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Inertial particle’s motion in geophysical fluid flows (V)
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We derive a general reduced-order equation for the asymptotic motion of finite-size particles in
unsteady fluid flows in a rotating frame. Our inertial equation is a small perturbation of passive
fluid advection on a globally attracting slow manifold. Use of the inertial equation enables us to
extract Lagrangian coherent structures for inertial particles motion in geophysical fluid flows. We
illustrate these results on inertial particle motion in the three dimensional unsteady flow field of a
hurricane. The dataset used is a simulation of the hurricane Isabel.
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I. INTRODUCTION

Finite-size or inertial particle dynamics in fluid flows
can differ markedly from infinitesimal particle dynamics:
both clustering and dispersion are well documented phe-
nomena in inertial particle motion, while they are absent
in the incompressible motion of infinitesimal particles.
As we show, these peculiar asymptotic features are gov-
erned by a lower-dimensional inertial equation which we
determine explicitly.

Let u(x, t) denote the velocity field of a two- or three-
dimensional fluid flow of density p; observed in a coor-
dinate frame that rotates with angular velocity €2, with
x referring to spatial locations and ¢ denoting time. The
fluid fills a compact (possibly time-varying) spatial region
D with boundary 0D; we assume that D is a uniformly
bounded smooth manifold for all times. We also assume
u(x,t) to be r times continuously differentiable in its ar-
guments for some integer > 1. We denote the material
derivative of u by

Du
Ty =W T (Vu)u,

where V denotes the gradient operator with respect x.

Let x(¢) denote the path of a finite-size particle of den-
sity p, immersed in the fluid, observed in the rotating
frame. If the particle is spherical, its velocity v(t) = x(t)
satisfies the equation of motion (cf. Maxey and Riley
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[1] This work summarizes the results presented at Haller and Sapsis
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[Max87] and Babiano et al. [Bab00])
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Here p, and p; denote the particle and fluid densities,
respectively, a is the radius of the particle, g is the con-
stant vector of gravity, 202 x v is the Corriolis accelera-
tion, and v is the kinematic viscosity of the fluid. The
individual force terms listed in separate lines on the right-
hand side of (1)) have the following physical meaning: (1)
force exerted on the particle by the undisturbed flow (2)
buoyancy force (3) Stokes drag (4) added mass term re-
sulting from part of the fluid moving with the particle (5)
Basset—Boussinesq memory term. The terms involving
a’Au are usually referred to as the Fauxén corrections.
For simplicity, we assume that the particle is very
small (a < 1), in which case the Fauxén corrections are
negligible. We note that the coefficient of the Basset—
Boussinesq memory term is equal to the coefficient of
the Stokes drag term times a/\/mv. Therefore, assuming
that a/+/v is also very small, we neglect the last term in
, following common practice in the related literature
(Michaelides [Mic97]). We finally rescale space, time, and
velocity by a characteristic length scale L, characteristic
time scale T = L/U and characteristic velocity U, re-
spectively, to obtain the simplified equations of motion
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and with ¢, v, u and g now denoting nondimensional
variables. Variants of equation have been studied
by Babiano, Cartwright, Piro and Provenzale [Bab00],
Benczik, Toroczkai and Tél [Ben02], and Vilela, de
Moura and Grebogi [Vil06].

In equation , St denotes the particle Stokes number
and Re = UL/v is the Reynolds number. The density
ratio R distinguishes neutrally buoyant particles (R =
2/3) from aerosols (0 < R < 2/3) and bubbles (2/3 <
R < 2). In the limit of infinitely heavy particles (R = 0),
equations become the Maxey—Riley equations derived
originally in [Max87]. The 3R/2 coeflicient represents the
added mass effect: an inertial particle brings into motion
a certain amount of fluid that is proportional to half of
its mass. For neutrally buoyant particles, the equation
of motion is simply £ (v —u) = —p(v—u), ie., the
relative acceleration of the particle is equal to the Stokes
drag acting on the particle.

Rubin, Jones and Maxey [Rub95] studied with
R = 0 in the special case when u describes a two-
dimensional cellular steady flow model. They used a
geometric singular perturbation approach developed by
Fenichel [Fen79] to understand particle settling in the
flow. The same technique was employed by Burns et al.
[Burn99] in the study of particle focusing in the wake
of a two-dimensional bluff body flow, which is steady in
a frame co-moving with the von Karman vortex street.
Recently, Mograbi and Bar-Ziv [Mog06] discussed this
approach for general steady velocity fields and made ob-
servations about possible asymptotic behaviors in two
dimensions.

