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Abstract— We analyze the dynamics of neural os-
cillators in the presence of both synaptic and diffusive
coupling. First we derive a computationally effective,
yet plausible model of extra-synaptic neurotransmit-
ter diffusion. Second, we modify the Hindmarsh-Rose
oscillator to account for the diffusion. For ensembles
of these modified model neurons we obtain condi-
tions ensuring global synchronization. Our results
demonstrate that diffusion substantially affects the
dynamics of a network of model neurons.

I. I NTRODUCTION

Synaptic signal transmission is traditionally be-
lieved to be the principal medium for neural in-
teraction. Recent studies show that spillover of
neural transmitters from the synaptic clefts may
constitute an additional channel for neural interac-
tion [1], [12], [13]. According to [5], extrasynaptic
signalling accounts for up to75% of interneuronal
communication. Despite the fact that these em-
pirical findings have attracted substantial interest
worldwide, there are few theoretical studies of
neural oscillators that take these observations into
account.

In our paper we aim to resolve this problem
and provide a theoretical analysis of neural dy-
namics taking spillover of a neurotransmitter (NT)
into account. In order to do this we propose
a computationally effective mathematical model
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of spillover. We found that transmitter diffusion
can be described by time-varying coupling, of
which the steady-state solution generally follows
a Gaussian law. We implemented this coupling
in a Hindmarsh-Rose model neuron and analyzed
its effect on the dynamics of single cells and
populations. Extrasynaptic diffusion results in a
system in which the oscillators are coupled through
variables with substantially different time scales.
For this new class of systems we derived sufficient
conditions for complete synchronization.

The paper is organized as follows: in section II
we present a technique, allowing us to model dif-
fusion of neurotransmitter using the photographic
images of brain tissue. For the sake of compu-
tational effectiveness the model was restricted to
the steady-state solutions of the diffusion equation
in two spatial dimensions. In section III we an-
alyze how diffusion affects asymptotic properties
of ensembles of neural oscillators. In section IV
we provide results of simulations and section V
concludes the paper.

II. COUPLING BY DIFFUSION

In studying diffusion of neurotransmitter (NT),
we must pay attention to the structure of the extra-
cellular matrix (ECM). We provide a technique
for reconstructing the topology of the ECM from
photographic images. This is necessary for estimat-
ing profiles of the NT concentration in the tissue.
These profiles are essential in order to derive a
model of the diffusive coupling.

Tissue Topology.We derived the profile of the
tissue by analyzing a set of photographic images1

of the hippocampal tissue of an adult mouse (figure
1). The upper part of figure 1a resembles the
dendritic area, where spillover of NT is most likely
to occur. Hence we restrict our analysis to these
areas (see figure 1b, where black areas correspond
to obstructions and white areas correspond free

1The images were provided by Dr. S. Grebenyuk, Neuronal
Circuit Mechanisms Research Group, RIKEN Brain Science
Institute, Wako-shi, Saitama, 351-0198, Japan



(a) (b)

Fig. 1. (a) Photograph of a slice of hippocampal tissue. (b)
Dendritic area.

space). We aim to model the tissue ensuring 1) a
realistic ratio between the free space and volume
occupied by obstructions, and 2) a realistic dis-
tribution of sizes of these obstructions. The first
characteristic can be estimated explicitly from the
images and is generally about 8%. To satisfy the
second requirement we must have a model of the
most probable shape of an obstructing object. As
follows from visual inspection the obstacles have
roughly a circular shape.

