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Abstract
A reduced minimax state estimation approach is pro-

posed for high-dimensional models. It is based on
the reduction of the ordinary differential equation with
high state space dimension to the low-dimensional
Differential-Algebraic Equation (DAE) and on the sub-
sequent application of the minimax state estimation to
the resulting DAE. The DAE is composed of a reduced
state equation and of a linear algebraic constraint. The
latter allows to bound linear combinations of the re-
duced state’s components in order to prevent possible
instabilities, originating from the model reduction. The
method is robust as it can handle model and observa-
tional errors in any shape, provided they are bounded.
It allows to compute both the state estimate and the
reachability set in the reduced space. We include a
quick application to a complex air quality model in or-
der to illustrate the benefit of the minimax reduction
compared to the classical reduction.
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1 Introduction
Numerical modeling of complex systems such as the

Earth’s atmosphere involves complex numerical mod-
els relying on systems of coupled Partial Differential
Equations (PDEs). As an example, consider chemistry-
transport models that describe the fate of the pollu-
tants in the atmosphere (e.g., the models described in
(Mallet, Quélo, Sportisse, Ahmed de Biasi, Debry, Ko-
rsakissok, Wu, Roustan, Sartelet, Tombette and Foud-
hil, 2007)). For these models, the dimension of the

state vector1 can reach 107 or even more, and the
time integration has such a large computational cost
that only the equivalent of a few dozens of model
calls may be affordable. The computational costs of
these models and their dimensions raise specific issues
when one wants to reduce simulation errors (caused
by imperfect model formulation or uncertain inputs)
through assimilation of the observed data (sparse ob-
servations of the model’s state) into the model. Classi-
cal assimilation algorithms such as the Kalman filters
(Balakrishnan, 1984) can be so demanding in terms of
computations that they cannot be applied to these mod-
els without a reduction.
Reduced Kalman filters have been developed to ad-

dress this issue by introducing a reduction of in the
filtering algorithm—see (Wu, Mallet, Bocquet and
Sportisse, 2008) for an application to the aforemen-
tioned chemistry-transport models in air quality sim-
ulation. In these filters, the key reduction lies in the
propagation of the state error covariance matrix which
is intractable2 in Kalman filter. A popular reduced
Kalman filter is the so-called ensemble Kalman fil-
ter in which the state error covariance matrix is ap-
proximated by the empirical variance of the ensem-
ble (Heemink, Verlaan and Segers, 2001). The parti-
cles can be deterministically sampled like in the SEIK
versions (Pham, 2001), in the unscented Kalman fil-
ter (Julier and Uhlmann, 1997) or in its reduced ver-
sion (Moireau and Chapelle, 2010). Another example
is the reduced-rank square-root Kalman filter based on
propagation of the most important modes (Verlaan and
Heemink, 1995) of the error covariance matrix.
Another direction is the reduction of the model it-

self and subsequent application of an appropriate filter-

1State vector of the PDE after discretization in space.
2Since the propagation involves twice as much calls to the tangent

linear model as components in the state



ing technique to the resulting low-dimensional model.
The Galerkin projection represents one of the most
used techniques for model reduction (Brenner and
Scott, 2005). The idea is to find a low dimensional
subspace in the model state space and to restrict the
model onto that subspace. Of course, there is a loss
of information due to restricting the dynamics of the
model onto the subspace. One way to minimize the
loss is to generate the subspace by means of the Proper
Orthogonal Decomposition (POD) (Homescu, Petzold
and Serban, 2005).
In this paper, we introduce a reduced minimax fil-

ter, designed to be applied to high-dimensional mod-
els. Minimax approach allows 1) to filter any model
error with bounded energy and observational error ei-
ther deterministic with bounded energy or stochastic
with bounded variance., 2) to estimate the worst-case
error and 3) to assess how accurate the link between the
model and observed phenomena is. Our approach is to
make a reduction of the model itself and to apply the
minimax filtering to the reduced model, provided un-
certain model error and observation noise are elements
of a given bounding set. We introduce a reduced state
equation projecting the full state vector onto a subspace
which can be generated, e.g., by means of POD. The
projection introduces errors that can lead to a reduced
state equation with unstable dynamics. In order to ad-
dress this issue, we introduce an additional energy con-
straint on the reduced state in the form of a linear al-
gebraic equation. Finally, our reduced model is rep-
resented by a Differential-Algebraic Equation (DAE),
composed of a reduced state equation and of a linear
constraint. We apply an extended version of the mini-
max filter for DAE (Zhuk, 2010) to the reduced model
without further reduction on the filter.
The paper is organized as follows. After the notation

