · b⃗

〉
= a0b0 cosα

+
1

4

[
cosα0

(
2a1b1 cos(β1 − β2)− α2

1a0b0
)
−

2α1 sinα0 (a1b0 cos(β1 − β3) + b1a0 cos(β2 − β3))] .

Module of vector product
The formulas are similar to the expressions for the

scalar product when cosα is replaced with sinα and vice
versa. In cases 1) and 2), the following is true:

1)
〈∣∣∣⃗a× b⃗

∣∣∣〉 = a0b0 sinα+
1
2a1b1 sinα cos(β1−β2);

2)
〈∣∣∣⃗a× b⃗

∣∣∣〉 = ab sinα0(1− 1
4α

2
1).

The respective behaviour of the roots of the equation
f(x) = 0 is covered in Sec. 2.2.

3.2 Geometry
Area of a circle

S =
〈
πr2

〉
=

〈
π (r0 + r1 sin(ωt+ β1))

2
〉
= πr20 +

π

2
r21.

The average area of a circle increases even with the
average radius and circumference remaining unchanged.
This may be explained by a transition to a certain surface
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as a result of averaging, that is, by a change in the geom-
etry. The works by Mark Levi (namely, [Levi, 1999]) on
the relationship between geometry and physics using the
example of the Kapitza pendulum and the Paul trap may
be mentioned in this regard.

Ball volume

V =

〈
4

3
πr3

〉
=

4

3
π
〈
[(r0 + r1 sin(ωt+ β1)]

3
〉

=
4

3
πr30 + 2πr0r

2
1.

Rectangle area

S = ⟨ab⟩ = a0b0 +
1

2
a1b1 cos(β1 − β2).

Volume of a cuboid

V = ⟨abc⟩ = a0b0c0 +
1

2
a0b0c0

[
a1a2
a0b0

cos(β1 − β2)

+
a1a3
a0c0

cos(β1 − β3) +
a2a3
b0c0

cos(β2 − β3)

]
.

Volume of a cube

Vk =
〈
a3
〉
= a30 +

3

2
a0a

2
1.

Distance between two points on a plane, the Pythagorean
theorem.
When the sides of a right triangle are expressed as

a = a0+a1 sin (ωt+ β1) , b = b0+b1 sin (ωt+ β2) ,

the average value of the square of the hypotenuse
〈
c2
〉

will be: 〈
c2
〉
= a20 + b20 +

1

2
(a21 + b21).

Similarly to a circle,
〈
c2
〉

differs from the sum of the
squares of the sides, despite the fact that the average val-
ues for the sides have not changed. It should be noted
that

〈
c2
〉
̸= (⟨c⟩)2 (the average value of a function is

not equal to a function of the average value) and, un-
like (⟨c⟩)2,

〈
c2
〉

does not depend on the phase difference
β1 − β2. With that, both of these quantities are greater
than the sum of the squares of the sides. A more general
formula for the distance between two points on a plane
that oscillate in arbitrary directions may thus be easily
obtained.

3.3 Trigonometry
Let us consider certain relations, assuming, as be-

fore, that α = α0 + α1 sin (ωt+ β1) , γ = γ0 +

γ1 sin (ωt+ β2):

⟨sinα⟩ = (sinα0)
(
1− α2

1/4
)
;

⟨cosα⟩ = (cosα0)
(
1− α2

1/4
)
;

⟨tanα⟩ = (tanα0)

[
1 +

1

2

(
tan2 α0 + 1

)
α2
1

]
;

⟨sin 2α⟩ = (sin 2α0)
(
1− α2

1

)
;

⟨cos 2α⟩ = (cos 2α0)
(
1− α2

1

)
;

⟨sin (α+ γ)⟩ = sin (α0 + γ0)×[
1− 1

4

(
α2
1+2α1γ1 cos (β1−β2)+γ2

1

)]
;

⟨cos (α+ γ)⟩ = cos (α0 + γ0)×[
1− 1

4

(
α2
1+2α1γ1 cos (β1−β2)+γ2

1

)]
;

⟨tan (α+ γ)⟩ = tan (α0 + γ0)×[
1 +

1

2

(
1 + tan2 (α0 + γ0)

)
×(

α2
1 + 2α1γ1 cos (β1 − β2) + γ2

1

) ]
.

3.4 Elements of mathematical analysis
Derivative

f ′ (x) =f ′ (x0 + x1 sinωt) = f ′ (x0)+

f ′′ (x0)x1 sinωt+
1

2
f ′′′ (x0) (x1 sinωt)

2+. . . ,

⟨f ′ (x)⟩ ≈ f ′ (x0) +
1

4
f ′′′ (x0)x

2
1.

