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Abstract— We analyze the dynamics of neural os- of spillover. We found that transmitter diffusion
cillators in the presence of both synaptic and diffusive  can be described by time-varying coupling, of
coupling. First we derive a computationally effective,  \hich the steady-state solution generally follows
yet plausible model of extra-synaptic neurotransmit- G - | We imol ted thi i
ter diffusion. Second, we modify the Hindmarsh-Rose a tsaussian law. vve impiemente IS coupiing
oscillator to account for the diffusion. For ensembles N @ Hindmarsh-Rose model neuron and analyzed
of these modified model neurons we obtain condi- its effect on the dynamics of single cells and
tions ensuring global synchronization. Our results populations. Extrasynaptic diffusion results in a
demon_strate that diffusion substantially affects the system in which the oscillators are coupled through
dynamics of a network of model neurons. variables with substantially different time scales.

|. INTRODUCTION For tr_]i_s new class of systems we _deri_ved sufficient

o S N conditions for complete synchronization.

~ Synaptic signal transmission is traditionally be-  The paper is organized as follows: in section I
I|eved. to be the prmupal medium for ngural in-we present a technique, allowing us to model dif-
teraction. Recent studies show that spillover ofysjon of neurotransmitter using the photographic
neural transmitters from the synaptic clefts MaYmages of brain tissue. For the sake of compu-
constitute an additional channel for neural interaciational effectiveness the model was restricted to
tion [1], [12], [13]. According to [S], extrasynaptic the steady-state solutions of the diffusion equation
signalling accounts for up 5% of interneuronal i o spatial dimensions. In section Il we an-
communication. Despite the fact that these emayyze how diffusion affects asymptotic properties
pirical findings have attracted substantial interesgs ensembles of neural oscillators. In section IV

worldwide, there are few theoretical studies Ofye provide results of simulations and section V
neural oscillators that take these observations intgycludes the paper.

account.
In our paper we aim to resolve this problem Il. COUPLING BY DIFFUSION
and provide a theoretical analysis of neural dy- In studying diffusion of neurotransmitter (NT),
namics taking spillover of a neurotransmitter (NT)we must pay attention to the structure of the extra-
into account. In order to do this we proposecellular matrix (ECM). We provide a technique
a computationally effective mathematical modefor reconstructing the topology of the ECM from
photographic images. This is necessary for estimat-
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lengths?;(z) to m(i):

Gli)= /& —i2 VO<i<d;, (1)

where i is the distance to the centen; of an
obstruction. Distributions (1) were fit tm(i) ac-
cording to the following criterion:

min (m(4) — ” iy /d? —i? 2, (2)
o ( ; J J )

(@) (b) where n is the width of the picture in pixels.
Fig. 1. (a) Photograph of a slice of hippocampal tissue. (b)l N€ coefficientsa; represent the contribution of
Dendritic area. circles with diametetl;. The resulting normalized

distribution p(d;) is provided in figure 3. The
process is repeated in the vertical direction, column
space). We aim to model the tissue ensuring 1) wise (dashed curve). Slight mismatches between
realistic ratio between the free space and volumthe curves in figure 3 are due to the fact that cells
occupied by obstructions, and 2) a realistic disare not perfectly circular.
tribution of sizes of these obstructions. The first
characteristic can be estimated explicitly from the
images and is generally about 8%. To satisfy the
second requirement we must have a model of the * .
most probable shape of an obstructing object. As
follows from visual inspection the obstacles have_ »*
roughly a circular shape. : .
The probability p(d;) for an obstruction with =t - i
diameterd; to exist, is derived from the images

0t

by estimating the lengths of black space, row .|
wise in the images. We use these estimates to
derive a distributionm(z) of occurrences of filled
(black) lines with lengths grater or equal than

in the actual images: On the pther .hanq, in each d; [pixel]

measurementn(z) a circular ObJeCt with diameter Fig. 3. Probability distributios(d; ) of sizesd; of obstructing

d; > i will be encountered in multiple lines (figure objects in horizontal (solid) and vertial (dashed) direcs.
2). This leads to the following contribution of
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Simulation of Diffusion.The model of hip-
pocampal tissue (distributiop(d;)) was used to
create a realistic environment for simulating diffu-
sion of the NT. In addition to preserving the ratio

ol &

R is the diffusion coefficient andi(z,y,t) :

R xR x R-g — R represents the input of NT to
the system. The functio®'(z,y,t) : R x R X

R~y — R represents the concentration profile
over an open, connected setc IR2. Only time
invariant sources are considered, and the boundary
conditions areC'(z,y,t) =0V x,y # Q.