The probability℘(dj) for an obstruction with
diameterdj to exist, is derived from the images
by estimating the lengths of black space, row
wise in the images. We use these estimates to
derive a distributionm(i) of occurrences of filled
(black) lines with lengths grater or equal thani

in the actual images. On the other hand, in each
measurementm(i) a circular object with diameter
dj > i will be encountered in multiple lines (figure
2). This leads to the following contribution of

dj
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Fig. 2. Contribution of black space in a circle.

lengthsℓj(i) to m(i):

ℓj(i) =
√

d2
j − i2 ∀ 0 ≤ i ≤ dj , (1)

where i is the distance to the centermj of an
obstruction. Distributions (1) were fit tom(i) ac-
cording to the following criterion:

min
α

(

m(i) −

n
∑

j=1

αj

√

d2
j − i2

)2
, (2)

where n is the width of the picture in pixels.
The coefficientsαj represent the contribution of
circles with diameterdj . The resulting normalized
distribution ℘(dj) is provided in figure 3. The
process is repeated in the vertical direction, column
wise (dashed curve). Slight mismatches between
the curves in figure 3 are due to the fact that cells
are not perfectly circular.
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Fig. 3. Probability distribution℘(dj) of sizesdj of obstructing
objects in horizontal (solid) and vertial (dashed) directions.

Simulation of Diffusion.The model of hip-
pocampal tissue (distribution℘(dj)) was used to
create a realistic environment for simulating diffu-
sion of the NT. In addition to preserving the ratio
between obstructed and free space we also require
that cells in this environment do not intersect.

Free diffusion in 2 dimensions is often [9]
modeled by the following PDE:

∂C

∂t
= D

(

∂2 C

∂x2
+

∂2 C

∂y2

)

+ u (x, y, t) , (3)

wherex ∈ R, y ∈ R are spatial variables,D ∈
R>0 is the diffusion coefficient andu(x, y, t) :
R × R × R>0 → R represents the input of NT to
the system. The functionC(x, y, t) : R × R ×
R>0 → R represents the concentration profile
over an open, connected setΩ ⊂ R

2. Only time
invariant sources are considered, and the boundary
conditions are:C(x, y, t) = 0 ∀ x, y 6= Ω.



If Ω inherits structural properties of the tissue
then solutions of (3) overΩ would provide realistic
estimates of the NT concentration in the actual tis-
sue. We calculate these solutions by approximating
original PDE (3) with a system of ODE, subject
to accurate spatial discretization overΩ:

˙̄c = Kc̄ + ū, (4)

where c̄ ∈ R
N2

is a vector formed by spa-
tial sampling ofΩ over N2 patches. The matrix
K ∈ R

N2×N2

is the discrete approximation of
the Laplacian [6] in the coordinates ofc̄:

∂2 f

∂x2

∣

∣

∣

∣

(m,n)

+
∂2 f

∂y2

∣

∣

∣

∣

(m,n)

(5)

≈ f(m ± 1, n) + f(m,n ± 1) − 4f(m,n).

Variables m,n ∈ {1, 2, . . . N} represent the
location of the ith cell in the grid. Notice that cells
which are (partly) inside obstructions correspond
to zero rows and columns inK. Hence, it is
enough to consider a reduced matrixΠ ∈ R

r2×r2

,
with r the number of cells that allow for flow of
NT. Its properties are summarized below:

Property 1: The reduced coupling matrix
1. Π is symmetric.
2. Π is non-singular, henceΠ−1 exists.
3. Π is negative definite.
Proof of Property 1Symmetry ofΠ follows di-
rectly from the rule (5) according to whichK
and Π are generated. Non-singularity ofΠ is
proven by using the results of Taussky [14]. In
this reference it is shown that a matrixA ∈ R

n×n

with complex elements is nonsingular if 1)A can
not be transformed to the form:

A =

[

P U

0 Q

]

, (6)

by the same permutation of the rows and columns
(P and Q are square matrices and0 consists of
zeros), and 2) its elementsAij satisfy:

|Aii| ≥

n
∑

k=1, k 6=i

|Aik|, (7)

with inequality in at mostn−1 cases. Since,Π is
generated over a connected set,Π is not reducible
to the form (6). Furthermore,Π obeys (7). Hence
according to [14], it is non-singular. Then negative
definiteness ofΠ follows from Gershgorins’ circle
theoremQED.