is introduced in section 1.1, the extended minimax fil-
ter, without reduction, is presented in section 2. This
section quickly explains the minimax framework, in-
troduces the filter and comments on the intractability
of the computations. The reduction procedure is then
derived in section 3. The classical Galerkin projection
is first commented. The DAE approach is then intro-
duced, in the linear case and in an extended version for
the non-linear case. The benefit of the reduction with
our approach is finally illustrated with an air quality
model.

1.1 Notation
Let Mt : RN Ñ RN define the model at some time

step t P t0, . . . , T � 1u:

xt�1 � Mtpxtq � et , x0 � xg0 � e , (1)

where xg0 is an approximation of the initial condition
with error e P RN , xt P RN denotes the state vector,
et P RN is the model error.
Let yt P Rm denote the observation of the true state

xt at time t. We assume that yt satisfies

yt � Htpxtq � ηt , (2)

where Ht : RN Ñ Rm is the observation operator
mapping the state space into observation space, and
ηt P Rm is the observation error.
We assume that the error pe, et, ηtq is uncertain but

bounded so that

xQ�1pe� eq, e� ey

�
T�1̧

t�0

xQ�1
t pet � etq, et � ety

�
Ţ

t�0

xR�1
t pηt � ηtq, ηt � ηty ¤ 1 ,

(3)

where Q,Qt P RN�N and R P Rm�m are symmetric
positive-definite matrices, and e, et P RN and ηt P Rm

may be viewed as systematic errors.
The tangent linear model is Mt � DMtpxtq P
RN�N . Consistently we introduce the associated tan-
gent linear operator Ht � DHtpxtq P Rm�N .
The reduction applies to the model state, and the re-

duced model state is denoted zt � FT
t xt P Rn, with

n ! N . Ft P RN�n is a reduction matrix. The mini-
max estimator of xt is denoted pxt P RN . The minimax
estimator is derived from the reduced minimax estima-
tor with pxt � Ftpzt.
The tangent linear operators along the trajectory pxt

are denoted xMt � DMtppxtqFt P RN�n (for t ¥ 0)
and pHt � DHtpMt�1ppxt�1q � et�1qFt P Rm�n (for
t ¡ 0), for the model and the observation operator re-
spectively. We also define pH0 � DH0px

g
0 � eqF0 P

Rm�n.
We denote by A� the Moore-Penrose pseudoinverse

of a matrix A. Ik�k denotes the identity matrix in
Rk�k. x�, �y denotes the canonical inner product of the
Euclidean space.

2 Extended minimax state estimation
2.1 Minimax filter for Ordinary Differential

Equations with discrete time
In what follows we present a minimax state estima-

tion algorithm that solves the following filtering prob-
lem: given a sequence of observed data y0, . . . , yT in
the form (2) and given the uncertainty description (3),
one should estimate the state xT of (1).
Our approach is based on the following idea: to de-

scribe how the model propagates uncertain parameters
verifying (3). The key point is to construct the so-
called reachability set Rt at time t, that is, the set
of all states xt satisfying (1) and compatible with the
description of uncertain parameters (3) and the ob-
served data yt in the form (2). In other words, the



state x�t belongs to Rt if and only if there is a se-
quence E� :� pe�, te�0 , . . . , e

�

t�1u, tη
�

0 , . . . , η
�

t uq ver-
ifying (3) such that the sequence x�0 , . . . , x

�

t computed
from (1) for e � e� and es � e�s , 0 ¤ s   t, is
compatible with observed data y0, . . . , yt through (2)
with ηs � η�s , 0 ¤ s ¤ t. This suggests a way to
estimate how the model propagates uncertain parame-
ters (initial-condition error e and model error et): it is
sufficient to have a description of the dynamics of Rt

in time. The true state can only lie in Rt. Note that
the dynamics of Rt takes into account only those real-
izations of e, et which are compatible with the actual
realization of observed data y0, . . . , yt. Consequently,
if Rt is empty, one can conclude that the errors were
wrongly described by (3).