/[ ;i (1) AN : between obstructed and free space we also require
/N z“ N\ > that cells in this environment do not intersect.
[ 2 \ »> Free diffusion in 2 dimensions is often [9]
/ \-/ \ > modeled by the following PDE:
m; > ac 02C  9:C
: pE— =D (Gt G ) Fulen. @
\ / f wherex € R, y € R are spatial variables) €

Fig. 2. Contribution of black space in a circle.



If Q inherits structural properties of the tissueHowever, for the sake of simplicity we consider its
then solutions of (3) ovel would provide realistic steady-state component:
estimates of the NT concentration in the actual tis- ) .
sue. We calculate these solutions by approximating tlilgo e(t) =~ u. ©)
original PDE (3) with a system of ODE, subjectt, complete our derivations of concentration pro-
to accurate spatial discretization over files we need to specify the input

¢=Ké+a, 4) A neuron consists of a cell body to which

an axon and dendrites are attached. Assuming
dendrites spread equally in all directions and have
a mean length¢, NT is most probable to be
released on and sensed at a circle with radius
From this circle the release power, as well as the

where ¢ € R is a vector formed by spa-
tial sampling of Q) over N2 patches. The matrix
K ¢ RN *N" s the discrete approximation of

the Laplacian [6] in the coordinates of

0% f n 2 f ) receptor sensitivity are assumed to obey a Gaussian
o2 (m.m) Oy? (m.m) law (figure 4). Furthermore, the coupling from
~ f(mt1,n)+ f(mnLl)—4f(m,n).

Variablesm,n € {1, 2, ... N} represent the

. . . . Receptors
location of the 1 cell in the grid. Notice that cells

which are (partly) inside obstructions correspond
to zero rows and columns id<. Hence, it is Release
enough to consider a reduced maffixe R,
with r the number of cells that allow for flow of . /
NT. Its properties are summarized below: ¢
Property 1: The reduced coupling matrix

1. IT is symmetric.
2. II is non-singular, hencBI~! exists.
3. IT is negative definite.
Proof of Property 1Symmetry ofII follows di-
rectly from the rule (5) according to whicli<
and IT are generated. Non-singularity dfl is
proven by using the results of Taussky [14]. In
this reference it is shown that a matuk ¢ R™*" Fig. 4 _Sch_err]atic_ depiction of thg release power and receptor
with complex elements is nonsingular if 4 can sensitivity distribution (no obstructions).
not be transformed to the form:

P U one neuron to another is defined as the amount

A= { 0 Q } ) (6) of NT sensed by a neuron. When obstructions
by the same permutation of the rows and column&'© .disregarded bOt.h the releasg and the receptor
(P and Q are square matrices ariiconsists of profile can 'be descr.lbedzby the difference between
zeros), and 2) its elementd,;; satisfy: two Gaussian function§=(x,y) centered around
' J ' the same mean:
n

|ALZ| > Z |Aik|7 (7) Al(x?y) = g31,1,01.1(x’ y) - gil,z,gm(%y)-
k=1, ki (10)

with inequality in at most: — 1 cases. Sincdl is The total coupling function is the convolution
generated over a connected ddtjs not reducible between these two profiles; and A,:
to the form (6). Furthermord]I obeys (7). Hence K(E) = Kz 1) = A (2.9) @ Ao(z 1
according to [14], it is non-singular. Then negative (&) = lzy) (@y) 2(z,y), (11)
definiteness ofI follows from Gershgorins’ circle whereé = |ju1 — po| is the difference between
theoremQED. the means of the two Gaussian differences and

The solution to (4) now reduces to that of: is the convolution operator. The convolution (11)

. possesses the following properties:
, ¢=etu . ®) Property 2: Coupling function

with ¢, w € R™ andII € R™ *"". Its general 1. k() is positive definite.
form is given bye(t) = e™e(0)+ [y €™~ Tudr. 2. k() is bounded from above and below by bell




shaped functions. i component in the new model consisting of
3. k(€) is monotonically increasing fof < 0 and  diffusively coupled neurons is defined as follows:
monotonically decreasing fof > 0. It therefore

possesses a global maximuméat: 0. & o= —axd+batdyi—zu+1 (12)
The proof is available in [4]. — T, z+Dyq

