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Abstract: The stability of adaptive control systems has been studied extensively
for minimum phase systems, mainly for model reference adaptive systems, but
complete stability proof for non-minimum phase systems have not been given. In
this paper, the stability of two types of self-tuning controllers for discrete time
minimum and non-minimum phase plants is studied, namely: recursive estimation
of the implicit self-tuning controller parameters based on generalized minimum
variance criterion (REGMVC), and another based on generalized minimum vari-
ance criterion - β equivalent control approach (REGMVC-β). Stability of the
algorithms are proved by the Lyapunov theory.
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1. INTRODUCTION

Åström and Wittenmark (Astrom and Witten-
mark, 1973) developed and studied the conver-
gence of the implicit self-tuning controller in a
stochastic setting. The stability of self-tuning al-
gorithms for Model Reference Adaptive Systems
(MRAS) have been studied for the strictly positive
real model by Landau (Landau, 1980)(Landau,
1982). Latter on, Johansson (Johansson, 1986)
studied the stability of MRAS for a minimum
phase system, using Lyapunov theory. Global con-
vergence for a class of adaptive control algorithms
applied to discrete-time single-input single-output
(SISO) and multi-input multi-output (MIMO) lin-

ear systems were studied for the minimum vari-
ance criterion in a seminal paper by Goodwin,
et al. (Goodwin et al., 1980). However in these
approaches the considered system should be min-
imum phase and the extension to consider the
measurement noise may be difficult.

Extending the results of Åström (Astrom and
Wittenmark, 1973), Clarke and Gawthrop (Clarke
et al., 1975) proposed the Generalized Minimum
Variance Control (GMVC) for non-minimum phase
systems, using a cost function which incorpo-
rates system input and set-point variation. For
the case of the unknown system parameters, the
unknown parameters are estimated using a re-



cursive least-squares algorithm. Latter, in (Clarke
et al., 1979) the convergence of the closed-loop
system is analyzed using the positive real condi-
tion. In (Gawthrop, 1980) some stability analysis
are given based on the notion of dissipative sys-
tems and conicity properties. However a complete
global stability proof of self-tuning control for
non-minimum phase systems have not been yet
studied.

Sliding mode control (SMC) based on the variable
structure systems (VSS), in the continuous-time
case, is not robust when uncertainty excess the
bound assumed in the design. Slotine (Slotine
and Li, 1964) combined variable structure and
adaptive control to solve this problem. Furuta
(Furuta, 1993a) presents a discrete-time VSS type
method for the case where systems parameters are
unknown. The VSS is designed based on minimum
variance control (MVC) or generalized minimum
variance control (GMVC) using recursive param-
eter estimation. Extending (Furuta, 1993a), in
(Furuta, 1993b) a designed parameter is intro-
duced in the control law while maintaining the
use of VSS. The stability of self-tuning control
based on the certainty equivalence principle has
been studied in (Morse, 1992). This approach is
said implicit self-tuning control. However param-
eters are not identified accurately in the closed
loop, and the stability is not assured based on the
certainty equivalence principle.

In this paper, the stability of two types of implicit
self-tuning controllers for discrete time minimum
and non-minimum phase plants, when the system
parameters are unknown, is proved. One is the
combination of the generalized minimum variance
control and identification of control parameter
recursively (REGMVC), which has been used in
many self-tuning controllers. The stability of the
overall adaptive system is proved in this paper, al-
though the parameters are not assured to converge
to the true values. The other one (REGMVC-β)
considers delay in control input. Stability of the
algorithm is proved by the Lyapunov theory. It
is not necessary to use VSS nor any additional
condition to ensure closed loop system stability for
the algorithms studied in this paper. The stability
of the closed-loop system is proved in straight
forward way in comparison with Goodwin, et al.
(Goodwin et al., 1980), and may be extended to
the case including the measurement noise (Patete
et al., n.d.). This paper consider the non-minimum
phase systems contrary to (Goodwin et al., 1980)
paper.

The paper is organized as follows; in section 2,
the generalized minimum variance criterion is pre-
sented. Section 3 deals with parametric uncertain-
ties using self-tuning control based on generalized

minimum variance criterion. A simulate examples
is given in section 4. Concluding remarks are in 5.