Here we consider finite-size particle motion in general
unsteady velocity fields, extending Fenichel’s geometric
approach from time-independent to time-dependent vec-
tor fields. Such an extension has apparently not been
considered before in dynamical systems theory, thus the
present work should be of interest in other applications of
singular perturbation theory where the governing equa-
tions are non-autonomous. We construct an attracting
slow manifold that governs the asymptotic behavior of
particles in system . We also obtain an explicit dissi-
pative equation, the inertial equation, that describes the
flow on the slow manifold. This equation has half the di-
mension of the Maxey-Riley equation; this fact simplifies
both the qualitative analysis of inertial dynamics and the
numerical tracking of finite-size particles.

II. SINGULAR PERTURBATION
FORMULATION

The derivation of the equation of motion is only
correct under the assumption p > 1, which motivates us

to introduce the small parameter

1
e=— <1,
I
and rewrite ([2)) as a first-order system of differential equa-
tions:

X = vV,
3R Du(x,t)
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This formulation shows that x is a slow variable changing
at O(1) speeds, while the fast variable v varies at speeds
of O(1/e).

To transform the above singular perturbation problem
to a regular perturbation problem, we select an arbitrary
initial time ¢¢ and introduce the fast time 7 by letting

—2Qxv (3)

eV =

eT =1t — 1.

This type of rescaling is standard in singular perturba-
tion theory with 9 = 0. The new feature here is the
introduction of a nonzero present time tg about which
we introduce the new fast time 7. This trick enables
us to extend existing singular perturbation techniques to
unsteady flows.

Denoting differentiation with respect to 7 by prime, we

rewrite as

x' = ev,
¢ = e
3R Du(x, ¢)
r o Dt Y
V= u(xg) v DR d) )
—269><V—|—€<1—32R> g,

where ¢ = to + e is a dummy variable that renders the
above system of differential equations autonomous in the
variables (x,¢,v) € D x RxR™; here n is the dimension
of the domain of definition D of the fluid flow (n = 2 for
planar flows, and n = 3 for three-dimensional flows).

III. SLOW MANIFOLD AND INERTIAL
EQUATION

The € = 0 limit of system ,

x =0, (5)
¢’ =0,
V, = u(X7 ¢)_V7

has an n + 1-parameter family of fixed points satisfying
v = u(x,¢). More formally, for any time 7" > 0, the
compact invariant set

My ={(x,6,v) :

v=u(x,¢), xe€D, ¢p€fto—T,to+T)}
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FIG. 1: (a) The geometry of the domain Dg (b) The attracting
set of fixed points My; each point p in My has a n-dimensional
stable manifold f3(p) (unperturbed stable fiber at p) satisfy-
ing (x,¢) = const.

is completely filled with fixed points of . Note that
My is a graph over the compact domain

Do = {(x,9) :

we show the geometry of Dy and Mj in Fig.
Inspecting the Jacobian

L fu(x,0) Iy, = T

we find that M, attracts nearby trajectories at a uni-
form exponential rate of exp(—7) (i.e., exp(—t/e) in
terms of the original unscaled time). In fact, M, at-
tracts all the solutions of that satisfy (x(0),#(0)) €
Dx [to — T, to + T]; this can be verified using the last
equation of 7 which is explicitly solvable for any con-
stant value of x and ¢. Consequently, M; is a compact
normally hyperbolic invariant set that has an open do-
main of attraction. Note that My is not a manifold be-
cause its boundary

xe€D, pe€fto—T,to+T};

OMy = 0Dx [tg — T, to + T] | Dx {to — T} | Dx {to + T}

has corners; My — 0Mj, however, is an n + 1-dimensional
normally hyperbolic invariant manifold.

By the results of Fenichel [Fen79] for autonomous sys-
tems, any compact normally hyperbolic set of fixed points
on gives rise to a nearby locally invariant manifold
for system . (Local invariance means that trajectories
can only leave the manifold through its boundary.) In
our context, Fenichel’s results guarantee the existence of
€o (to, T') > 0, such that for all € € [0, &), system (4) ad-
mits an attracting locally invariant manifold M, that is
O(e) CT~close to My (See Fig. [2). The manifold M. can
be written in the form of a Taylor expansion

M= {(x.6.v) : v=nu(x6)+u'(xe)+... (6
e (x,6) + O(), (%, ¢) € Do} ;

the functions u”(x, ¢) are as smooth as the right-hand
side of . M, is a slow manifold, because (4)) restricted

‘(b

FIG. 2: (a) The geometry of the slow manifold M. (b) A
trajectory intersecting a stable fiber fZ(p) converges to the
trajectory through the fiber base point p.

to M, is a slowly varying system of the form

x' = ev]y, (7)

= e[u(x,¢) +eu'(x,0) +... + €u'(x,0) + O ).
We find the functions u*(x, ¢) using the invariance of

M., which allows us to differentiate the equation defining
M, in @ with respect to 7. Specifically, differentiating

v=u(x,0) + ) ut(x,¢) + O
k=1
with respect to 7 gives

v = ued b + ) [ul +ufel] O, (8)
k=1

on M., while restricting the v equations in to M.
gives
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Comparing terms containing equal powers of € in and
@[), then passing back to the original time ¢, we obtain
the following result.

