
ADAPTATION AND LEARNING IN AN
AUTONOMOUS PHYSICAL AGENT

ARCHITECTURE

Sandor M Veres ∗ Aron G Veres ∗∗

∗University of Southampton, UK, s.m.veres@soton.ac.uk
∗∗ SysBrain Ltd, Birmingham, UK,

Email:aron@sysbrain.com

Abstract: Learning and adaptation is presented for a specific but generally
applicable autonomous physical agent (APA) architecture. The paper is providing
a general framework of skills learning within behaviour logic framework of
agents that communicate, sense and act in the physical world. It is shown how
programmed playfulness can be easily implemented that results in learning and
ultimately better skills of agents. Reusability of results in learning algorithms
is supported by ontology based classification of learning in operational modes.
Ontology based classification provides object instances that enable modularization
of software and easy interfacing of operational modes with learning algorithms.

Keywords: Intelligent physical agents, formal methods, learning, adaptive control
modelling for control, .

1. INTRODUCTION

Autonomous agents have been used in computer
science for some time (Wooldridge, 2002; Meystel
and Albus, 2002). In the field of engineering we
want autonomous machines to be (1) capable of
solving and executing complex problems in the
physical world and we also want them to be (2)
reliable. Reliability in essence means that we know
how they behave. Reactive agents are good for this
as we can prescribe or learn the rules by which
the behave. Deliberative agents using modelling
and complex decision making are however difficult
to verify for all physical environments and hence
their reliability is more difficult to prove. This
apparent dilemma is attempted to be partially
solved by an agent architecture in this paper that
prescribes a clearly defined behaviour logic for
reliability while retaining the ability of learning,
adaptation and complex problem solving by mod-
elling. The architecture is verifiable by design.

2. BEHAVIOUR LOGIC OF AN AGENT

The language LABL of temporal agent behaviour
logic is defined over a set of atomic formulae
Om = {p, q, ...} called operational modes (OMs)
as follows:

φ = p|¬φ|φ ∨ φ|φ ∧ φ|2φ|♦φ| ⇀ φ|>|⊥ (1)

With each operational mode in Om there is an ac-
tivity dynamics associated by the activity function
defined as

A : Om 7→ Fb (2)

where Fb is a set of feedback loops between
the agent’s actuators and a part of the agents
internal or external environment. There are three
important temporal functions defined over the
set Fb. The first one is the Boolean temporal
activation function a : Fb → {0, 1} and the second
one is the activity value function v : Fb → [−1, 1]

and the third one is the timeout function t :
Fb → [0,∞] . The activation function provides
a semantics for the logic of operational modes
(OMs) as the a can be used to evaluate any
temporal logic behaviour formula through the
activity functions associated with OMs.

Definition 1. A logic formula is called a simple
behaviour if it only contains the operations ∨, ∧
and ⇀ .

A simple behaviour defines parallel activities con-
nected by (∧), sequential activities connected by
⇀ and activity options connected by ∨ relations.
For instance the A∨ (B ∧C)∨ (D ⇀ E ⇀ F) can
mean that either the A operational mode (OM)
is on or the B and C OMs are simultaneously on
or the OM D is first on then followed by OM E
which is followed by F . When F stops operating
then either A must start, or B and C or D needs
to restart again.

Definition 2. A level-1 autonomous physical agent
A is defined by the tuple A = {Om, A, Fb, a, v, t, B}
where B is a simple behaviour in terms of the OMs
in Om.

A level-1 APA defines its semantics in terms of
its activity function a. At any moment of time
its behaviour formula B can be evaluated in
terms of a. Note that satisfaction of B at any
time instant does not mean anything about the
success or reliability of of the agent, it merely says
that at any time the agent will activate OMs in
accordance with satisfying formula B (for any A
and B the A ⇀ B is defined true if either A or
B holds true, operations of ∨,∧ are defined as
usual).

Definition 3. A level-1 autonomous physical agent
A is is called consistent if B is true at any time ,
i.e. 2B true as evaluated using a.