The solution to (4) now reduces to that of:

ċ = Πc + u (8)

with c, u ∈ R
r2

and Π ∈ R
r2×r2

. Its general
form is given byc(t) = eΠtc(0)+

∫ t

0
eΠ(t−τ)udτ .

However, for the sake of simplicity we consider its
steady-state component:

lim
t→∞

c(t) = −Π
−1u. (9)

To complete our derivations of concentration pro-
files we need to specify the inputu.

A neuron consists of a cell body to which
an axon and dendrites are attached. Assuming
dendrites spread equally in all directions and have
a mean lengthζ, NT is most probable to be
released on and sensed at a circle with radiusζ.
From this circle the release power, as well as the
receptor sensitivity are assumed to obey a Gaussian
law (figure 4). Furthermore, the coupling from
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Fig. 4. Schematic depiction of the release power and receptor
sensitivity distribution (no obstructions).

one neuron to another is defined as the amount
of NT sensed by a neuron. When obstructions
are disregarded both the release and the receptor
profile can be described by the difference between
two Gaussian functionsG2(x, y) centered around
the same mean:

∆1(x, y) = G2
µ1,1,σ1,1

(x, y) − G2
µ1,2,σ1,2

(x, y).
(10)

The total coupling function is the convolution
between these two profiles∆1 and∆2:

κ(ξ) = κ(x, y) = ∆1(x, y) ⊗ ∆2(x, y), (11)

where ξ = ‖µ1 − µ2‖ is the difference between
the means of the two Gaussian differences and⊗
is the convolution operator. The convolution (11)
possesses the following properties:

Property 2: Coupling function
1. κ(ξ) is positive definite.
2. κ(ξ) is bounded from above and below by bell



shaped functions.
3. κ(ξ) is monotonically increasing forξ < 0 and
monotonically decreasing forξ > 0. It therefore
possesses a global maximum atξ = 0.
The proof is available in [4].

When obstructions are taken into account, the
shape of the coupling function can be obtained by
numerical simulation. Results of these simulations,
for multiple instances ofΩ, are presented in fig-
ure 5. These results closely resemble a Gaussian
function, as predicted by the analytical estimate
before. Therefore, this analysis suggests the Gaus-
sian function as a plausible model for the diffusive
coupling.
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Fig. 5. Numerical approximation of the coupling function
κ(ξ). Top figure: simulation results (-), Gaussian fit (o-). Lower
figure: error.

III. D YNAMICS OF NEURONAL OSCILLATORS

WITH DIFFUSIVE AND SYNAPTIC COUPLING

In section II we obtained a plausible class of
diffusive coupling functionsκ(ξ) (11). Here we
study the dynamics of neural ensembles taking
this coupling into account. We consider a network
of Hindmarsh-Rose (1989) model neurons [10].
These model neurons are computationally effec-
tive, cover substantially large variety of neural
behavior [8], and can be fitted successfully to
actual data [7].

The 1989 Hindmarsh & Rose Model Revisited.
In order to take diffusion of neurotransmitter into
account we extend the original Hindmarsh & Rose
model by adding an extra ’diffusion’ component.
This addition should, however, satisfy the fol-
lowing constraints: 1. it should be a Gaussian
function κ(ξ) of the distance between the neurons
2. it should contain a time varying component
on a timescale that is much slower than those
present in the current model. Summarizing, the

ith component in the new model consisting ofn

diffusively coupled neurons is defined as follows:

ẋi = −ax3
i + bx2

i + yi − zi + I (12)

− Γsi
x + Diq

ẏi = c − dx2
i − yi (13)

żi = ε (s (xi + x0) − zi) (14)

q̇i = τq
−1 (xi + ϑ − kqi) , (15)

where a, b, c, ε, s, k, τq ∈ R>0 are the
model parameters, and the function of parame-
ter ϑ ∈ R>0 ensuresxi(t) + ϑ > 0 ∀ t ∈
R≥0, i = 1, 2, . . . , n. I is an external current, and
x = (x1, . . . , xn)T , q = (q1, . . . , qn)T . Synaptic
coupling is modeled by a linear termΓsi

x, with
Γsij

= −ks ∀ i 6= j and Γsii
= ks(n − 1).

