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Abstract 
The paper deals with  gyroscopic  stabilization of unstable 
linear mechanical  systems  with positive definite mass 
and stiffness matrices, respectively, and an indefinite 
damping matrix. A stabilization is obtained by adding a 
suitable skew symmetric gyroscopic matrix to the 
damping matrix. After investigating several special cases 
we find an appropriate solution of the Lyapunov matrix 
equation for the general case. An example shows the 
deviation of the stability limit found by the Luapunov 
method from the exact value. 
 
Introduction 
Only few papers are dealing with indefinite damping 
matrices in linear systems of 2nd order differential 
equations. Indefinite damping matrices can cause 
instability. In the meagre literature on the subject we can 
find remarks that modelling of sliding bearings and 
cutting of metals can lead to negative damping (dry 
friction) and therefore to instability (self-excited 
vibrations).  
One of the motivations for the present work is the 
industrial problem of avoiding shrieking of car breaks. 
Models show negative damping terms in the governing 
equations induced by a decreasing friction characteristic, 
see [1]. 
Consider a linear mechanical system of differential 
equations of the form 
                                                            
                                                           

0=++ xKxDxM &&&  .                                                (1) 
                                             
The mass matrix M  and the stiffness matrix K  are both 
real symmetric and positive definite 
( 0,0 >=>= KKMM

TT ), and the symmetric 

damping matrix DD
T
=  is assumed to be indefinite. In 

the following we choose IM = (the identity matrix). 
The system (1) can be stable or unstable due to the 
indefinite damping matrix. Let us assume instability, then 
the question arises how to stabilize the system. 
 
 If we stick to linearity, the addition of a gyroscopic force 
xG &  with a skew-symmetric matrix )(, GGG

T
!=  on 

the left hand side of equation (1) might perform a desired 
gyroscopic stabilization.  

 
 
Special cases 

I) In the case of sufficiently small damping a 
simple perturbation approach leads to a 
condition for system 

0=++ xKxDxI &&&  to be unstable as 
well as to a condition for the system 

0)( =+++ xKxGDxI &&&  to be 
stable, see [2]. 

II) Let the unstable system (1) have a form 
where all diagonal entries of the indefinite 
matrix D  are positive (this can always be 
achieved by a change of coordinates). 
Moreover, let K  be diagonal. Then the 
gyroscopic matrix 

              G with ikik dg =  for ki < , 0=kkg ,   

               and ikik dg !=  for ki >  will stabilize 
               the system. 
III) System 

0,0)( >=+++ cxIcxGDxI &&& , is 
stable if and only if GDB +=  is 
positive stable, which means that all 
eigenvalues of B  have positive real 
parts.                 

 
 
Solution of the Lyapunov matrix equation 
We rewrite system 
                                                 

0)( =+++ xKxGDxI &&&                                      (2)                                                                   
 
as a first order system (3) 
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System (3) is stable, if there exist symmetric matrices 

0>P  and 0!Q  which satisfy the Lyapunov matrix 
equation. 
                                                               

.QLPPL
T

!=+                                                 (4) 



 
The solutions P and Q  to the Lyapunov equation (4) 
are  (5) 
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We have to determine suitable matrices SR, and 
T such that the matrices P and Q  in (5) are positive 
definite and positive semi-definite, respectively.  
 
Theorem  Let GDB += be positive stable and 

let BK
1! and 1!

! KB
T have no eigenvalues in 

common (this is e.g. the case if BK
1!  is positive 

stable). Then  
1.              HSBBS

T
=+                                      (6) 

with an arbitrary symmetric matrix 0>H  has a 
unique solution .0>=

T
SS  

 2.)           SKKSKVBBVK
T

!=+               (7)                                                 

has a unique skew-symmetric solution T
VV != . 

 
Sufficient conditions for stability of system (2) are  
a.)       0!""

T
TTH          with    VKT = . 

b.)     0
1

>!
! T
TSTR         with   BTSKR += . 

 
Proof: After solving equation (6) we want to find 
matrices T and 0>R  such that    

0
11

=+=
T
TKKTQ  and 

0
12

=+!= TBRKSQ . 0
11
=Q  implies 

VKT = with a skew-symmetric matrix .V To satisfy 

0
12
=Q we put first the skew-symmetric part of 

12
Q  

to be zero. This means solving the 2/)1( !nn  linear 
equations (7) for the 2/)1( !nn  unknowns in .V  

The symmetric part of 0
12
=Q  results in 

TBKSR += . In this way we end with 
0

211211
=== QQQ . One of the conditions for 

stability of system (2) is 0!Q which leads to 

0
22
!Q  and means a.). If this condition is not 

satisfied, we can not use the assumed matrix G  as a 
stabilizing matrix, and we have to start the procedure 
again with another choice of G . 

If 0!Q , we still have to investigate whether 0>P . 
This can be done using condition b.) 
 
The following example shows the deviation of the 
stability limit found by this direct method of Lyapunov 
from the exact value. 
 
Example 
Let system (1) have the form  
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 with                        

,0,0
21
<> dd tr ,0,0)( 21 >>+= KddD  

tr 0)( 1
>

!
DK .                                                         (9) 

For sufficiently small values of 
12
k the system is 

unstable. We want to stabilize the system by adding a 
term xG &  where  
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GDB   is positive stable which 

means 
21

2 ddg !> . To this end we choose in (6)  

0>H as !
"

#
$
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&

''
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=

221

211

dgdd

dddg
H .  

The conditions (9) are sufficient for solving the 
matrices TVS ,, , and R  along the guidelines of the 
theorem. For the sake of simplicity we choose in the 
following 0

12
=k . Then condition a.) of the theorem 

results in  
                    2

21

2 xddg !"       with      

( )
( )( )

11

12221121

2

2211 !
++

"
+=

dkdkdd

kk
x .       (10)                       

It can be shown that in our example all values of 
2
g satisfying (10) automatically satisfy the condition 
b.) of the theorem such that condition a.) alone 
represents the stability requirements. It is interesting to 
compare (10) with the condition for asymptotic 
stability gained by Routh-Hurwitz 

                                                              
xddg

21

2
!" .                                               (11)                         

Finally we mention that the formulas (10) and (11) 
have to be changed slightly if 0

12
!k . We can 



conclude that the conditions tr 0)( >D  and 

tr 0)( 1
>

!
DK are necessary and sufficient for 

gyroscopic stability of system (8). 
 

Concluding remarks 
Although damping matrices GDB +=  need not to 
be positive stable for the stability of system (2) this 
assumption is convenient and tempting, since it is 
successful in special cases like III). Under this 
condition we solved the Lyapunov matrix equation (4) 
and received the above theorem. For the shown 
example condition b.) of the theorem is unnecessary. It 
is an open question whether condition b.) can be 
skipped as well in  the case of matrix order 2>n . In 
this case the two conditions tr 0)( >D  and 

tr 0)( 1
>

!
DK  are only necessary but in general not 

sufficient for gyroscopic stabilization with help of the 
above theorem. For  2>n , a numerical procedure is 
suitable for computation of the matrices TVS ,, , and 
R . It is then convenient to choose IH = in (6). The 
procedure of the theorem can be extended easily to 
systems (2) where the stiffness matrix contains an 
additional skew-symmetric part. 
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