Note that function a is evaluated over the tempo-
rally changing processes Fb and expresses the fact
that the agent runs the algorithms of Fb. The qual-
ification of success of operations Fb is expressed
by function v, which means poor performance for
low positive values, very good performance for val-
ues near to 1, instability or totally unacceptable
performance for small negative values of v and
damaging or dangerous performance for v close to
-1.

Definition 4. A level-1 consistent autonomous phys-
ical agent A with simple behaviour formula B is
called safe if it always evaluates active OM with
v > 0. A is called reliable at level ε > 0 if the

active OMs are always evaluated to v > 1 − ε
eventually.

Note that the v > 0 is defined at any time instant
does not mean that v > 0 is only dependent
on feedback loop data at time instant. v > 0
is typically a monotone function of a control
criterion that is obtained from a sequence of past
feedback input-output data.

Safe operation depends on the actual interaction
of the agent with its environment. A lot can be
achieved for safety by simply altering the a switch-
ing function so that if an OM approaches the
v < 0 region then the agent switched to another
OM that perform better. Whether that will help
to achieve overall objectives is another matter.
Automating a consistent switching mechanism is
the topic of the next section.

3. SWITCHING BETWEEN OPERATIONAL
MODES

The activity function a of a level-1 APA is chang-
ing over OMs as the OMs change and there are the
following practically important cases to consider:

(1) An active OM is successfully completed at a
required level reliably.

(2) An active OM is not successful at the re-
quired level (e.g. v < 0.5) but it still operates
safely.

(3) An active OM is timed out.
(4) An active OM is being aborted by another

active OM.

f Environment (Mf)

Fig. 1. The feedback interaction of an operational
mode f ∈ Om with the environment. An un-
certain environmental model Mf can be used
to assess or verify and agent’s performance
under OM f .

The interaction of an agent with its environment
under a single operational mode is normally the
topic of control engineering. This control engineer-
ing problem can however be widened with the on-
line variable choice of actuators and sensors to be
used in the feedback loop.

The objective of this paper is to establish safe
operational mechanisms of autonomous physical
agents. The previous section introduced the im-
portant concept of consistency for level-1 agents.

A further step towards safe operation and good
performance is to analyze the conditions of suc-
cessful operation and bring them together with
the above logical framework. To keep the new
formalism to a minimum, any f ∈ Fb will be as-
sociated with an initial condition I(f,Mf) that is
a 0 or 1 Boolean valued relation function between
the agent and its environment.

Definition 5. We say that the adaptation condi-
tion is ε-satisfied by an operational mode f if
it holds that whenever I(f, Mf) is satisfied and
the agent has f active, the performance v(f) is
guaranteed to converge to and stay inside [1−ε, 1]
within time period t(v) under uncertain environ-
mental model Mf .

For instance a biped robot may be able to start
and walk nicely (v(f) → [1 − ε, 1]) if not start-
ing from a lying or fallen-over position but if
it already stands reasonably upright (I(f, Mf)),
even if perhaps a rucksack has been placed on its
back. The latter means that under some initial
condition the operational mode of the walking of
the robot is adaptive. If the condition I(f, Mf)
of walking is not satisfied then the robot may
decide to switch to another operational mode f1,
meaning for instance that the robot is ”trying to
stand up” first which is an operational mode itself.

Individual OMs of the agent can be tested by
formal analysis and practical testing. Hence the
above analysis highlights the relevance of enforc-
ing such an a on agent behaviour that starts any
f ∈ Fb under condition I(f, Mf) being satisfied
that leads to eventually v(f) > 1− ε.

Lemma 6. A level-1 consistent autonomous physi-
cal agent A is reliable at level ε > 0 if the following
two conditions are satisfied:

(a) All operational modes f ∈ Mf satisfy the
adaptation condition at level ε.

(b) The activity function a is such that whenever
an a(f) becomes 1 for an f ∈ Fb then
I(f,Mf) is satisfied.