Any point of Rt can be the true state. In order to ob-
tain a minimax estimate of this true state, we assign to a
point x P Rt a worst-case error, that is the maximal dis-
tance between x and other points of Rt. The point with
minimal worst-case error3 is the minimax estimate pxt.
Roughly speaking, the worst-case error can be thought
of as a “the longest axis” of the minimal ellipsoid con-
taining Rt, and the minimax estimate pxt is the central
point of that ellipsoid.

The basics of the minimax state estimation were de-
veloped by (Bertsekas and Rhodes, 1971), (Milanese
and Tempo, 1985), (Chernousko, 1994), (Kurzhanski
and Vályi, 1997), (Nakonechny, 2004). The main ad-
vantages of minimax estimates are as follows: (1) the
possibility to filter any model error and observation
noise with bounded energy, (2) the estimation of the
worst-case error, (3) fast estimation algorithms in the
form of filters, (4) the possibility to evaluate the model,
that is, to assess how good the model describes ob-
served phenomena.

In this subsection, we assume that Ft � IN�N . In
this case, there is no reduction and the state estimation
algorithm operates on the full model. Following (Zhuk,
2010), we introduce an extended version of the linear
minimax state estimate pxt, a minimax gain Gt and the

3This point will coincide with the Tchebysheff center of the
smallest ellipsoid containing the reachability set.

reachability set Rt for (1):

G0 � Q�1
0 � pHT

0 R
�1
0
pH0,

px0 � G�1
0

�
Q�1

0 e� pHT
0 R

�1
0 py0 � η0q

	
,

β0 � xR�1
0 py0 � η0q, y0 � η0y ,

Gt�1 � Q�1
t �Q�1

t
xMtBt

xMT
t Q

�1
t

� pHT
t�1R

�1
t�1

pHt�1,

Bt � pGt � xMT
t Q

�1
t
xMtq

�1,

pxft�1 � Mtppxtq,
pxt�1 � pxft�1 �G�1

t�1
pHT
t�1R

�1
t�1ryt�1 � ηt�1

� pHt�1pxft�1s �G�1
t�1pQt � xMtG

�1
t
xMT

t q
�1et,

Xt�1 � tw : xGt�1w,wy ¤ 1u,

βt�1 � βt � xR�1
t�1pyt�1 � ηt�1q, yt�1 � ηt�1y

� xB�t G
�1
t pxt, G�1

t pxty � xxMT
t Qt

xMtet, ety ,

Rt � pxt �a1� βt � xGtpxt, pxtyXt .

(4)

Here Rt denotes an ellipsoidal approximation of the
reachability set for the model (1) and βt is a scal-
ing factor. The dynamics of Xt describes how the
model Mt propagates uncertain parameters from the
bounding set (3) compatible with observed data yt.
The observation-dependent scaling factor βt defines
whether Xt shrinks or expands. If 1�βt�xGtpxt, pxty  
0, then the observed data is incompatible with our
assumption on uncertainty description (3). In the
form (4), the minimax state estimation algorithm can
be applied to non-linear models, hence we refer to it
as an extended minimax filter. Nevertheless, the theory
only supports the algorithm in the linear case—that is,
the reachability set is known to contain all possible true
states only in the linear case.
The algorithm is far too expensive for high-

dimensional systems: it requires to propagate a mini-
max gain Gt P RN�N , where N is the dimension of
the state space of the model (1). For instance, with
N � 107 like in air quality applications, the dimen-
sion of Gt is 107 � 107, which cannot be manipulated
by modern computers because of huge computational
loads and out-of-reach memory requirements. Hence a
reduction is necessary to carry out the computations for
high dimensional systems.

2.2 Minimax filter for Differential-Algebraic
Equations with discrete time

A more general form of the filter was derived in
(Zhuk, 2010) for DAE problems. The filter addresses
the problem

Ft�1zt�1 � MtpFtztq � rt ,

yt � HtpFtztq � ηt, F0z0 � F0F
T
0 px

g
0 � eq ,

(5)



with

xQ�1pe� eq, e� ey

�
T�1̧

t�0

xQ�1
t prt � rtq, rt � rty

�
Ţ

t�0

xR�1
t pηt � ηtq, ηt � ηty ¤ 1 .