Theorem 1 For small ¢ > 0, the equation of particle
motion @ on the slow manifold M. can be rewritten as

X =u(x,t)+eul(x,t)+...+u(x, 1) + O, (10)

where T is an arbitrary but finite integer, and the func-



tions u'(x,t) are given by
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for k> 2.

We shall refer to with the u’(x,t) defined in
as the inertial equation associated with the velocity field
u(x,t), because gives the general asymptotic form
of inertial particle motion induced by u(x,t). A leading-
order approximation to the inertial equations is given by

k:u(x,t)+6<3R—1> {D“_

5 Dr ] —2eQ x u(x, ¢);

(12)
this is the lowest-order truncation of that has
nonzero divergence, and hence is capable of capturing
clustering or dispersion arising from finite-size effects.
The above argument renders the slow manifold M, over
the fixed time interval [to — T, to + T]. Since the choice
of ty and T was arbitrary, we can extend the existence
result of M, to an arbitrary long finite time interval.
Slow manifolds are typically not unique, but obey the
same asymptotic expansion . Consequently, any two
slow manifolds and the corresponding inertial equations
are O(e") close to each other. Specifically, if » = oo,
then the difference between any two slow manifolds is
exponentially small in e. The case of neutrally buoyant

particles (R = 2/3) turns out to be special: the slow
manifold is the unique invariant surface
Me={(x,0,v) : v=u(x,9), (x, ¢)€ Do},

on which the dynamics coincides with those of infinitesi-
mally small particles. This invariant surface survives for
arbitrary € > 0, as noticed by Babiano et al. [Bab00],
but may lose its stability for larger values of e (cf. Sapsis
and Haller [SapHal07]).

IV. CONVERGENCE TO THE SLOW
MANIFOLD

The results of Fenichel [Fen79] guarantee exponen-
tial convergence of solutions of to the slow mani-
fold M.. Translated to the original variables, exponential
convergence with a uniform exponent to the slow man-
ifold is only guaranteed over the compact time interval
[to —T,to+ T]

Over finite time intervals, exponentially dominated
convergence is not necessarily monotone. For instance, if
the velocity field suddenly changes, say, at speeds compa-
rable to O (1/¢), then converged solutions may suddenly

find themselves again at an increased distance from the
slow manifold before they start converging again (cf. Fig.
. Again, this is the consequence of the lack of compact-
ness in time, which results in a lack of uniform exponen-
tial convergence to the slow manifold over infinite times.
Where do solutions converging to the slow manifold tend

VA
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FIG. 3: Sudden changes in the velocity field delay convergence
to the slow manifold.

asymptotically? Observe that for ¢ = 0, each solution
converging to My is confined to an n-dimensional plane

fos(p) = {<Xp’¢17’v) p= ( Xp7¢p?u(xpa¢p)) S MO} .

Fenichel refers to f§(p) as the stable fiber associated with
the point p: each trajectory in f§(p) converges to the
base point of the fiber, p. More generally, a stable fiber
has the property that each solution intersecting the fiber
converges exponentially in time to the solution passing
through the base point of the fiber. The collection of all
fibers intersecting M is called the stable foliation of M,
or simply the stable manifold of M.

Fenichel [FenT9] showed that the stable foliation of
M, smoothly persists for small enough ¢ > 0. Specif-
ically, associated with each point p € M., there is an
n-dimensional manifold f2(p) such that any solution of
intersecting f#(p) will converge at an exponential rate
to the solution that runs through the point p on M.. The
persisting stable fibers f(p) are C” smooth in €, hence
they are O(e) C"-close to the invariant planes f§(p), as
indicated in Fig. 2p.

V. APPLICATION: INERTIAL PARTICLES IN
THE UNSTEADY FLOW FIELD OF A
HURRICANCE

A. Asymptotics of finite-size particle motion

A general particle motion (x(t),v(t)) is attracted to a
specific solution within the slow manifold M,. This spe-
cific solution runs through the base points of stable fibers
intersected by (x(t),v(t)). As a result, the forward-time
asymptotic behaviors seen on the slow manifold are the
only possible asymptotic behaviors for general inertial
particle motion.
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FIG. 4: NASA satellite photo taken at 11:50 am on September
18th 2003.

Rapid changes in the velocity field u(x,t) in time will
lead to rapid changes in the slow manifold, as seen from
the definition of M, in @ In that case, particles that
have already converged to the slow manifold may find
themselves further away from the slow manifold (whose
location has rapidly changed). Particles will converge ex-
ponentially to the new location of the slow manifold, but
may again find themselves temporarily at a large distance
from the manifold if a further rapid change occurs in the
velocity field.