Proof. Straightforward from the definitions: as all
operational conditions are adaptive and start from
correct initial conditions the performance function
v will rise above 1 − ε for any operational mode
within its time limit.2

3.1 Example 1

Assume that a garden robot has the following
mission: either (1) mow the lawn or (2) turn on the
watering system or (3) recharge its own batteries
or (4) empty the grass from its container to a pre-
scribed dump site (5) report to a human operator

for maintenance. Within each of these tasks there
are several OMs to be executed consecutively:

• O1 → Fp1: Mowing.
• O2 → Fp2: Planning of mowing.
• O3 → Fp3: Watering.
• O4 → Fp4: Planning of watering.
• O5 → Fp5: Empty grass container.
• O6 → Fp6: Planning route to charging point.
• O7 → Fp7: Recharge.
• O8 → Fp8: Decide on and request mainte-

nance.
• O9 → Fp9: Write problems report.
• O10 → Fp10: Map building.
• O11 → Fp11: Self modelling of hardware ware.
• O12 → Fp12: Modelling past mowing, water-

ing and maintenance done.
• O13 → Fp13: Idle or sick leave.

Out of these O1, O3, O5, O7 are feedback-loop
based operational modes that need sensing and
control of actions accordingly. O2, O4, O6 are on
the other hand OMs that need algorithms working
on models only and do not need sensing or actua-
tion. OMs O10, O11 and O12 need sensing only and
algorithms that build models from sensor data.
Decisions by O8 are based on internal models and
may result in sending a message to the human
operator after writing report O9 on the problems
that may need maintenance.

A behaviour logic formula that the autonomous
lawnmower needs to satisfy can for instance be

B1 = ((O2 ⇀ O1) ∨ (O4 ⇀ O3) ∨ (O6 ⇀ O7))∧
∧(O8 ⇀ O9) ∧O11 ∧O12 ∧O10

(3)

The a switch must be such, as decided within
each operational mode, that the total formula B
must always hold true. This means that the par-
allel modelling and maintenance monitoring oper-
ational activity carry on while on of the mowing,
watering or recharging tasks are executed. Despite
the essentially reactive behaviour the lawnmower
has the ability of interpretation of the environ-
ment and planning while strict discipline of be-
haviour code is maintained. Based on sensing or
assessment of algorithmic results, the evaluation
of v is constantly carried out for each operational
mode.

Now the reliability at level ε is achieved if all
feedback and open-loop OMs are proven to work
under uncertain models of the environment and
the initial conditions are always achieved when
switching to a new operational mode. To achieve
the necessary initial conditions the OM algorithms
need careful action around the switching points.
When the physical and control algorithmic work
on the lawnmower robot has been completed, then
the satisfactory nature of a, v, t can be formally
tested. As this may be difficult in practice, adap-

tation and learning in the OMs is therefore vital
to reduce development effort and to achieve level-ε
reliability of the autonomous lawnmower.

3.2 Example 2

An unmanned light aircraft can have the following
tasks:

• O1 → Fp1: Warming up and control tests.
• O2 → Fp2: Checking mission instructions.
• O3 → Fp3: Planning flight.
• O4 → Fp4: Taking off.
• O5 → Fp5: Taking mission related pictures

and measurements.
• O6 → Fp6: Controlling the plane at normal

altitude while following mission path.
• O7 → Fp7: Deciding to abort mission.
• O8 → Fp8: Searching for emergency landing

area.
• O9 → Fp9: Planning flight to emergency

area.
• O10 → Fp10: Emergency landing.
• O11 → Fp11: Planning normal return flight.
• O12 → Fp12: Normal landing on return.
• O13 → Fp13: Controlling the plane in emer-

gency.
• O14 → Fp14: Modelling flight path followed

until current time.
• O15 → Fp15: Writing and sending mid-flight

report on conditions on board.