Here, Γs ≥ 0 and ks ∈ R≥0 is a synaptic gain.
Diffusive coupling is represented byDiq, with
Dij = kdκ (ξij). Here,D = DT , kd ∈ R≥0 is
a diffusive gain andκ(ξ) is a Gaussian coupling
function, as derived in (11).

Asymptotic Properties of the Model.Equations
(12) - (15) define the dynamics of model neurons
that are both diffusively and synaptically coupled.
In contrast to the original Hindmarsh & Rose
model, the new model possesses three instead of
two different timescales. In addition, as a result
of slow diffusion, neurons themselves interact at
different time scales. These properties might affect
asymptotic behavior of the ensembles. Here we
investigate these properties from the point of view
of synchronization. Following [15], we derive the
following properties:

Property 3: Consider diffusively coupled sys-
tem (12) - (15)
1. Its solutions are globally bounded.
2. The diagonal synchronization manifoldx1 =
x2 = · · · = xn, xi = (xi, yi, zi, qi) is globally
asymptotically stable if:

ks >
1
2d2 + b2

n
and Ξ ≤ 0, (16)

with:

Ξ =

[

−γCx CxD + α
τq

Cx

CxD + α
τq

Cx − 2α
τq

kCx

]

,

whereCx only has nonzero elementsCx,ii±1 =
−1 andCx,ii = 2, exceptCx,11 = Cx,nn = 1.

γ =
n−1
∑

i=1

(

nks −
d2

2
− b2

)

, α ∈ R>0, (17)



Proof. Boundedness of solutions follows from the
semi-passivity argument [2], [15] using the follow-
ing storage function:

Vi =
1

2

(

x2
i + y2

i + z2
i + q2

i

)

, (18)

for the i-th system. Details are provided in [4].
The stability of the synchronization manifold

is investigated using the following candidate Lya-
punov function:

VS = xT Cx

cx

x + yT Cy

cy

y (19)

+zT Cz

cz

z + qT Cq

cq

q,

with Cy,Cz,Cq defined similar to the definition
of Cx in property 3,cx, cy, cz, cq ∈ R>0. Using
results from [15] we find:

V̇S ≤ −γxT Cxx − εzT Czz (20)

+xT CxDq + qT DT Cxx

+
2

τq

qT Cqx −
2k

τq

qT Cqq,

with γ according to (17). Now, note the following,
regarding equation (20):

• γ > 0 ∀ ks >
d2

2
+b2

n
(see (17) and [15]).

• The term−εzT Czz is disregarded, making
the estimate more conservative, but yielding
a more compact result.

• Terms involving constants vanish in the
derivative because of the structure ofCi.

With Cq = αCx, α ∈ R+, β = 2
τq

and using the
fact that Cx is symmetric, equation (20) can be
written as:

V̇S ≤ −γxT Cxx − αβkqT Cxq (21)

+xT (2CxD + αβCx) q

Or in more compact notation, withφ ∈ [0 1]:

V̇S ≤ wT
Ξφw (22)

−φγxT Cxx − φαβkqT Cxq, φ ∈ [0 1]

with w =
[

x q
]T

and

Ξφ =

[

−γ(1 − φ)Cx CxD + αβ
2 Cx

CxD + αβ
2 Cx −αβk(1 − φ)Cx

]

.

