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Abstract
This paper describes an adaptive observer designed to

estimate the parameters of neural mass networks. Neu-
ral mass populations describe the dynamics of cortical
networks and are specifically designed to generate spon-
taneous electroencephalogram and evoked potentials –
the brain’s response to an external stimulus. The goal
of this work is to adjust the parameters of neural mass
models using electroencephalogram recordings from ex-
periments on registering evoked potentials. Both a single
neural mass population and the simplest network – two
connected neural mass populations – are considered.
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1 Introduction
An important problem at the intersection of several

fields of science, such as neurobiology, physics and con-
trol theory, is the study of the neuronal activity of the hu-
man brain. On the one hand, it is important to study the
causes of brain diseases such as epilepsy and schizophre-
nia [Milton and Jung, 2003; Ritsner, 2011] . On the other
hand, understanding how the dynamics of brain rhythms
change is important for predicting them. When imple-
menting the neurofeedback paradigm – a psychophysi-
ological procedure in which subjects are provided with
models of neuronal activity for the purpose of regulating
them online – delays associated with signal processing
occur [Smetanin et al., 2018; Plotnikov et al., 2019]. To
compensate for them, data obtained by predicting the dy-
namics of neuronal activity can be used. Both of these
problems can be solved by synthesizing mathematical
models of neuronal activity.

Electroencephalogram (EEG) is one of the simplest
and most widely used methods for recording brain dy-
namics. It has a high temporal resolution but a fairly
low spatial resolution. The advantages of this method
include its non-invasiveness, meaning it can be used
for almost any subject. However, because of this, the
recorded signal is quite noisy. This method can be used
to record both spontaneous EEG and evoked potentials
(EP), which are specific changes in the EEG caused by
external stimulation of sensory areas [Kropotov, 2009].
EEG and EP arise mainly due to the flow of extracel-
lular current associated with the summed postsynaptic
potentials in synchronously activated vertically oriented
neurons. With the help of spontaneous EEG, it is pos-
sible to determine such diseases as epilepsy [Sharmila,
2018], Parkinson’s disease [Silva et al., 2020], etc. The
method of evoked potentials is used to diagnose such dis-
eases as schizophrenia [Schielke and Krekelberg, 2022],
attention deficit hyperactivity disorder [Meachon et al.,
2021] and depression [Normann et al., 2007].

There are various mathematical models for describing
neuronal activity. On the one hand, these can be net-
works of single-neuron models, such as the Hodgkin-
Huxley [Hodgkin and Huxley, 1952], Hindmarsh-Rose
[Hindmarsh and Rose, 1984], or FitzHugh-Nagumo
[FitzHugh, 1961; Nagumo et al., 1962] models. Recent
work has shown that the oscillations of a synchronized
group of neurons can be described by the same equa-
tions as a single neuron, with the addition of noise [Pan-
teley and Lorı́a, 2017; Plotnikov and Fradkov, 2019].
Such synchronized groups of neurons form oscillators
that generate brain rhythms[Gerster et al., 2020; Sevas-
teeva et al., 2021; Sevasteeva et al., 2022]. On the other
hand, mathematical models can be used to describe the
activity of the cortex. The best-known such model is the
neural mass model (NMM) of Jansen and Rit [Jansen
and Rit, 1995]. Some parameters of such models can be
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calculated using anatomical data, while others are cho-
sen experimentally.

This paper will be focused on the study of NMMs.
Adaptive observers are used to estimate unknown pa-
rameters of the models. Some results on the synthesis
of observers for NMMs were obtained in recent works
[Postoyan et al., 2012; Liu et al., 2019; Sun and Liu,
2021; Plotnikov and Fradkov, 2024]. To adjust the model
based on real data, the observer should use only its out-
put, namely the potential difference in different areas of
the brain. The best observer, in the author’s opinion, for
this problem is the one proposed in the work [Postoyan
et al., 2012]. Therefore, it will be used to adjust the pa-
rameters in this paper. Note that there were attempts to
use the observer proposed by the author [Plotnikov and
Fradkov, 2024] to solve this problem, but they were un-
successful.