The following behaviour formula is an example:

B2 = ((O1 ⇀ O2 ⇀ O3) ∨ (O4 ⇀ O6) ∨O5)∨
∨(O13 ∧ (O7 ⇀ O8 ⇀ O9))∨
∨(O12 ⇀ O6 ⇀ O12)) ∧O14

(4)

The dynamical control, planning and emergency
challenges and the algorithms are more complex
here than in the lawnmower example. Still the
same principles of using the a, v, t functions can
be used to assess reliability and performance. The
significance of adaptation and learning is even
more emphasized here.

Both examples suggest that logical consistency
provided by a is a fundamental requirement. Be-
yond that, safety and performance of the system
depends on the quality of the OM algorithms to
provide suitable v functions. Whatever is achieved
and guaranteed in terms of the v, there is scope for
further formal analysis and alterations to be made
to enforce safety switches in face of undesirable
performance in some operational mode. This is
the topic of automated adaptation and learning.

4. ADAPTATION AND LEARNING OF
LEVEL-1 AGENTS

The principle is that adaptation is performed by

• adjusting controller parameters depending
on experience

• associating successful feed-forward actions
with short term planning

Learning can be restricted to OMs that include
feedback based interaction with the environment,
for instance path following of the law mower, its
approach and connection to the recharging point,
or the flight control parameters of the plane under
various operating conditions. Measurement of per-
formance and success is crucial in feedback loops
of interaction with nature so that improvements
can be made by learning. Performance is measured
by the evolution of the v-functions during the exe-
cution of an OM. The objective of adaptation and
learning is to increase v and to make it converge
faster. This is only achieved if the agent success-
fully adapts its OMs to varying environmental
circumstances. In this section we briefly review
the main available techniques for learning in each
operational mode.

4.1 Parametric feedback/feedforward tuning

On-line parametric feedback tuning of an fi ∈
Fb is one of the fastest learning methods. The
v can be defined as a monotone function of a
control performance criterion and some parameter
vector θi of the feedback/feedforward (FB/FF)
controller is to be tuned. The principle of tuning
is to compute the gradient direction of the cost
function using online measurement data of sensors
and actuators and hence move the parameter θi

uphill to increase the performance measured by v
(Veres and Wall, 2000).

This approach assumes that some good controller
structure is available from a priori analysis of the
physical problem. Also relatively good initial θi

is needed that already ensures stable feedback
under the conditions I(f,Mf). Although a priori
design is essential, as result of that this learning
mechanisms is the fastest from the ones considered
in this sections.

4.2 Neural network based FB/FF tuning

Artificial neural networks can be used to tune
FB/FF (feedback/feedforward) control action us-
ing multilayered perceptron, RBF (and recur-
rent networks, etc.(Kim and Lewis, 1998). These
schemes can also be combined with associations
of operating conditions. So control under an fi ∈
Fb can be made dependent on past associations
of measurements form all sensors and successful
control attempts. This way neural networks can
be complemented by associative learning. The

resulting combined associative NN and dynam-
ical control NN together form a self-organizing
controller(Andreae, 1998).

The disadvantage of this approach is that training
may take a long time. The greatest advantage is
robustness and potentially superior performance
over parametric methods as NN-based tuning may
be able to make use of control opportunities that
were not discovered by the human engineer de-
signing the autonomous system. NN learning as-
sumes that there is plenty of time and opportunity
to practice operational modes.

4.3 Reinforcement learning

When some prediction system is maintained on
the effect of considered control actions then ex-
ploratory and exploitative (greedy) actions can
be taken in reinforcement learning. In addition
to v that is a realtime performance measure-
ment, we can introduce a performance estimate
(=value function) v̂ that is backed up as the
measured state of the system evolves. Success-
ful performance will then propagate into desir-
able state and learning slowly progresses. Tem-
poral difference learning adjusts the anticipated v̂
through exploratory and greedy actions (Sutton
and Barto, 1998).

As the size of the state-space can be large this type
of learning can be well used in cases where the
fi ∈ Fb relies on strongly discretised description
of a not too large state space. Continuous state
dynamical control is difficult to learn by rein-
forcement learning. Instead reinforcement learn-
ing can be used with regard to the selection of
the control initial parameters given environmental
circumstances, i.e. initializations that later lead to
success or failure under perceived environmental
conditions. Using this way reinforcement learning
can be very useful for continuous state dynamical
control.

