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Abstract
Based on adaptive-impulsive control method, we in-

vestigate the synchronization and parameters identi-
fication of uncertain general complex dynamical net-
works, with non-delayed and delayed coupling. Sev-
eral criteria are proposed for the uncertain general com-
plex networks with nonidentical nodes, which guaran-
tee that the uncertain node’s parameters can be iden-
tified when the synchronization occurs. Finally, some
numerical simulation results are given to validate the
feasibility of the proposed methods.
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1 Introduction
Synchronization, as a universal phenomenon ex-

hibited in many natural systems and complex net-
works, has been widely studied in recent years. The
researchers studied the synchronization for general
complex networks, random directed networks, time-
varying complex dynamical networks, and most of
their results are about the “inner synchronization” pre-
sented in [Li, Sun and Kurths, 2007]. Later, some re-
searchers began to study the “outer synchronization”
between two complex networks [Tang, Chen, Lu and
Tse, 2008; Chen, Jiao, Wu and Wang, 2009]. All
those results mainly studied the synchronization of the
complex networks with known system parameters and
known topological structure.
However, in real-world complex networks, there ex-

ists various uncertain information, such as unknown
or uncertain topological structure and node dynamics.
Therefore, synchronization as well as parameters iden-
tification are important issues in the research of com-
plex networks.

The impulsive control, which exerts the control ac-
tion on systems only at some discrete instants, is more
efficient and practical than many other control meth-
ods. Therefore, it is popular to synchronize chaotic
systems or complex networks via impulsive control.
Zhou et.al reported some results of impulsive synchro-
nization in general complex delayed dynamical net-
works [Zhou, Wu, Xiang, Cai and Liu, 2011]. Fur-
ther, by combining the adaptive control and impul-
sive control, Wan and Sun studied the adaptive impul-
sive synchronization of chaotic systems [Wan and Sun,
2011] and Chen et.al discussed the adaptive impulsive
synchronization of uncertain chaotic systems [Chen,
Hwang and Chang, 2010]. Later, Sun et.al investi-
gated the adaptive-impulsive synchronization in drive-
response networks [Sun, Zeng, Tao and Tian, 2009],
K. Li and C.H. Lai analyzed the adaptive-impulsive
synchronization of uncertain complex dynamical net-
works [Li and Lai, 2008], Jiang investigated the hybrid
adaptive and impulsive synchronization of uncertain
complex dynamical networks by the generalized Bar-
balat’s lemma [Jiang, 2009]. However, all those works
only realize the synchronization but do not consider
the evolution of the uncertain parameters. To our best
knowledge, few work has been done for the adaptive-
impulsive synchronization and parameter identification
of uncertain complex networks. Very recently, our
group obtained some theoretical results about the pa-
rameter identification and synchronization of uncertain
general complex networks via adaptive-impulsive con-
trol, in which the adaptive controllers are used in each
node of the response network [Zhang, Luo and Wan,
2013]. In the present paper, we further investigate the
adaptive-impulsive synchronization and system param-
eter tracking of general uncertain complex dynamical
networks, with non-delayed and time-varying delayed
coupling. Based on some impulsive controllers and
adaptive laws of unknown parameters, several novel



criteria have been obtained to realize the synchroniza-
tion and the tracking of unknown parameters, for the
impulsively controlled general complex networks con-
sisting of nonidentical nodes.

2 Model and assumption
Consider a class of n-dimensional dynamical system,

which is described by the following differential equa-
tion

ẋi(t) = Fi(t, xi(t), Θi), (1)

in which xi(t) = (xi1(t), xi2(t), · · · , xin(t))T ∈
Rn, Θi ∈ Rp is the parameter vector and assume that
the vector-valued function Fi(t, xi(t),Θi) satisfies the
uniform Lipschitz condition, that is

‖Fi(t, yi(t),Θi)− Fi(t, xi(t),Θi)‖ ≤ Li‖yi(t)− xi(t)‖.