When obstructlo.ns are tgken into account, the G = c—da?—y; (13)
shape of the coupling function can be obtained by )
numerical simulation. Results of these simulations, 4= e(s(wi+wo) —2) (14)
for multiple instances of2, are presented in fig- G = T (@9 —kq), (15)

ure 5. These results closely resemble a Gaussian
function, as predicted by the analytical estimatévherea, b, ¢, ¢, s, k, 7, € Ry, are the
before. Therefore, this analysis suggests the Gaugiodel parameters, and the function of parame-
sian function as a plausible model for the diffusivele” ¥ € R ensuresz;(t) + ¢ > 0 V ¢ €
coupling. R>¢,i=1,2,...,n. I is an external current, and
x = (z1,...,22), g = (¢1,---,q,)T. Synaptic
coupling is modeled by a linear teri, z, with
T, = —ks Vi #jandTy, = ki(n —1).
Here,I';, > 0 andk, € R>( is a synaptic gain.
Diffusive coupling is represented biD,;q, with
Dij = kgr (&J) Here, D = DT, kg € ]RZQ is
—— a diffusive gain ands(¢) is a Gaussian coupling
function, as derived in (11).

Asymptotic Properties of the Moddtquations
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F (12) - (15) define the dynamics of model neurons
) that are both diffusively and synaptically coupled.
L In contrast to the original Hindmarsh & Rose
& model, the new model possesses three instead of
O two different timescales. In addition, as a result

. _ f ['1 _ ~of slow diffusion, neurons themselves interact at
Fig. 5. Numerical approximation of the coupling function different time scales. These properties might affect
k(€). Top figure: simulation results (-), Gaussian fit (0-). Lower . .
figure: error. asymptotic behavior of the ensembles. Here we

investigate these properties from the point of view

of synchronization. Following [15], we derive the
[1l. DYNAMICS OF NEURONAL OSCILLATORS following properties:

WITH DIFFUSIVE AND SYNAPTIC COUPLING Property 3: Consider diffusively coupled sys-

In section Il we obtained a plausible class oftem (12) - (15)
diffusive coupling functions«<(¢) (11). Here we 1. lts solutions are globally bounded.
study the dynamics of neural ensembles taking. The diagonal synchronization manifold, =
this coupling into account. We consider a networkes = -+ = x,, ©; = (2;,y;, 2i,¢;) is globally
of Hindmarsh-Rose (1989) model neurons [10]asymptotically stable if:
These model neurons are computationally effec- La s
tive, cover substantially large variety of neural k> 3d”+b
behavior [8], and can be fitted successfully to )
actual data [7].

The 1989 Hindmarsh & Rose Model Revisited
In order to take diffusion of neurotransmitter into —~C, ‘ C.D+ &C,
account we extend the original Hindmarsh & Rose == C.D+ 2cC, ‘ _@kéz )
model by adding an extra ‘diffusion’ component. T T
Thi; addition _should, however, satisfy the f‘?"whereCI only has nonzero elemenG, ;;1; =
Iowmg constraints: 1 it should be a Gaussian_; gpq Co.ii = 2, exceptCyp1y = Cyn = 1.
function (&) of the distance between the neurons
2. it should contain a time varying component n—1 a2
on a timescale that is much slower than thosey = Z (nks —5 bz) , a € Ry, (17)
present in the current model. Summarizing, the i=1

and = <0, (16)

with:




Proof. Boundedness of solutions follows from theinput to this system, which far — oo is identical
semi-passivity argument [2], [15] using the follow- for all systems, the resulting system is linear and

ing storage function: asymptotically stable. From [3], [11] it is known
that any linear and asymptotically stable system
Vi=< (x +yi 244, (18) is convergent. Hencey;(t), i = 1,...,n con-

verge to the same function of time. Therefore,
yT(t)Cyy(t) — 0 ast — oco. Applying the
same argument to variables(t) we prove that
T(#)C.z(t) — 0 ast — oc.
Therefore it can be concluded thatt), q(t),

for thei-th system Details are provided in [4].

The stability of the synchronization manifold ¥
is investigated using the following candidate Lya-
punov function:

Vs = wT%w+yT@y (19) ¥(1) and =(t) converge to the synchronization
Cx Cy (diagonal) manifold ag — o if E = E¢ < 0.
C, C
+27 222 4 qT Zq, QED
© €a IV. SIMULATION RESULTS

with C,, C., C, defined similar to the definition
of C, in property 3,c;, ¢y, cx,cq € Rsg. Using
results from [15] we find:

This section provides two examples demonstrat-
ing dynamical regimes inherent to the extended
model and not observed in the original Hindmarsh