Given thatΞφ is negative semi-definite we can
conclude from (22) thatV̇S ≤ 0. Therefore, in-
tegrals

∫ ∞

0
xT (τ)Cxx(τ)dτ ,

∫ ∞

0
qT (τ)Cqq(τ)dτ

are bounded. Hence, applying Barbalatt’s lemma
we can derive that xT (t)Cxx(t) → 0,
qT (t)Cqq(t) → 0 as t → ∞.

Furthermore, looking at equations (12) - (15) it
is observed that ifxi(t) is regarded as a (bounded)

input to this system, which fort → ∞ is identical
for all systems, the resulting system is linear and
asymptotically stable. From [3], [11] it is known
that any linear and asymptotically stable system
is convergent. Hence,yi(t), i = 1, . . . , n con-
verge to the same function of time. Therefore,
yT (t)Cyy(t) → 0 as t → ∞. Applying the
same argument to variableszi(t) we prove that
zT (t)Czz(t) → 0 as t → ∞.

Therefore it can be concluded thatx(t), q(t),
y(t) and z(t) converge to the synchronization
(diagonal) manifold ast → ∞ if Ξ = Ξ0 ≤ 0.
QED

IV. SIMULATION RESULTS

This section provides two examples demonstrat-
ing dynamical regimes inherent to the extended
model and not observed in the original Hindmarsh
& Rose model.

Saturation.Consider a ring ofn = 5 synapti-
cally and diffusively coupled modified Hindmarsh
& Rose neurons. The neurons are located on a cir-
cle with radius1 and the parameters of the system
and coupling strengths are chosen as follows:

a = 1, b = 3, c = 1, d = 5, x0 = 1.618,

ε = 0.005, I = 1, ϑ = 1.6, τq = 100,

ks = 1, kd = 0.6, k = 0.095, s = 4.

(23)

Furthermore, the diffusive coupling between the
neurons is a Gaussian function withσ = 2 . The
effects of diffusive coupling are clearly visible,
in the results depicted in figure 6. From figure 6

τ

xi

yi

zi

qi

Fig. 6. Simulation results (saturation).

we observe the following: First of all, a dynamic
component is observed in both the inter-burst in-
terval (decreasing) and the number of spikes per
burst (increasing). Furthermore, we observe the
presence of saturation in the systems’ dynamics.
The timescales in the system have a ratiox(τ) :



z(τ) : q(τ) of 5000:10:1. Since the timescale of
neuronal spikingx(τ) is normally in the order of
milliseconds, the ’speed’ of diffusionq(τ) is in
the order of seconds. Last but not least, it is worth
noticing that the parameter choices presented in
(23) do not satisfy conservative conditions (16).
Nevertheless, synchronization is observed.

Self Induced Bursting.Increasing the timescale
of diffusion by a factor of two (k = 0.2) leads to
another interesting result (figure 7). Although the

τ

xi

yi

zi

qi

Fig. 7. Simulation results. Thin lines: extended model, ’self
induced bursting’. Thick lines: original model.

parameters for both systems (extended and original
model) are identical, figure 7 shows that the origi-
nal model converges to a stable equilibrium, while
the modified model gives a bursting response. This
response exists by virtue of the diffusive coupling
in the modified system. In addition to providing an
extra input from other neurons, diffusive coupling
allows for self coupling. This ’self-excitation’ ex-
ceeds the input by diffusion from any other neuron
(11). Furthermore, the observed behaviour persists
if a single neuron is simulated.

V. CONCLUSION

Concluding, we have presented a theoretical
analysis of neuronal dynamics, taking spillover of
neurotransmitter into account. First of all, we have
shown the coupling function generated by diffusive
coupling to follow the Gaussian law by analyzing
hippocampal tissue of mice. Secondly, we have
implemented this coupling in the Hindmarsh &
Rose model and new types of dynamic behaviour
were revealed, which can be specifically linked to
the presence of diffusive coupling. Furthermore,
the limiting behaviour of the new model has been
investigated and a sufficient condition for global
asymptotic stability of the synchronization mani-
fold has been derived.
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