2 Preliminaries
In this section, experimental EEG data, an overview of

the NMM, and the adaptive observer proposed in [Pos-
toyan et al., 2012] will be provided.

2.1 EEG data
EEG data was provided by the group of J.D. Kropotov

from the N.P. Bechtereva Institute of the Human Brain,
RAS. The recording of EP is considered as EEG data.
Here it is a modification of the visual cued Go/NoGo
paradigm described in [Kropotov and Mueller, 2009].
The trials consisted of presentations of two stimuli with
an exposition of 100 ms and an interstimulus interval
of 1000 ms. There were also inter-trial intervals of
3000 ms. The average result of 100 trials was considered
as an EP recording, which is 3000 ms in length. The first
stimulus starts at 300 ms.

A 19-channel EEG was recorded in the frequency band
of 0.53 − 50 Hz and sampled at a frequency of 250 Hz.
The electrodes were placed according to the Interna-
tional 10 − 20 system. The equipment included the
Mitsar-201 electroencephalographic system (KE 0537)
and the ELECTROCAP electrode cap with 19 tin elec-
trodes. The channel under consideration is O1, which
corresponds to the visual cortex.

2.2 Neural mass model
NMM describes the dynamics of a cortical column

modeled by a population of pyramidal cells receiving ex-
citatory and inhibitory feedback from local interneurons.
Such a model can be used to model spontaneous EEG
and EP of humans. The model is described by a sys-
tem of six differential equations, which can be divided
into three blocks that describe excitatory and inhibitory
postsynaptic membrane potentials (PSPs).

ẋ1 = x2,

ẋ2 = Aaσ (x3 − x5)− 2ax2 − a2x1,

ẋ3 = x4,

ẋ4 = Aa [u+ C2σ (C1x1)]− 2ax4 − a2x3,

ẋ5 = x6,

ẋ6 = BbC4σ (C3x1)− 2bx6 − b2x5,

(1)

where x = (x1, . . . , x6)
T ∈ R6 is a state vector, while

y = x3 − x5 ∈ R is the output of the whole system.
Parameters A and B are proportional to the amplitude of
PSP and differ for excitatory and inhibitory cases. Their
standard values are A = 3.25 mV and B = 22 mV
[Rotterdam et al., 1982], but they can change depending
on several neuropeptides [Dodt et al., 1991]. Parame-
ters a and b are inversely proportional to the duration of
PSP and have fixed values: a = 100 s−1, b = 50 s−1

[Jansen et al., 1993]. Parameters C1, C2, C3, and C4 de-
scribe coupling forces for interconnection of pyramidal
cells and excitatory and inhibitory interneurons. They
are connected with each other as follows:

C1 =
5C2

4
= 4C3 = 4C4 = C,

where the value C defines the type of neural activity (the
standard value is C = 135 to describe alpha rhythm)
[Jansen and Rit, 1995]. The function

σ(v) =
2e0

1 + er(v0−v)
,

is a sigmoid, which serves to transform the average
membrane potential of a population of neurons into
the average density of action potential impulses. Here
e0 = 2.5 s−1, r = 0.56 mV−1 and v0 = 6 mV. u is
represented by a pulse density which can be any arbi-
trary function including white noise. This input repre-
sents ”spontaneous background” activity.

To simulate the EP, it is also necessary to add a signal
describing the visual stimulus to the system input func-
tion u. This can be done using the function:

u0(t) =
q(t− t0)

n e(t0−t)/w

wn
, (2)

where n = 7, w = 0.005, q = 0.5, and t0 is the moment
of the stimulus (in seconds).

Throughout this paper, the value of C is assumed to be
fixed. The goal is to adjust the values of parameters A
and B.