Further, it can be rewritten as

ẋi(t) = fi(t, xi(t)) + gi(t, xi(t)) ·Θi, (2)

where fi(t, xi(t)) : R+ × Rn → Rn is the continuous
nonlinear function vector without unknown parameters
and gi(t, xi(t)) : R+ × Rn → Rn×p is a continuous
function matrix, Θi ∈ Rp is the unknown parameter
vector.

3 Synchronization and parameter identification of
uncertain complex networks without delay

A drive network with unknown system parameters is
described by

ẋi(t) = Fi(t, xi(t),Θi) +

N∑
j=1

cijAxj(t), i = 1..N,

(3)
where xi(t) = (xi1(t), xi2(t), · · · , xin(t))T ∈ Rn are
the state variables of node i, and C = (cij)N×N is the
weighted configuration matrix. If there is a directed
coupling from node i to j (j 6= i), then cij 6= 0 and
cij is the weight; otherwise, cij = 0. The matrix A =
(aij)n×n ∈ Rn×n is the inner connecting matrix of
each node.
Another impulsively controlled slave network is de-

signed by


ẏi(t) = Fi(t, yi(t), Θ̂i) +

N∑
j=1

cijAyj(t), t 6= tk

∆yi(t
+) = dik(yi(t) − xi(t)), t = tk, k = 1, 2, . . .

yi(t0) = yi0,
(4)

where yi(t) = (yi1(t), yi2(t), · · · , yin(t))T ∈ Rn are
the response state variables of node i, Θ̂i is the es-
timation of the unknown system parameters Θi, and

dik are the adaptive impulsive feedback gain received
by the ith node at tk impulsive moment. Moreover,
∆yi(t

+
k ) = yi(t

+
k ) − yi(t

−
k ), yi(t

+
k ) = lim

t→t+k
yi(t)

and any solution of (4) is left continuous at each tk,
i.e. yi(t−k ) = yi(tk). The moments of impulse satisfy
t1 < t2 < · · · < tk < tk+1 < · · · and lim

k→∞
tk = ∞,

τk = tk − tk−1 <∞.
Theorem 1. Let λ be the largest eigenvalue of (C ⊗
A)+(C⊗A)T, where⊗ is Kronecker product. If there
exists a constant γ > 0 such that

2αkτk + lnd̄k + γ < 0, k = 1, 2, . . . (5)

where αk = λ
2 + max

i
{L̂i(tk)}, d̄k = max

i
{(1 +

dik)2}. Under the following updating laws

˙̂
Θi = −gTi (t, yi(t))ei(t),
˙̂
Li = eTi (t)ei(t),

where ei(t) = yi(t) − xi(t), then the network (3)
and impulsively controlled network (4) is adaptive-
impulsive synchronous. Moreover, for any 1 ≤ i ≤ N ,
Θ̂i → Θi.

4 Synchronization and parameter identification of
uncertain complex networks with time-varying
coupling delay

Suppose that time-varying delay τ(t) is differentiable
and satisfies τ̇(t) < µ < 1, where µ is a constant. Ob-
viously, this assumption holds for any constant delay
τ(t) ≡ τ .
If the drive network is described by

ẋi(t) = Fi(t, xi(t),Θi)+

N∑
j=1

cijAxj(t−τ(t)), i = 1..N,

(6)
and the impulsively controlled slave network is given
by
ẏi(t) = Fi(t, yi(t), Θ̂i) +

N∑
j=1

cijAyj(t− τ(t)), t 6= tk

∆yi(t
+) = dik(yi(t)− xi(t)), t = tk, k = 1, 2, . . .

yi(t0) = yi0,
(7)

Theorem 2. Let ρ be the largest eigenvalue of (C ⊗
A)(C ⊗A)T, if there exists a constant ξ > 0 such that

2βkτk + lnd̄k + ξ < 0, k = 1, 2, . . . (8)

where βk = ρ
2 + 1

2(1−µ) + max
i
{L̂i(tk)} and d̄k =

max
i
{(1 + dik)2}. Under the following updating laws

˙̂
Θi = −gTi (t, yi(t))ei(t),
˙̂
Li = eTi (t)ei(t),



then the network (6) and the impulsively controlled de-
layed network (7) is adaptive-impulsive synchronous.
Moreover, for any 1 ≤ i ≤ N , Θ̂i → Θi.