(6)

Here Ft P RN�n can be any rectangular matrix and
zt P Rn denotes the state of the DAE. If Ft � IN�N ,
the problem statement is the same as in section 2.1.
Following (Zhuk, 2010), we consider the equation for

the minimax gain Gt, for any time t P t0, . . . , T � 1u:

Gt�1 � FT
t�1

�
Q�1

t �Q�1
t
xMtBt

xMT
t Q

�1
t

�
Ft�1

� pHT
t�1R

�1
t�1

pHt�1,

Bt �
�
Gt � xMT

t Q
�1
t
xMt

	�
,

(7)

with the following initialization:

G0 � FT
0 Q

�1F0 � pHT
0 R

�1
0
pH0 . (8)

For any time t P t0, . . . , T u, the minimax estimator is
defined as

pzt � G�t vt , (9)

with

v0 � FT
0 Q

�1e� pHT
0 R

�1
0 py0 � η0q , (10)

and, for t P t1, . . . , T u,

vt � FT
t Q

�1
t�1Mt�1pFt�1Bt�1vt�1q

� FT
t

�
Q�1

t�1 �Q�1
t�1

xMt�1Bt�1
xMT

t�1Q
�1
t�1

�
rt�1

� pHT
t R

�1
t pyt � ηtq.

(11)

For any time t P t0, . . . , T u, the reachability set Rt is
defined as

Rt � pzt �a1� βt � xGtpzt, pztyXt,

Xt � tx : xGtx, xy ¤ 1u
(12)

with βt being a scaling factor depending on observa-
tions:

βt�1 � βt � xR�1
t�1pyt�1 � ηt�1q, yt�1 � ηt�1y

� xB�t G
�1
t pzt, G�1

t pzty � xxMT
t Qt

xMtrt, rty

We have that the reachability set is a translation of the
set Xt induced by the minimax gain Gt. The shape
of Xt depends only on the model, observation operator
and bounding set. Xt describes how the model propa-
gates uncertain initial condition and model error from
the bounding set (6). In contrast to the case of ODE,Gt

could be singular so that Xt contains the kernel of Gt.
In fact, the part of the system state lying in that kernel
is not observable.

2.3 The case of the non-singular gain
Assume for simplicity that rt � 0 and e � 0. Let us

further assume that Gt is positive definite for all time
instants t. This is the case when, for instance, Ft, for
t P t0, T u, is of full column rank, or FT

t Ft � pHT
t
pHt

is positive definite. If Gt is positive definite, then
Qt � xMtG

�1
t
xMT

t is positive definite, and according to
Sherman-Morrison-Woodbury formula (see section 4),
its inverse can be written in the form

�
Qt � xMtG

�1
t
xMT

t

	�1

� Q�1
t

�Q�1
t
xMtpGt � xMT

t Q
�1
t
xMtq

�1xMT
t Q

�1
t .

(13)

Using this identity and the gain equation (7), it is pos-
sible to write Gt�1 as

Gt�1 � FT
t�1

�
Qt � xMtG

�1
t
xMT

t

	�1

Ft�1

� pHT
t�1R

�1
t�1

pHt�1 ,

(14)

which gives an alternative form to the filter. It also
proves thatGt is positive definite for all t P t0, . . . , T u.
The state estimator can be rewritten so that the model

is applied directly to Ftpzt instead of FtBtvt. Although
it is an equivalent formulation in the linear case, it can
make a huge difference when the model is non-linear.
In addition, this alternative form makes it easier to in-
terpret the action of the filter:

pzt�1 � FT
t�1MtpFtpztq

�G�1
t�1

pHT
t�1R

�1
t�1pyt�1 � ηt�1 � pHt�1F

T
t�1MtpFtpztqq

�G�1
t�1F

T
t�1

�
Qt � xMtG

�1
t
xMT

t

	�1

� pI � Ft�1F
T
t�1qMtpFtpztq

3 Model reduction
We introduce a reduction method which generalizes

the classical Galerkin approach. In the later approach,
the model state is projected onto a lower-dimensional
subspace so that the dynamics of the full state is rep-
resented with a small number of scalars. However this
reduction can loose some properties of the full model.
For instance, the reduced state equation can introduce
instabilities that are not in the full model.



Assume that for each time step t, we have a matrix
Ft P Rn�n whose columns are linearly-independent
orthonormal vectors—we therefore have FT

t Ft �
In�n. We denote by Ft the linear span of the columns
of Ft. The reduction consists in projecting the true state
xt onto this subspace Ft. We introduce zt � FT

t xt,
which is the vector of the coefficients of the projection
of xt. Consequently we approximate xt with Ftzt.