2.3 Two coupled neural mass models
Certain EP components can depend on the interaction

between two or more cortical columns. The visual cor-
tex is responsible for processing visual information. It is
mainly concentrated in the occipital lobe of each hemi-
sphere of the brain and is linked to the prefrontal cortex
via two other cortical areas: the prestriate cortex and the
inferotemporal cortex. Thus, there is a delay for the vi-
sual signal to reach the visual cortex. The delays are



298 CYBERNETICS AND PHYSICS, VOL. 13, NO. 4, 2024

modeled by linear transformation but with latency three
times longer, therefore ad ≈ a/3.

Here, two coupled NMMs are presented, which is a
simplest case of a network:

ẋ1 = x2,

ẋ2 = Aaσ (x3 − x5)− 2ax2 − a2x1,

ẋ3 = x4,

ẋ4 = Aa [u+ C2σ (C1x1) +K2x15]

− 2ax4 − a2x3,

ẋ5 = x6,

ẋ6 = BbC4σ (C3x1)− 2bx6 − b2x5,

ẋ7 = x8,

ẋ8 = Aaσ (x9 − x11)− 2ax8 − a2x7,

ẋ9 = x10,

ẋ10 = Aa [u2 + C2σ (C1x7) +K1x13]

− 2ax10 − a2x9,

ẋ11 = x12,

ẋ12 = BbC4σ (C3x7)− 2bx12 − b2x11,

ẋ13 = x14,

ẋ14 = Aadσ (x3 − x5)− 2adx14 − a2x13,

ẋ15 = x16,

ẋ16 = Aadσ (x9 − x11)− 2adx16 − a2x15,

(3)

Here, parameters A and B are supposed to be equiva-
lent for each model. Each model has two inputs: an ex-
ternal one u, u2, which can also be different for each
model, and the output of the other model. Two connec-
tivity constants, K1 and K2, attenuate the output of a
column before it is transmitted to the other.

2.4 Adaptive observer
Both models (1) and (3) have the following general

structure:

ẋ0 = A0x0 + φ0(y)θ,

ẋ1 = A1x1 + φ1(x0, u)θ,

y = C1x1,

(4)

where x0 ∈ Rn0 , x1 ∈ Rn1 are components of the state
vector, θ ∈ Rp is a vector of unknown constant parame-
ters, y ∈ R is an output, and u ∈ R is an input.

For ease of notation, rewrite (4) in the following form:

ẋ = Ax+ φ(y, u, x)θ,

y = Cx,
(5)

where x = (x0, x1), A = diag(A0, A1),
C = (0, C1) and φ = (φ0, φ1). Nonlinear functions
φ0 : R → Rn0 × Rp and φ1 : Rn0 × R → Rn1 × Rp

are globally Lipschitz and bounded. Matrices A0 and
A1 are Hurwitz.

Consider the following observer proposed in [Postoyan
et al., 2012]:

˙̂x = Ax̂+ φ(y, u, x̂)θ̂ + Γ(y − ŷ),

ŷ = Cx̂,

˙̂
θ = Γ̄(y − ŷ),

Ψ̇ = AΨ+∆φ(y, u, x̂), Ψ(0) = 0,

Ṗ = dP − dPΨTCTCΨP, P (0) = P (0)T > 0,

(6)

where Γ = ∆−1ΨΓ̄, Γ̄ = PΨTCT and
∆ = diag(In0 ,

1
dIn1), d > 0 is a constant parame-

ter.

Theorem 1. Let consider the system (5) and observer
(6). Suppose that the following conditions are satisfied:

1. The vector of unknown parameters θ is constant and
lies in a compact set.

2. The input u is known.
3. The output y does not contain noise.
4. For any signal u, y, x̂ belonging to L∞, there exist

a1, a2 ∈ R+, T ∈ R+ such that the solution

Ψ̇ = AΨ+∆φ(y, u, x̂), Ψ(0) = 0,

for all t ≥ 0 satisfies the inequality:

a1I2 ≤
t+T∫
t

ΨT(τ)CTCΨ(τ) d τ ≤ a2I2.