These methods assume that the autonomous sys-
tem has plenty of time and opportunity to practice
its skills in terms of OMs.

4.4 Learning for predictive control

One of the most powerful methods of control is
when the autonomous system models its environ-
ment, plans its sequence of actions and immedi-
ately executes the first one (or first few). Then
it senses changes in the situation and plans again
and executes what is now needed under slightly
changed circumstances. For the effectiveness of
this generic method, the autonomous agent needs
to maintain sufficiently good quality models of its

environment. Also this online model should pos-
sibly be supported by redundant set of measure-
ments to make the data secure. An useful method
is to make this realtime modelling adaptive in the
sense of (1) goal selection (2) its use of the set of
i/o variables in various control tasks and (3) in
terms of the realtime model maintained.

5. PLAYFULNESS OF LEVEL-1 AGENTS

Why do children play? Why do kittens play?
Why do adults play games, and solve crosswords?
Playing provides opportunity to practice skills.
From the previous sections it is clear that one
aspect of learning is to gather data for learning
under non-dangerous circumstances. If a level-1
agent only executes live-mission tasks then it is
likely that a huge amount of development effort
will be needed to make it to operate safely, all
OMs need to be performing very well from the
very start and also at any switch of operational
modes the initial condition must be strictly kept.

An alternative is to build a basic structure (using
parametric controllers, NNs, self-organizing NNs,
reinforcement learning structures, adaptive mod-
elling, etc.) of each operational mode of a level-1
agent and then endowing it with the ability to
randomly play with the purpose of improving its
skills (=operational modes). This section provides
a solution by adding a ”playing operational mode”
to the agents behaviour logic.

Let B be the simple behaviour logic formula of a
level-1 agent A. An extended formula Bp = B∨Op

is obtained by adding an operational mode Op

that takes now a supervisory role. When func-
tional, the job of Op is to monitor performance
of each operational mode under various environ-
mental circumstances and randomly choose from
a set of playing activities and execute them by in-
terfering with the normally used activity function
a . Playing activities are designed such that they
do not interfere with overall final goals of mission
an they are always obtained as a modified portion
of the B. This is achieved by suitable changes in
the switching of a.

For instance in the above examples of the lawn-
mower, some playing activities can be obtained
as follows: (a) practice docking for recharging; (b)
practice fast and slow mowing on rough ground
or high grass; (c) practice finding the boundary of
the garden lawn; (d) practice activating the water-
ing system and sensing of how it works. The pur-
pose of the practice is not merely to repeat tasks
as that would be useless: its purpose is to fine-
tune the OMs of the level-1 autonomous system,
i.e. to adapt the discrete and continuous control
parameters in OMs. For that each OM must have
a tuneable structure with learning mechanisms.

For the light autonomous aircraft some learning
activities can be: (a) Taking off, doing a small
round and landing straight away under various
wind conditions; (b) practicing turns during nor-
mal flight while keeping flight path essentially the
same (c) practicing taking photos by trying to
keep the plane steady during exposure (d) prac-
ticing collision avoidance when noticing an object
potentially in the way (needs human cooperation),
etc.

Playing activities for Op can be preprogrammed
by the engineer developing the agent or Op can
also be generated automatically from B. Given the
very simple nature of level-1 agents, a straight-
forward method is that the engineer designs a
series playing activities for the agent. The task of
Op is then to seek out opportunities when these
can be played, or depending on learning skills, to
activate them. When playing activities are exe-
cuted learning should take place automatically as
all operational modes should be programmed with
learning ability.