3.1 Classical reduction
The main idea of the classical reduction based on the

Galerkin projection is to derive the equation for zt mul-
tiplying (1) by FT

t�1:

zt�1 � FT
t�1xt�1 � FT

t�1Mtpxtq � FT
t�1et . (15)

Recalling the definition of zt we obtain

zt�1 � FT
t�1MtpFtztq � FT

t�1et

� FT
t�1Mtpxtq � FT

t�1MtpFtztq .
(16)

Let us define

pt � et �Mtpxtq �MtpFtF
T
t xtq , (17)

so that

zt�1 � FT
t�1MtpFtztq � FT

t�1pt ,

z0 � FT
0 px

g
0 � eq .

(18)

pt is the sum of the model error and a reduction error.
If we were to apply the extended minimax filter on the
reduced state equation (18), we would need to evaluate
the range of values that pt can take. Since pt is state
dependent and since the true state is unknown, it is hard
to determine the range of pt. The natural approach to
suppress the state dependence is to bound the reduction
error for all plausible states. Hence we may assume that

}pt} ¤ }et} � δt ,

where, for instance, δt is guaranteed to exist for Lip-
schitz continuous models provided FtF

T
t xt approxi-

mates xt with finite error. With possibly modified
Q,Qt and Rt, we write

xQ�1pe� eq, e� ey �
Ţ

t�0

xR�1
t pηt � ηtq, ηt � ηty

�
T�1̧

t�0

xQ�1
t ppt � ptq, ppt � ptqy ¤ 1

(19)

for pt defined by (17) and some pt defined as a system-
atic error of the new model error. Note that only FT

t�1pt
has an impact onto dynamics of zt. Noting that

FT
t�1pt � FT

t�1Ft�1F
T
t�1pt ,

we see that it is enough to have a bound on Ft�1F
T
t�1pt

only. Thus we can consider an ellipsoid in the form

xQ�1pe� eq, e� ey �
Ţ

t�0

xR�1
t pηt � ηtq, ηt � ηty

�
T�1̧

t�0

xpFT
t Q

�1
t FtqF

T
t ppt � ptq, F

T
t ppt � ptqy ¤ 1

Now we stress that the above procedure could lead to
the overestimation of the reachability set of the reduced
model (18). This is a consequence of the model reduc-
tion (we replace Mt with FT

t�1MtpFtq) and the sup-
pression of state-dependence in the reduction error.

3.2 Generalized reduction by means of DAE
Above we have seen that the state estimation problem

for (18) could be affected by instability of the reduced
model so that the reachability set could rapidly expand
in time although the reachability set of the full model
behaves differently. In what follows we propose a way
to further constraint the size of the reachability set for
the reduced state, while relying on the same reduction-
error estimations as previously.
Consider the reduced model

zt�1 � FT
t�1MtpFtztq � FT

t�1pt ,

z0 � FT
0 px

g
0 � eq ,

(20)

and the associated error description

xQ�1pe� eq, e� ey

�
T�1̧

t�0

xpFT
t Q

�1
t FtqF

T
t ppt � ptq, F

T
t ppt � ptqy

�
Ţ

t�0

xR�1
t pηt � ηtq, ηt � ηty ¤ 1 .

(21)

We introduce an additional constraint onto the reduced
state:

T�1̧

t�0

xS�1
t Ltzt, Ltzty ¤ 1 (22)

where S�1
t is a s � s-symmetric positive-definite ma-

trix defining the shape of the bounding set for the re-
duced state, and Lt P Rs�n is a design parameter al-
lowing to constraint a desired part of the reduced state



or just a linear combination of the reduced state’s com-
ponents. We do not impose any conditions on Lt. Now
we note that the energy constraint can be incorporated
into (20)–(21) using the following construction:

zt�1 � FT
t�1MtpFtztq � FT

t�1pt,

z0 � FT
0 px

g
0 � eq, Ltzt � wt � 0 ,

(23)

with

xQ�1pe� eq, e� ey

�
T�1̧

t�0

xpFT
t Q

�1
t FtqF

T
t ppt � ptq, F

T
t ppt � ptqy

�
Ţ

t�0

xR�1
t pηt � ηtq, ηt � ηty

�
T�1̧

t�0

xS�1
t pwt � wtq, pwt � wtqy ¤ 1� 1

(24)

where wt is a parameter. The bounding set is defined
with (24), which introduces a link between the reduced
state and the full state through pI � Ft�1F

T
t�1qxt�1.