Then there exsists d∗ ≥ 1 such that for all d ≥ d∗ es-
timates (x̂, θ̂) asymptotically tend to (x, θ). In other
words, for all d ≥ d∗, there exists βd ∈ KL
such that for all input u and any initial conditions
P (0) = P (0)T > 0, x̃(0), θ̃(0) the following inequality
is fulfilled:∣∣∣(x̃(t), θ̃(t))∣∣∣ ≤ βd

(∣∣∣(x̃(0), θ̃(0))∣∣∣ , t) , ∀t ≥ 0,

where x̃ = x− x̂, θ̃ = θ − θ̂.

3 Main result
We begin our experiments with a simulation of the gen-

eration of EP using a single NMM (1). The standard val-
ues of parameters A = 3.25 and B = 22 are chosen,
and initial conditions x(0) are normally distributed with
mean 0 and variance 1. The input u is Gaussian noise
with a mean of 100 and a variance of 302. Also, input
u contains two visual stimuli (2) at the moments of time
t0 = 300 and t0 = 1400 ms. The simulation duration
is 3000 ms, which corresponds to the EEG recording.
To observe the results of parameter adjustment after the
transient period, we consider a longer output y, which is
obtained by concatenating the equivalent outputs of du-
ration 3000 ms.
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The goal is to determine the unknown to observer pa-
rameters A and B using only the output y of the NMM.
The initial conditions for the observer are as follows:
x̂(0) = 0, θ̂(0) = 0, Ψ(0) = 0 and

P (0) =

[
4 1
1 5

]
.

The designer parameter d is equal to 2.

Figure 1. Adjustment of unknown parameters in the NMM (1) using
its output: (a) Dynamics of the NMM output y (black), dynamics of
the observer (6) output ŷ (blue). (b) Dynamics of tunable parameters
A (red) and B (blue).

Results of the simulation are shown in Fig. 1. The tran-
sient period is omitted. In Fig. 1(a), the black curve cor-
responds to the output y of the NMM (1), while the blue
curve represents the output ŷ of the observer (6). It can
be seen that these two outputs almost coincide. There
are two pronounced spikes corresponding to the visual
stimuli (2). Figure 1(b) shows the dynamics of two ad-
justable parameters, A (red) and B (blue). Their average
values are A = 3.25 and B = 22.09, respectively. It
can be observed that the estimated parameters converge
to the true values.

Now we use the EEG recording instead of the NMM
output y. The EEG signal was filtered using a fourth-
order Butterworth filter [Rabiner, 1975] to extract noise
(in this case, a signal with a frequency greater than
30 Hz). To obtain the input u, the extracted noise was
multiplied by 200 and 100 was added to it to produce
noise similar to that in previous expirement. Note that
due to latency, the reaction to the stimulus in the real data
is delayed by approximately 70 ms. Therefore, the added
visual stimuli (2) should be at time points t0 = 370 and
t0 = 1470 ms.

Figure 2 shows the results of the simulation. The
transient period is also omitted. In Fig. 2(a), the black
curve corresponds to the experimental data (the average
recording of EP from channel O1), and the blue curve
represents the output ŷ of the observer (6), as before.
Tunable parameters A and B, presented in Fig. 2(b), do

not tend to constant values, but we can calculate their
average values: A = 2.54, B = 22.8. The red curve in
Fig. 2(a) shows the dynamics of the output y of NMM
with the obtained average parameters. It can be seen
that this model simulates the upper spikes well, but does
not cover the low-frequency dynamics. This is because
we chose the value C = 135 for generating alpha ac-
tivity (signal with a frequency of 8 − 12 Hz), but EEG
recording contains all rhythms (signal with a frequency
of 0.53− 50 Hz).

Figure 2. Adjustment of unknown parameters in the NMM (1) using
real data: (a) EEG recording (black), dynamics of the observer (6)
output ŷ (blue), dynamics of the NMM output y (red) with obtained
average parameters A and B. (b) Dynamics of tunable parameters A
(red) and B (blue).