6. CLASSIFICATION OF LEARNING IN
AGENTS

Leaning can be built into the algorithms of agents.
It is however desirable to make them easily in-
terfaced with control systems make them or au-
tomatically implementable by agents. This can
be achieved if a set of routines are provided for
learning that have agreed set of variables. On-
tologies that describe class hierarchies and their
properties and constraints can be used for this
purpose. This section uses the formalism of the
MOL (machine ontology language) notation for
describing an ontology. Its notation is simple: lines
with >> ... > mean class declarations and the
deeper down a subclass is the more > are listed.
@ means property of the class declared above and
@@ means a constraint as expressed in a MAT-
LAB Boolean expression. A property followed by
a : means declaration of its class belonging that
can be any basic MATLAB type or another class
declared.

6.1 Ontology for operational mode learning

Modularization and standardization of learning
algorithms for OMs. In the following ontology
description the root class is ”learning algorithm”
its subclass is ”action learning”:

>learning algorithm
@default settings: structure
@v-function : char
@t-function : char
@control sequence : signal

@sensed reactions : signal

>>action learning
@performance constraints : text
@performance criteria : text
@situation model associations : cell
@sensory associations: cell

>>>NN learning
@NN-type : char
@structural parameters : cell
@weights : cell

>>>modelled action learning
@predictive model type : char
@control optimisation method : char

>>learning dynamical models
@model-type : char
@initialisation method : text
@adaptation method : text

>>>learning of parametric models
>>>training of NN
>>>learning of associative models

>>learning spacial static scene
@model type : char
@method : text
@model resolution: char

6.2 Interfacing of learning algorithms

Learning algorithms are interfaced to the OM via
the

(1) measured sensor signals,
(2) v and t functions,
(3) actuator signals used.

These can make the algorithms in principle easy
to replace and try as long as there ar built in
mechanisms to adjust (1) array dimension and (2)
initializations to the circumstances by association
of experience. A shared database of learning algo-
rithms as for the suitability of learning algorithms
in various OMs is is therefore desirable. Such a
data base can be made accessible to agents via
the Internet. Control engineers who today de-
sign adaptive and learning algorithms, could place
their work onto this database from where agents
could pick them up for and try them to improve
their performance.

Software that enables the fast development of
agents based on behaviour logic, OMs and learn-
ing algorithms, can be developed in any program-
ming language. Use of higher level languages such
as MATLAB is however an advantage (Veres and
Veres, 2006).

7. CONCLUSIONS

The main results of this paper is that a sim-
ple autonomous physical agent architecture based
on behaviour logic, when combined with learn-
ing algorithms can achieve high levels of safety
and reliability. This shows that the capability of
higher levels of abstraction are not required from
the agent to be able to show highly adaptive,
planning based behaviour that is normally asso-
ciated with higher levels of intelligence. To make
APAs robust in natural environments, where un-
expected circumstances often occur (and success
so far was partial as shown for instance by the
DARPA road vehicle challenges) it is shown that
playful behaviour is essential at a training phase of
agents. The paper has shown that adding playful
behaviour is relatively simple in the behaviour-
formula-based agent architecture proposed.

REFERENCES

Andreae, J. H. (1998). Associative Learning. Im-
perial College Press. London.

Kim, Y. H. and F.L. Lewis (1998). High-
Level Feedback Control with Neural Networks.
Vol. 21 of Robotics and Intelligent Systems.
World Scientific. Singapore.

Meystel, A. M. and J. S. Albus (2002). Intelli-
gent Systems: Architecure, design and Con-
trol. Wiley Series on Intelligent Systems. John
Wiley and Sons, Inc.. New York.

Sutton, R. S. and A. G. Barto (1998). Reinforce-
ment Learning - An Introduction. Adaptive
Computation and Machine Learning. The
MIT Press. Cambridge, Massachusetts.

Veres, A.G. and S.M. Veres (2006). The Au-
tonomous Control Toolbox for MATLAB.
www.sysbrain.com, SysBrain Ltd. Birm-
ingham, UK.

Veres, S. M. and D. S. Wall (2000). Synergy and
Duality of Identification and Control. Taylor
& Francis. London.

Wooldridge, M (2002). An Introdcution to Multia-
gent Systems. John Wiley & Sons. Chichester.