2. GENERALIZED MINIMUM VARIANCE
CRITERION

This paper considers a single-input single-output
(SISO) time-invariant system. The representation
of the plant with input uk and output yk is

A(z−1)yk = z−dB(z−1)uk (1)

where A(z−1) and B(z−1) have no common factor
and z denotes the time shift operator z−tyk =
yk−t. In the Laplace transformation, z = esT0

where T0 is the sample period (for simplicity, and
without loss of generality, we may assume T0 = 1).

The polynomials A(z−1) and B(z−1) are assumed
to be known, and represented as:

A(z−1) = 1 + a1z
−1 + a2z

−2 + ... + anz−n

B(z−1) = b0 + b1z
−1 + b2z

−2 + ... + bmz−m

where b0 6= 0 and delay step d, is also assumed to
be known.

The objective of the control is to minimize the
variance of the controlled variables sk+d, that is
defined in the deterministic case as

sk+d = C(z−1)(yk+d − rk+d) + Q(z−1)uk (2)

The polynomials

C(z−1) = 1 + c1z
−1 + c2z

−2 + ... + cnz−n

Q(z−1) = q0(1 − z−1)

are to be designed, rk is the reference signal, and
the error signal ek is defined as ek = yk − rk.

The idea is similar to the discrete time sliding
mode control, see (Xinghuo and Jian-Xin, 1992)
and (Zinober, 1994). In the case of Goodwin, et al.
(Goodwin et al., 1980), Q(z−1) is not considered
and C(z−1) is chosen as C(z−1) = 1.

The polynomial C(z−1) is Schur, hence the error
signal will vanish if (2) is kept to zero. The polyno-
mial C(z−1) may be determined by assigning all
characteristic roots inside the unit disk of z-plane.

Equation (2) is rewritten as:

sk+d = G(z−1)uk + F (z−1)yk − C(z−1)rk+d (3)

where the polynomial G(z−1) is defined as G(z−1) =
E(z−1)B(z−1)+Q(z−1), and polynomials E(z−1)
and F (z−1) satisfy the equality,

C(z−1) .= A(z−1)E(z−1) + z−dF (z−1) (4)



Then the minimum generalized variance control
input needed to vanish sk+d in (2) is given by:

uk = −G(z−1)−1[F (z−1)yk − C(z−1)rk+d] (5)

where, the polynomials C(z−1) and Q(z−1) are
chosen to make the close-loop characteristic equa-
tion to have all zeros inside the unit disc. If the
process is minimum phase, Q(z−1) = 0 may be
chosen, which is the case of minimum variance
control.

3. SELF-TUNING CONTROL BASED ON
GENERALIZED MINIMUM VARIANCE

CRITERION

In the previous section, the generalized minimum
variance criterion was described for the case where
all plant parameters are known. Yet, in gen-
eral, plant parameters are not accurately known
and parameter identification should be performed.
The assumption here is that while model param-
eters are unknown, the structure of the model
(model order) is known a-priori.

When the parameters of the plant are not accu-
rately known, the controller polynomials G(z−1)
and F (z−1) are estimated, i.e.

F̂ (z−1) = f̂0 + f̂1z
−1 + ... + f̂n−1z

−n+1

Ĝ(z−1) = ĝ0 + ĝ1z
−1 + ... + ĝm+d−1z

−(m+d−1)

Let,

φT = [yk, yk−1, ..., yk−n+1, uk, ..., uk−m−d+1]

be a vector containing measured and control sig-
nal data,

θT = [f0, f1, ..., fn−1, g0, ..., gm+d−1]

the vector containing the controller parameters,
and

θ̂T
k = [f̂0, f̂1, ..., f̂n−1, ĝ0, ..., ĝm+d−1]

the estimation of θ.

Åström and Wittenmark (Astrom and Witten-
mark, 1989) have studied self-tuning estimation
by minimizing the least-squares criterion function

J =
1
2

k∑
j=0

[εj ]2 (6)

by the recursive least-squares algorithm

θ̂k = θ̂k−1 +
Pk−1φk−d

1 + φT
k−dPk−1φk−d

εk (7)

Pk = Pk−1 −
Pk−1φk−dφ

T
k−dPk−1

1 + φT
k−dPk−1φk−d

(8)

where εk is the prediction error.