Vs < —2TCuz —e27C.2 (20) & Rose model. _ |
+27C,Dq+ ¢ DTC,x Saturat|o.n.CenS|der a ring ofn_; 5 s_ynapt|—
9 o cally and diffusively coupled modified Hindmarsh
+—= qTC T — 7qTqu7 & Rose neurons. The neurons are located on a cir-
Ta 1 cle with radiusl and the parameters of the system

with ~ according to (17). Now, note the following, and coupling strengths are chosen as follows:
regarding equation (20):
a=1,b=3c=1,d=5 a0 = 1.618,

a2 b2
.7>0Vks>%(see(17)and[15]). _ T—19=1 . )
o The term—c27C.z is disregarded, making & = 0.005, ' -6, 74 = 100, (23)
the estimate more conservative, but yielding ke =1,kg = 0.6,k =0.095,s = 4.

a more compact result. Furthermore, the diffusive coupling between the
o Terms involving constants vanish in theneurons is a Gaussian function with= 2 . The
derivative because of the structure(df effects of diffusive coupling are clearly visible,
With C, = aC,, o € R4, 8 = % and using the in the results depicted in figure 6. From figure 6

fact thatC is symmetric, equatlon (20) can be

Vs < *VﬂfTCma:fozﬁquC,,q (21) R ‘ ‘ ‘ ‘

+xT (2C, D + aBC,) q Yir ‘ ‘ ‘ ‘ ‘
Or in more compact notation, with € [0 1]: 2ok ‘ ‘ : : ‘

Vs <wlEyw (22) it
~¢ya" Cow — $afkq" Coq, € [01] 1

with w = [ = q]Tand Qi
= _[ —(-9¢C. | c.D+%C, ! 7
—¢ CzD + ancm ‘ 7Oéﬂ]€(1 _ QS)Cz ' 0 200 400 600 800 1000 T
Given that=, is negative semi-definite we can Fig. 6. Simulation results (saturation).
conclude from (22) thaVs < 0. Therefore, in-
tegralsf,~ «” (7)Cpx(7)dr, [;* q"(7)Cqq(r)dr  we observe the following: First of all, a dynamic

are bounded Hence, applymg Barbalatt’'s lemmaomponent is observed in both the inter-burst in-
we can derive thatz”(t)C,x(t) — 0, terval (decreasing) and the number of spikes per
q’ (t)C,q(t) — 0 ast — cc. burst (increasing). Furthermore, we observe the

Furthermore, looking at equations (12) - (15) itpresence of saturation in the systems’ dynamics.
is observed that if:;(¢) is regarded as a (bounded) The timescales in the system have a rat{o) :



z(T) : q(7) of 5000:10:1. Since the timescale of
neuronal spikingz(7) is normally in the order of
milliseconds, the ’'speed’ of diffusioq(r) is in
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(23) do not satisfy conservative conditions (16).
Nevertheless, synchronization is observed.

Self Induced Burstingncreasing the timescale [1]
of diffusion by a factor of two £ = 0.2) leads to
another interesting result (figure 7). Although the

i ‘ ‘ ‘ | [2]
JuSwew!
N ‘ ‘ ‘ ‘ ‘ (3]
W% NN N
-20 L ! L N
Zi ]
2 5 (5]
R ‘ ‘ ‘ ‘ )
a ‘ ‘ ‘ ‘ ‘ [6]
I ) (7]
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Fig. 7. Simulation results. Thin lines: extended model, 'self (8]

induced bursting’. Thick lines: original model.

parameters for both systems (extended and original®]
model) are identical, figure 7 shows that the origi-[m]
nal model converges to a stable equilibrium, while
the modified model gives a bursting response. This
response exists by virtue of the diffusive coupIingIll]
in the modified system. In addition to providing an
extra input from other neurons, diffusive couplingl12]
allows for self coupling. This 'self-excitation’ ex-
ceeds the input by diffusion from any other neuror3]
(11). Furthermore, the observed behaviour persists
if a single neuron is simulated. [14]

V. CONCLUSION

Concluding, we have presented a theoretica[IlS]
analysis of neuronal dynamics, taking spillover of
neurotransmitter into account. First of all, we have
shown the coupling function generated by diffusive
coupling to follow the Gaussian law by analyzing
hippocampal tissue of mice. Secondly, we have
implemented this coupling in the Hindmarsh &
Rose model and new types of dynamic behaviour
were revealed, which can be specifically linked to
the presence of diffusive coupling. Furthermore,
the limiting behaviour of the new model has been
investigated and a sufficient condition for global
asymptotic stability of the synchronization mani-
fold has been derived.
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