For a definite integral
∫ b

a
f(x)dx = Φ(b)−Φ(a), where

Φ′(x) = f(x), Φ(x) is the primitive, and a and b are the
variables established by Eq. (8), we obtain

〈∫ b

a

f(x)dx
〉
=

⟨Φ [b0 + b1 sin(ωt+ β2)]− Φ [a0 + a1 sin(ωt+ β1)]⟩

= Φ(b0)− Φ(a0) +
1

4

[
Φ′′(b0)b

2
1 − Φ′′(a0)a

2
1

]
=

∫ b0

a0

f(x)dx+
1

4

[
f ′(b0)b

2
1 − f ′(a0)a

2
1

]
.

For an indefinite integral
∫
f(x)dx, assuming that x =

x0 + a sinωt, according to Eq. (6), we get〈∫
f(x)dx

〉
= Φ(x0) +

1

4
f ′(x0)a

2 + C,

where C is an arbitrary constant.
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3.5 On the averaging result
The above examples of expressions for the average val-

ues of functions provide a certain specification for the
multiplication table, the formula for the area of a circle,
the Pythagorean theorem, etc. In particular, the aver-
age value of a product of two oscillating quantities, per-
ceived as numbers 2 and 2, may be both greater than
4, less than 4, and also equal to 4. When considering
functions xy, x2,

√
x, and ax with oscillating arguments

x and y, the following is true for the average values:
2 · 2 ̸= 22 ̸=

√
16 ̸= 4 and 0 · 0 ̸= 02 ̸= 0.

In a general case, deviations from the “unperturbed”
values may always either be ≥ 0 or ≤ 0, or may have
any sign and be equal to zero, as in the case of a product
of two quantities.

Let us also note that parameter oscillations may not
violate the rule that the arithmetic mean of numbers is
never less than their geometric mean (the Cauchy in-
equality).

4 Industrial processes with parameter oscillations
4.1 Cases of one or two parameters

When analysing the effects of parameter oscillations
in industrial processes, it is assumed that the function of
y = f (x1, x2, ..., xk) is a measure of process efficiency.
In this case, for a single parameter of x = x1, the aver-
age value of the indicator is determined by formula (6).
It follows from this formula that, if f ′′ (x0) > 0 and
the curve is concave, oscillations of the parameter would
improve the process efficiency and, if f ′′ (x0) < 0 (the
curve is convex), its efficiency would be lower (see Fig-
ure 3). The most significant process improvement is
therefore observed near the minimum points and the low-
est process efficiency is near the maximum points. Note
that this case is mentioned in the book [Blekhman, 2018]
(pp. 672–673).

For a case of two parameters, the average value of the
indicator is expressed by Eq. (7). It is essential that,
in this case, process efficiency may be affected both
through the selection of oscillation amplitudes a1 and a2
and using the phase difference of the oscillations.

4.2 Examples for the single variable case
4.2.1 Effects of oscillations in the particle size

distribution of a material on its sizing performance
The sizing quality for a material is usually assessed by
the recovery of the negative size classes (−δ) (finer than
a certain size δ) into the fine product ε−(δ) or by the
Hancock classification efficiency E−(δ). Indicators as-
sociated with the narrow class recovery curve are also
used (the selection of any calculated class is not cov-
ered in this paper). The Hancock criterion has been bor-
rowed from the field of ore processing efficiency evalu-
ation, where it is used to assess the recovery of a metal
or mineral into the concentrate. The sizing process no-
tably implies no clear differentiation between valuable
and non-valuable components (valuable metal and waste

rock). It is believed that particles smaller than δ in the
fine product represent the valuable component (an equiv-
alent of metal), while larger particles δ represent waste
rock. The recovery curve ε− usually has a characteristic
S-shape with a kink resembling a Gaussian distribution
function, i.e. has a form similar to the part of the curve
in Figure 3 to the right of the maximum point. The effi-
ciency curve E− in the area of practical interest is con-
cave with a maximum point, similar to the central part
of the curve in Figure 3. Numerous attempts are known
to approximate these indicators by various dependencies
(for example, see [Povarov, 1978] for hydrocyclones).

A qualitative assessment of the effects of oscillating
particle size distributions, for example, fluctuations in
the amount of negative classes in the initial material,
may therefore be made using the shapes of the curves
in Figure 3. In accordance with Eq. (6) for the case of a
single parameter and the curve shape visualization rule,
the values will be decreasing on the section of the re-
covery curve ε− from the maximum point xmax to the
point of inflection x∗

2 and will be increasing at x > x∗
2.