In this paper the control law is:

uk = −Ĝ(z−1)−1[F̂ (z−1)yk − C(z−1)rk+d] (9)

where the estimates of control parameters are
given by (Furuta, 1993a),

θ̂k = θ̂k−1 +
Γk−1φk−d

1 + φT
k−dΓk−1φk−d

(10)

·[sk + C(z−1)rk − φT
k−dθ̂k−1]

Γk = Γk−1 −
Γk−1φk−dφ

T
k−dΓk−1

1 + φT
k−dΓk−1φk−d

(11)

The stability of the self-tuning control algorithm,
recursive estimates of controller parameters based
on generalized minimum variance criterion (REG-
MVC), is analyzed by using Lyapunov function as
follows:

Theorem 1. . Recursive estimates of controller pa-
rameters based on generalized minimum variance
criterion: Given Γ0 and θ̂0, the estimate θ̂k of the
controller (9) satisfies the recursive equations (10)
and (11), then the overall self-tuning controller
combining (9), (10) and (11) for system (1) is
stable.

Proof. sk+d is written as

sk+d = (12)

Ĝ(z−1)uk + F̂ (z−1)yk − C(z−1)rk+d + φT
k θ̃k+d

where θ̃k = θ− θ̂k. Using the control law (9), (12)
is rewritten as

sk+d = φT
k θ̃k+d (13)

Consider the candidate Lyapunov function:

Vk =
1
2
s2

k +
1
2
θ̃T

k Γ−1
k θ̃k, (Γ0 > 0) (14)

The time difference of (14) is:

4Vk = Vk − Vk−1 (15)

= −1
2
s2

k−1 +
1
2
θ̃T

k Γ−1
k θ̃k − 1

2
θ̃T

k−1Γ
−1
k−1θ̃k−1 (16)

+
1
2
s2

k

= −1
2
(θ̃k − θ̃k−1)T Γ−1

k−1(θ̃k − θ̃k−1) +
1
2
s2

k (17)

−1
2
s2

k−1 +
1
2
θ̃T

k (Γ−1
k + Γ−1

k−1)θ̃k − θ̃T
k Γ−1

k−1θ̃k−1



= −1
2
s2

k−1 −
1
2
(θ̃k − θ̃k−1)T Γ−1

k−1(θ̃k − θ̃k−1) (18)

+
1
2
θ̃T

k (Γ−1
k − Γ−1

k−1)θ̃k + θ̃T
k Γ−1

k−1θ̃k − θ̃T
k Γ−1

k−1θ̃k−1

−1
2
s2

k + s2
k

From (13), s2
k is

s2
k = θ̃T

k φk−dφ
T
k−dθ̃k (19)

substituting (19) into (18), the following relation
is derived:

4Vk = −1
2
(θ̃k − θ̃k−1)T Γ−1

k−1(θ̃k − θ̃k−1) (20)

−1
2
s2

k−1 +
1
2
θ̃T

k (Γ−1
k − Γ−1

k−1 − φk−dφ
T
k−d)θ̃k

+θ̃T
k Γ−1

k−1(θ̃k − θ̃k−1 + Γk−1φk−dφ
T
k−dθ̃k)

If

1
2
θ̃T

k (Γ−1
k − Γ−1

k−1 − φk−dφ
T
k−d)θ̃k (21)

+θ̃T
k Γ−1

k−1(θ̃k − θ̃k−1 + Γk−1φk−dφ
T
k−dθ̃k) = 0

then, 4Vk is proven to be negative semidefinite,
i.e. 4Vk ≤ 0.

From the first term on the left of (21) the following
is derived:

Γ−1
k − Γ−1

k−1 − φk−dφ
T
k−d = 0 (22)

Γk = (Γ−1
k−1 + φk−dφ

T
k−d)

−1 (23)

Γk = Γk−1− (24)

Γk−1φk−dφ
T
k−d(Γ

−1
k−1 + φk−dφ

T
k−d)

−1

this yields (11) by the matrix inversion lemma.