B. The dataset

The dataset used in this paper is obtained from a
weather simulation produced by the US National Center
for Atmospheric Research (NCAR). It shows the Isabel
hurricane, a large tropical depression that made landfall
on the East Coast of the US on September 18th 2003
(cf. Fig. [). The simulation covers a period of 48 time
steps (hours). Each time step contains the instantaneous
velocity field with a grid resolution 500x500x100 cov-
ering an atmospheric volume with coordinates running
from 83W to 62W (Longitude), 23.7N to 41.7N (Lati-
tude) and 0.035km to 19.835km (height). These coor-
dinates corresponds to a square area with side length
of approximatelly 2000km. To nondimensionalize the
data we choose a characteristic lengthscale L = 10km,
a characterstic velocity U = 10m/sec and a character-
stic timescale T' = % = 1000sec. The earth rotates with
an angular velocity 2 which we will take, for our analy-
sis to be constant with time (7.29 x 107° sec™!) although
including a time variation for 2 may be nessecary for
dynamics on very long geological time scales.

FIG. 5: Convergence of an inertial particle (bubble) on the
slow manifold shown in the (z,y, |v|) space for ¢ = 16. The
particle is released and advected under the full Maxey-Riley
equation.

C. Slow-manifold in the flow

Here we show that the inertial equation indeed
gives the correct asymptotic motion of finite-size particles
in this application. For particles, we choose bubbles with
R = 1.55 and € = 0.1. We solve the full six-dimensional
Maxey-Riley equation on the time interval [10,16]
using a 4th-order Runge-Kutta algorithm with absolute
integration tolerance 1076. The initial velocity of the
particle was taken much larger in absolute value than
the velocity corresponding to the same initial location
on the slow manifold. In the same figure, we also show
the projection of the six-dimensional solution of (3|) onto
the (z,y,|v (-,-, zp (t))|) space, where 2, (t) is the instan-
taneous z—coordinate of the particle. We show the slow
manifold M, (blue surface); we use color to indicate the
instantaneous leading-order geometry of the slow mani-
fold (@ computed for ¢ = 16 at the instantaneous vertical
particle position z, (¢).

Specifically, colors ranging from dark blue to dark
red indicate increasing values of |v| = |u(-,-, 2, (¢),T)],
which is a measure of the “height” of the slow manifold
at leading order in the (x,v) coordinate space. Note the
rapid convergence of the particle trajectory to the invari-
ant slow manifold.

D. Extraction of Lagrangian coherent structures

Coherent structures in the Lagrangian (particle-based)
frame can be defined as distingushed sets of fluid parti-
cles. These Lagrangian Coherent Structures (LCS) have
a decisive impact on fluid mixing by their special stability
properties (cf. Haller and Yuan [Hal00]). For the detec-
tion of LCS we used an extended Lyapunov-exponent-
based LCS detection scheme applied previously in two-



09—

08—

06—

05|

04—

03—

190 g0 100

FIG. 6: Attracting manifolds at to = 16 extracted from the inertial equation as ridges of the backward-time DLE fields (¢ = 13).

dimensional turbulence (Mathur et al. [Mat07]).

Specifically, by solving numerically the inertial equa-
tion for a grid of initial conditions x¢ at tg, we
determine the particle trajectories x (¢,%¢).By numer-
ical differentiation, we compute the largest singular-
value field Apax (t,t0,%0) of the deformation-gradient
tensor field [0x (¢, to,x0) /8XO]T [0x (t,to,x0) /O%0] . We
then use the local maximizing surfaces of the di-
rect Lyapunov exponent (DLE) field o} (x0) =
[In Amax (¢, to,%0)] / (2 (t — tp)) plotted over initial posi-
tions xg to visualize the LCS. In Fig. 6 we show the
attracting LCS as local maximizing surfaces of o} (xo)
for t < tg.

VI. CONCLUSIONS

In this paper, we have described a way to reduce the
Maxey—Riley equation in a rotating frame to a slow man-
ifold that captures the asymptotics of inertial particle
dynamics. The slow manifold arises in a singular per-
turbation approach that is valid for small particle Stokes
numbers. We treat general unsteady flows, as opposed
to earlier applications of singular perturbation theory in

this context that were restricted to concrete steady flows.

Our main result is an explicit inertial equation for mo-
tions on the slow manifold suitable for the description of
particles’ motion in oceanography and meteorology. For
small enough Stokes numbers, particles approach trajec-
tories of this inertial equation exponentially fast. We
have illustrated the use of the inertial equation on a
three dimensional unsteady velocity field that describes
the motion of the hurricane Isabel by extracting the at-
tracting Lagrangian coherent structures for the motion
of inertial particlers.
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