The curve will become flatter and further away from its
ideal stepped shape. The values of E− will decrease ac-
cordingly. Therefore, parameter oscillations will reduce
process efficiency.

Knowing the dependencies of E− and ε− on the pa-
rameter, the respective quantitative change may be easily
estimated using Eq. (6). When applied to separation in
hydrocyclones, such an assessment may be conveniently
performed using the dependences of efficiency E− and
recovery ε− on the amount α(δ) of particles smaller than
δ in the initial material, as proposed in [Povarov and
Blekhman, 1978] in order to predict the separation per-
formance.

4.2.2 Effects of oscillations in metal grades in the
ore on its recovery into the concentrate The impor-
tance of this dependence is due, in particular, to the fact

Figure 3. Efficiency indicators with one parameter: F is the indicator
or with parameter oscillations, f is the initial indicator;⊕ are indicator
upward increments, ⊖ are indicator downward increments; and x∗

1 ,
x∗
2 are the inflection points of the curve y = f (x)

.
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that it may be used to assess the efficiency of ore blend-
ing upstream of ore processing or metallurgical pro-
cesses.

Metal recovery into the concentrate ε is by definition
expressed as

ε = γ
β

α
=

α− υ

β − υ

β

α
,

where α, β and υ are the metal grades in ore, concen-
trate, and tailings, respectively, and γ is the concentrate
yield.

Considering, as is often believed [Bastan and
Klyuchkin, 1976; Mashevsky et al., 1977; Pokhodzey,
1979; Bastan et al., 1979; Boloshin and Gindin, 1981],
that the quantities of β and υ may be deemed virtually
constant (regulated and largely sought to be stabilized
during the process), we obtain

ε(α) =
β

β − υ

(
1− υ

α

)
. (9)

In [Bastan and Klyuchkin, 1976; Mashevsky et al., 1977;
Pokhodzey, 1979; Bastan et al., 1979; Boloshin and
Gindin, 1981], this dependence is sometimes referred
to as the estimated separation performance curve and
is analysed using the theory of probability, assuming
that α is a random variable. Here, we will assume that
α = α0 + α1 sinωt and that the oscillation period is
much longer than the process stabilization time. Then,
according to (6) and (9), we obtain

⟨ε⟩ = ε(α0)−
1

2

βυ

β − υ

α2
1

α3
0

. (10)

Thus, the wider spread of values for α always reduces
the recovery of metal into the concentrate, and Eq. (10)
allows us to estimate this reduction. Qualitatively, this
result follows from the fact that the expected separation
performance curve (9), as well as the real curve, are both
convex.

Note that Eq. (10), coincides (up to the numerical coef-
ficient in the second term) with the equation obtained in
[Bastan and Klyuchkin, 1976] (further detailed in ([Ma-
shevsky et al., 1977] and subsequently in [Pokhodzey,
1979]) for the changes of ε with α parameter oscilla-
tions within ᾱ± σ (where σ is the standard deviation of
α from the average grades). According to [Bastan and
Klyuchkin, 1976; Mashevsky et al., 1977; Pokhodzey,
1979], the change formula for ε takes the following
form:

Mε = −k
βυ

ᾱ(β − υ)
V 2
α ,

where k > 0 is a numerical coefficient.
In Eq. (10), the average value of ᾱ is equivalent to α0,

σα is equivalent to α1, and the coefficient of variation
Vα = σ/ᾱ is equivalent to parameter α1/α0.

5 Examples of other applications
Similar to Sec. 4, the following two examples refer to

the simplest case of a single parameter.

5.1 Effects of oscillating gas content on the speed of
sound in a liquid

The speed of sound in a liquid depends on the avail-
ability of air bubbles in it and plays a decisive role in
the hydrodynamic effects. In particular, in a vibrating
open vessel filled with liquid, low values of the speed
of sound in the presence of bubbles are essential for the
occurrence of the effects causing air bubble immersion
deeper into the vessel and the flotation of heavy par-
ticles [Blekhman et al., 2008; Blekhman et al., 2011;
Blekhman et al., 2012].

The dependence of the speed of sound c on the volu-
metric gas content α may be established with acceptable
accuracy and in a wide range of values of α using the
Batchelor formula [Batchelor, 1968; Loitsyansky, 1970]:

c =
10√

α(1− α)
. (11)

The speed c is paradoxically small here and amounts
to 20±5 m/s at α = 0.2 ÷ 0.8. At α → 0 and α → 1,
Eq. (11) renders infinite values. A more accurate for-
mula rendering the speed of sound in water and in air at
α=0 and α=1, respectively, was obtained in [Blekhman
et al., 2009]. Here, however, we use the simpler Eq. (11).
With oscillating gas content α = α0 + α1 sinωt, the av-
erage value of ⟨c⟩, according to Eqs. (6) and (11), will
be

⟨c⟩ = 10√
α0(1− α0)

[
1 +

8(α0 − 1/2)2 + 1

16α2
0(1− α0)2

α2
1

]
.