From the second term of (21) the following is
derived

θ̃k − θ̃k−1 + Γk−1φk−dφ
T
k−dθ̃k = 0 (25)

θ̃k + Γk−1φk−dφ
T
k−dθ̃k = θ̃k−1 (26)

(I + Γk−1φk−dφ
T
k−d)θ̃k = (27)

(I + Γk−1φk−dφ
T
k−d)θ̃k−1 − Γk−1φk−dφ

T
k−dθ̃k−1

θ̂k = θ̂k−1+ (28)

Γk−1φk−d(1 + φT
k−dΓk−1φk−d)−1φT

k−d(θ − θ̂k−1)

from (3),

sk = φT
k−dθ − C(z−1)rk (29)

thus (10) is derived.

Thus 4Vk ≤ 0, which implies that as k goes to
infinity sk and θ̂k − θ̂k−1 approach to zero then
the stability of the overall self-tuning is proved.
The stability is proved in straight forward way.
The results are just the extension of Goodwin,
et al. (Goodwin et al., 1980); but the proof is so
straight forward and simple.

(20) gives, sk shall vanish when 4Vk is negative
semidefinite for all k, and the generalized mini-
mum variance is minimized.

Remark 1. Note that we do not prove, or claim,
that θ̂k converges to θ. Instead each element of θ̂k

approaches to constant values.

Now, instead of (9), consider the following control
law,

uk = Ĝ(z−1)−1[C(z−1)rk+d − F̂ (z−1)yk + βsk](30)

where 0 < β < 1. Substituting (30) into (3), if
the controller parameters are known exactly, the
following relation is derived

sk+d = βsk (31)

The idea is similar to the introduction of an
additional control parameter to give system ro-
bustness. Some results on this topic are found
in (Furuta, 1993b). When (30) is used instead of
(9), the method will be referred as generalized
minimum variance criterion - β equivalent control
approach (GMVC-β). The following theorem, re-
cursive estimates of controller parameters based
on generalized minimum variance criterion - β
equivalent control approach (REGMVC-β), estab-
lishes overall system stability when (30) is used.

Theorem 2. . Recursive estimates of controller pa-
rameters based on generalized minimum variance
criterion - β equivalent control approach: Given Γi

and θ̂i, i = 0,−1,−2, ...,−d, the estimate θ̂k of the
controller (30) satisfies the recursive equations,

θ̂k = θ̂k−d +
Γk−dφk−d

1 + φT
k−dΓk−dφk−d

(32)

·[sk + C(z−1)rk − φT
k−dθ̂k−d + βsk−d]

Γk = Γk−d −
Γk−dφk−dφ

T
k−dΓk−d

1 + φT
k−dΓk−dφk−d

(33)

then the overall self-tuning controller combining
(30), (32) and (33) for system (1) is stable.

Proof. Using (12) and control law (30), sk+d is

sk+d = βsk + φT
k θ̃k+d (34)

The time difference of the candidate Lyapunov
function is given by:

4Vk = Vk − Vk−d (35)



where the candidate Lyapunov function is the
same as in (14). Then,

4Vk = (36)

1
2
s2

k − 1
2
s2

k−d +
1
2
θ̃T

k Γ−1
k θ̃k − 1

2
θ̃T

k−dΓ
−1
k−dθ̃k−d

= −1
2
s2

k−d − 1
2
(θ̃k − θ̃k−d)T Γ−1

k−d(θ̃k − θ̃k−d) (37)

+
1
2
s2

k +
1
2
θ̃T

k (Γ−1
k + Γ−1

k−d)θ̃k − θ̃T
k Γ−1

k−dθ̃k−d

= −1
2
s2

k−d − 1
2
(θ̃k − θ̃k−d)T Γ−1

k−d(θ̃k − θ̃k−d) (38)

+
1
2
θ̃T

k (Γ−1
k − Γ−1

k−d)θ̃k + θ̃T
k Γ−1

k−dθ̃k − θ̃T
k Γ−1

k−dθ̃k−d

−1
2
s2

k + s2
k

from (34), s2
k is

s2
k = (39)

β2s2
k−d + 2βsk−dφ

T
k−dθ̃k + θ̃T

k φk−dφ
T
k−dθ̃k

Substituting (39) into (38), the following relation
is derived

4Vk =
1
2
θ̃T

k (Γ−1
k − Γ−1

k−d − φk−dφ
T
k−d)θ̃k (40)