To account for the delay that occurs during visual sig-
nal transmission, we can consider two coupled NMMs
(3). The values of parameters and initial conditions are
the same as in the first experiment, with K1 = 1400,
K2 = 100, and ad = 30. The input to the second col-
umn, u2, is the same as u, but it does not contain the
visual stimuli (2). We will study how the reaction to the
visual stimuli is transferred to the second model.

Figure 3. Dynamics of outputs from two coupled NMMs (3): output
of the first NMM (blue), output of the second NMM (black).

This is shown in Fig. 3: one can see that the output of
the second NMM (black) also reacts to the visual stim-
uli, although its input does not include them. There is a
delay in the reaction of approximately 70 ms, which is
comparable to the delay observed in experimental data.
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Figure 4. Adjustment of unknown parameters in two coupled NMMs
(3) using the output of the second column: (a) Dynamics of the second
NMM output y (black), dynamics of the observer (6) output ŷ (blue).
(b) Dynamics of tunable parameters A (red) and B (blue).

Now we can check how the observer (6) copes with
this problem. The parameters A and B are assumed to be
unknown. The initial conditions for the observer remain
the same as before. The simulation results are shown in
Fig. 4 (the transient period is always omitted). In Fig.
4(a), the black curve corresponds to the output y of the
second NMM (3), while the blue curve represents the
output ŷ of the observer (6). As before, these two outputs
almost coincide. Figure 4(b) shows the dynamics of two
adjustable parameters, A (red) and B (blue), whose av-
erage values are A = 3.25 and B = 22.14, respectively:
the estimated parameters converge to the true values.

The last experiment deals with a real data: the EEG
recording is used instead of the second NMM output
y. The input u and u2 are the extracted noise multi-
plied by 200 and 100 added to it. The visual stimuli (2)
added only to the input of the first NMM u at time points
t0 = 300 and t0 = 1400 ms excluding delay.

Figure 5. Adjustment of unknown parameters in two coupled NMMs
(3) using real data: (a) EEG recording (black), dynamics of the ob-
server (6) output ŷ (blue), dynamics of the second NMM output y
(red) with obtained average parameters A and B. (b) Dynamics of
tunable parameters A (red) and B (blue).

Figure 5 shows the results of the simulation with the
transient period omitted. In Fig. 5(a), the black curve
corresponds to the experimental data, and the blue curve
represents the output ŷ of the observer (6), as before.
Tunable parameters A and B, presented in Fig. 5(b),
also do not tend to constant values and have the follow-
ing average values: A = 1.32, B = 0.98. The red curve
in Fig. 5(a) shows the dynamics of the output y of the
second NMM with the obtained average parameters. In
this experiment, one can see that model (3) captures the
delay arising from the visual signal transmission. The
output ŷ of the observer (6) repeats the recording’s dy-
namics quite well. However, simulating the output of
two coupled NMMs with the obtained average parame-
ters did not yield good results.

4 Conclusion
In this paper, it is shown that the observer proposed in

[Postoyan et al., 2012] can be used to adjust the param-
eters of NMMs. This is true for both cases: when using
the model’s output and when working with EEG data in
the case of recording EPs. The analysis includes situa-
tions with a single model and with two coupled NMMs.
When the parameters are adjusted based on the output of
the NMM, the observer accurately estimates them. This
applies to both scenarios: one population and two cou-
pled populations.

When considering the adjustment of parameters for a
single NMM using EEG data, it is necessary to take
into account the 70 ms delay that occurs during signal
transmission. In this case, we can calculate the aver-
age parameter values at which the NMM will replicate
the original EEG signal but without accounting for the
low-frequency component. This is because, with fixed
parameters, the NMM generates one rhythm, while the
recording of real data is a signal containing all frequen-
cies.

If we consider adjusting the parameters of two coupled
NMMs using EEG data, modeling is performed without
taking into account the delay. In this scenario, the ob-
server replicates the dynamics of the original signal quite
well, but with constant parameter values, the model pro-
duces a signal that does not resemble the original data.
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