Therefore, oscillations of α increase the average speed
of sound, with more significant increases at low and
high values of α and smaller increases near the mini-
mum point of α=0.5. In particular, the following is true:
c=20 m/s and ⟨c⟩ = 20(1 + α2

1) at α=0.5, and ⟨c⟩=20.2
m/s at α1=0.1; c=25 m/s and ⟨c⟩ = 25(1 + 4.20α2

1) at
α=0.2 and 0.8, and ⟨c⟩=26.05 m/s at α1=0.1. The in-
crease in ⟨c⟩ is also evident from the fact that the de-
pendency graph for c(α) is a concave curve (at α values
sufficiently away from the limit values).

5.2 Effects of body velocity oscillations on the the-
ory of relativity relations

The relativistic change in parameter values is described
by simple relations. For example, the reduction in the
body size l and the increase in body mass m with higher
vc = v/c ratios between body velocity v and the speed
of light A are expressed by the following equation:

l = l0
√
1− v2c , m =

m0√
1− v2c

, (12)
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where l0 and m0 are the length and mass of the body in
the reference frame relative to which the body is at rest,
respectively.

The length change graph is a decreasing convex curve,
and the mass change graph is an increasing concave
curve. According to the law of v = v0 + v1 sinωt, i.e.
vc = vc0 + vc1 sinωt, where vc0 = v0/c, vc1 = v1/c,
body velocity changes will therefore additionally reduce
the body length and increase its mass. Namely, accord-
ing to (6) and (12), the following will be true:

⟨l⟩ = l0

√
1− v2c0

[
1− 1

4 (1− v2c0)
2 v

2
c1

]
,

⟨m⟩ = m0√
1− v2c0

[
1 +

1 + 2v2c0

4 (1− v2c0)
2 v

2
c1

]
.

6 Similarities with other approaches
The approach proposed allows us to obtain mathemat-

ical relations for the average values of nonlinear func-
tions of oscillating quantities and is not initially associ-
ated with any specific problems. One can, however, draw
an analogy with the approach of vibrational mechanics,
an analytical research method for studying the effects
of vibration on nonlinear dynamic systems [Blekhman,
2000; Blekhman, 2012; Kremer, 2016; Blekhman and
Sorokin, 2016; Blekhman, 2018].

Similar to how vibrational mechanics represents me-
chanics in the perspective of an observer who ignores
rapid motion, the approach covered herein, which may
rather conditionally be referred to as oscillatory mathe-
matics, represents mathematics in the perspective of an
observer who perceives only average values of quanti-
ties. The mathematical averaging results are accurate in
this case (with due account of the discarded terms of a
higher order), while, in vibrational mechanics, they may
depend on the accuracy of the solution for the rapid mo-
tion equation.

The method for establishing the average values of ab-
stract quantities may be selected arbitrarily; however, the
variation of parameters in the physical ratios and laws
must not be in conflict with the physical principles these
ratios and laws are based on.

As mentioned previously, the above considerations
may also be associated with the concept of hidden pa-
rameters (the mechanics of systems with hidden param-
eters), if the oscillations are regarded as a result of the
effects of these parameters.

7 Conclusion
This paper demonstrates that an analysis of average

values of oscillating quantities in non-linear relations
renders a paradoxical result: ordinary, including elemen-
tary, dependencies become inaccurate or inapplicable.
This result is more than just a mathematical curiosity as
it may be tied to a number of complex nonlinear oscil-
latory phenomena of both fundamental and applied sig-

nificance. The above research complements the study on
the effects of vibration on dynamic systems described by
differential equations, while drawing attention to one of
their mathematical foundations.

Some applications are outlined for the approach, in-
cluding those aimed at improving industrial processes
by taking into account the perturbing effects and through
the use of vibration.

It appears that the data obtained may be used in the
theory of vibrational processes and devices, the theory of
measurement accuracy, the theory of control and optimal
processes, possibly in the theory of fuzzy sets, and in ap-
plied problems (such as the theory behind ore blending).
In this context, a number of generalizations are required,
the case of several parameters has to be considered in
more detail and ways have to be developed to implement
controlled parameter changes. Respective research is ex-
pected to be done in the future.
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