−1
2
(θ̃k − θ̃k−d)T Γ−1

k−d(θ̃k − θ̃k−d) + θ̃T
k Γ−1

k−d

·(θ̃k − θ̃k−d + Γk−dφk−dφ
T
k−dθ̃k + Γk−dφk−dβsk−d)

−1
2
s2

k−d(1 − β2)

If
1
2
θ̃T

k (Γ−1
k − Γ−1

k−d − φk−dφ
T
k−d)θ̃k + θ̃T

k Γ−1
k−d (41)

·(θ̃k − θ̃k−d + Γk−dφk−dφ
T
k−dθ̃k + Γk−dφk−dβsk−d)

= 0

then the difference of the candidate Lyapunov
function (35) is proven to be negative semidefinite,
4Vk ≤ 0.

From the first term on the far left of (41) the
following is derived:

Γ−1
k − Γ−1

k−d − φk−dφ
T
k−d = 0 (42)

Γk = (Γ−1
k−d + φk−dφ

T
k−d)

−1 (43)

Γk = Γk−d− (44)

Γk−dφk−dφ
T
k−d(Γ

−1
k−d + φk−dφ

T
k−d)

−1

which yields (33). From the second term of (41),

θ̃k − θ̃k−d + Γk−dφk−dφ
T
k−dθ̃k (45)

+Γk−dφk−dβsk−d = 0

θ̂k = θ̂k−d − Γk−dφk−d(1 + φT
k−dΓk−dφk−d)−1(46)

·(φT
k−d(θ − θ̂k−d) + βsk−d)

Noting from (3),

sk = φT
k−dθ − C(z−1)rk (47)

(32) is obtained from (46).

Thus 4Vk ≤ 0, and sk−d and θ̂k − θ̂k−d−1 ap-
proach to zero as k goes to infinity, and the sta-
bility of the overall self-tuning has been proved.

Remark 2. Note that for the case d = 1 when β =
0, REGMVC-β algorithm is same as REGMVC.

4. SIMULATION RESULTS

As an hypothetical example consider the following
true non-minimum phase plant with d = 2,

(1 − 0.7z−1)yk = z−d(1 + 2.8z−1)uk (48)

The nominal plant is

(1 − 0.5z−1)yk = z−d(1 + 2.5z−1)uk (49)

For the nominal controller design using the gener-
alized minimum variance criterion, the following
polynomials are chosen:

C(z−1) = 1 + z−1 + 0.3z−2 (50)

Q(z−1) = 40(1 − z−1) (51)

which lead to the following polynomials for the
controller law,

F̂ (z−1) = 1.05, Ĝ(z−1) = 41 − 36z−1 + 3.75z−2

F̂ (z−1) and Ĝ(z−1) give initial estimates of the
controller parameters.

When polynomial C(z−1) and Q(z−1) in (50) and
(51) respectively, are used to computed the op-
timal controller polynomials F (z−1) and G(z−1)
for the real plant (48), the following polynomials
are obtained,

F (z−1) = 1.49, G(z−1) = 41 − 35.5z−1 + 4.76z−2

In Fig. 1 the output responses of the system
(48), using the fixed controller GMVC, and the
self-tuning controllers REGMVC and REGMVC-
β (for selected values of β: β = 0.4 and β = 0.8),
are shown. The initial condition for Γ is set to
the identity matrix, i.e. Γi = I, (i = 0,−1).
The reference signal is chosen as a sequence of
steps with length of 50 samples. Note that the
generalized minimum variance controller (GMVC)
is very sensitive to the presence of parametric



Fig. 1. yk vs. rk using GMVC, REGMVC, and REGMVC-β, for the true non-minimum phase system
(48), d = 2. Γ(i)i=0,−1 = I and β = 0.4 and 0.8.

uncertainties, and that the self-tuning controller
can improve the responses as the parameters are
identified. In this particular example, the case
REGMVC-β for small values of β, e.g. β ≤ 0.2
the response behave very similar to the case
REGMVC.

5. CONCLUSIONS

Two design methods for the self-tuning stabilizing
controller based on generalized minimum variance
for discrete-time systems were studied: REGMVC
and REGMVC-β. Parameter identification has
been used in the presence of parametric uncertain-
ties. The overall stability for the two algorithms
was proved by the Lyapunov theory. The robust-
ness and performance of the self-tuning algorithms
has been shown through a simulated example.
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