5 Numerical simulation examples
In the following, we assume the network inner-

coupling matrix A is the identity matrix, i.e. A =
In×n.
Example 1 Consider an uncertain complex network

composed with identical nodes without delay. Here, the
chaotic Lorenz system is taken as the node’s dynamical
function, which is given by

F (t, xi(t),Θ) =

a(xi2 − xi1)
cxi1 − xi1xi3 − xi2
xi1xi2 − bxi3

 , i = 1, 2, . . . , 200,

(9)
where the parameters are given by a = 10, b =

8/3, c = 28,Θ = (a, b, c)T. The network model in this
example is a B-A scale-free network with 200 nodes,
which is generated as follows:
(1) Growth: starting with a small number (m0 = 2) of

nodes, at every time step, add a new node with m = 2
edges, that link this new node to m different existing
nodes in the network.
(2) Preferential attachment: the probability pi of a new

node being connected to i-th node is ki∑
j 6=i

kj
, where ki is

the degree of i-th node.
Select the impulsive feedback gain constant d, impul-

sive interval τk and exponent constant γ respectively
as

d = −0.99,
τk = 0.02,
γ = 2.

(10)

one can easily verify that inequality (5) in Theorem
1 holds with the parameters given by (10). Figure 1
shows the adaptive-impulsive synchronization errors of
ei1(t), ei2(t), ei3(t) (i = 1, 2, . . . , 200) respectively.
Clearly, all synchronization errors are rapidly converg-
ing to zero. At the same time, Figure 2 shows the
identification process of unknown system parameters
a, b, c.
Example 2 For the complex networks (6) and (7) with

delayed coupling, set τ(t) ≡ 0.04. Each isolate node is
the periodically driven double-well Duffing oscillator

{
ẋi1 = xi2
ẋi2 = −pxi1 − x3i1 − qxi2 + r cos(wt)

(11)

which is a classic and popular model of nonlinear
phenomena and the solution of Eq.(11) approaches to
a chaotic attractor with parameters p = −1.1, q =
0.4, r = 2.1, w = 1.8. Here we assume that part of
the parameters, such as p, q are unknown.
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Figure 1. The adaptive-impulsive synchronization errors
ei1(t), ei2(t), ei3(t) (i = 1, 2, . . . , 200) for the network
in Example 1.
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Figure 2. The parameters tracking of â, b̂ and ĉ is successful and
those parameters are identified by â = 10, b̂ = 8/3, ĉ = 28.



The outer-coupling matrix is

C =


−2 1 0 0 1
1 −3 1 1 0
0 1 −2 1 0
0 1 1 −3 1
1 0 0 1 −2

 ,

after simple calculating by Matlab, one gets ρ =
21.3262. Set other parameters as


µ = 0.1,
d = −0.99,
τk = 0.1,
ξ = 2,

(12)

then one can get that the Eq.(8) in the Theorem 2 is
satisfied. Figure 3 shows the variations of the synchro-
nization errors, and the parameters estimation are dis-
played in Figure 4.
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Figure 3. The adaptive-impulsive synchronization errors
ei1(t), ei2(t) (i = 1, 2, . . . , 5) for the network in Example
2.

6 Conclusion
The adaptive-impulsive synchronization and parame-

ters identification of unknown general complex dynam-
ical networks, with non-delayed and delayed coupling
are studied in this paper. Specially, some uncertain fac-
tors, such as some unknown system parameters, are
taken into account in this network model. By con-
structing another suitable impulsively controlled slave
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Figure 4. The parameters tracking of p̂, q̂ is successful and those
parameters are identified by p̂ = −1.1, q̂ = 0.4.

network, several novel adaptive laws and control crite-
ria are derived. These criteria are efficient to achieve
the adaptive-impulsive synchronization and identify
the unknown system parameters of general uncertain
complex networks. Finally, numerical simulation re-
sults have been presented to demonstrate the effective-
ness of the proposed criteria about synchronization and
parameters tracking.
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