This allows to limit the artificial increase of the reach-
ability set due to the reduction.

3.3 Extended minimax state estimation for DAE
After the considerations of the previous section, we

introduced the following filtering problem:

zt�1 � FT
t�1MtpFtztq � FT

t�1pt,

z0 � FT
0 px

g
0 � eq, Ltzt � wt � 0,

xQ�1pe� eq, e� ey

�
Ţ

t�0

xR�1
t pηt � ηtq, ηt � ηty

�
T�1̧

t�0

xpFT
t Q

�1
t FtqF

T
t pt, F

T
t pty

�
T�1̧

t�0

xS�1
t wt, wty ¤ 1� 1 .

(25)

We define a descriptor matrix rF �
�
In�n

0

�
. We

can extend the model and its associated error matrix:
the new DAE model is �Mt �

�
FT

t MtFt

Lt

�
and rQt ��

FT
t Q�1

t Ft 0

0 S�1
t

�
. With these definition, we can apply

the (extended) DAE minimax filter from section 2.2,
simply by substituting Ft with rF , Mt with �Mt and
Qt with rQt. Also Rt should be modified to take into
account the additional error due to reduction in the ob-
servation equation, since HtpFtztq is involved instead
of Htpxtq.

The choice ofLt and St is a key point in this approach,
since they allow to constrain the reduced state compo-
nents. This additional constraint is the main difference
with the Galerkin approach where instabilities may oc-
cur because no constraint is enforced.

3.4 Illustration with an air quality model
We illustrate the difference between the classical re-

duction and our approach by applying the filter, without
observations, to an air quality model from the modeling
system Polyphemus (Mallet et al., 2007). The model
essentially solves a set of reactive transport equations
in three dimensions and with 72 reacting chemical
species. The transport is modeled with advection (due
to the wind) and diffusion (which models turbulence).
The model is used in an operational configuration.
The state vector contains over one million components,
but we carry out the reduction on 10, 000 components
only. The reduced state has 30 components. We take
Lt � pIN�N � Ft�1F

T
t�1qMtFt and St � 108IN�N

which means we essentially prevent the model to con-
tribute to the complement of the reduced space. Fig-
ure 1 shows the ground-level ozone concentration field
at a given time, for the model without reduction, for
the model with classical reduction and for the model
with minimax filtering. On average (over several time
steps), the root mean square discrepancy between the
fields with reduction and the field without reduction is
3.8 µgm�3 in the classical case and 0.15 µgm�3 with
minimax filtering. This shows that, even for a complex
model and even without assimilation of observations,
the reduction within the minimax framework provides
significant improvement over the classical approach.

4 Sherman-Morrison-Woodbury formula
The Sherman-Morrison-Woodbury matrix identity is

pS �N1WN2q
�1

� S�1

� S�1N1pW
�1 �N2S

�1N1q
�1N2S

�1
(26)

if S and W are nonsingular matrices.

5 Conclusion
A new reduction method base on minimax state es-

timation is presented. The main idea is 1) to convert
a high-dimensional ODE into a low-dimensional DAE
and 2) to apply an extended version of the state estima-
tion algorithm developed in (Zhuk, 2010) to the result-
ing low-dimensional DAE. The proposed approach ad-
dresses instability issues arising in classical reduction
methods based on the Galerkin projection.
The next step is the application to real-life high-

dimensional models of the reduced version of the fil-
ter with assimilation. One objective is to compare with
classical reduced Kalman filters where the reduction is
carried out in the propagation of error variances, not
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Figure 1. Comparison between ground-level ozone concentrations (µgm�3) as simulated for the 1st January 2001 at 0500 UTC, without
reduction (top), with classical reduction (left) and with minimax reduction (right).

on the model state. One target application is the same
high-dimensional air quality models as in section 3.4.
Another target is to devise an algorithm of reduced ba-
sis generation (the matrix Ft) allowing to take into ac-
count available observations of the model state. In this
direction it is important to generate a robust reduced ba-
sis as initial conditions and model errors are supposed
to be uncertain.
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