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Abstract
This paper derives a unified framework of boundary

controls and numerical calculus from a scaling free
molecular dynamics, called a renormalized molecu-
lar dynamics. A renormalized molecular dynamics
is suitable not only for the fast numerical calcula-
tion of microscopic targets like polymers, but also that
of macroscopic targets like mechanical systems be-
cause of coarse graining. First, we introduce renor-
malized Hamiltonian systems. The problem of devel-
oping boundary controls in renormalized Hamiltonian
systems is that the boundaries of renormalized Hamil-
tonian systems are not directly derived from molecu-
lar dynamics. Thus, we derive the continuum repre-
sentation of renormalized Hamiltonian systems from
the inverse limit of coarse graining. Then, we define
a standard boundary control representation of renor-
malized Hamiltonian systems by using distributed port-
Hamiltonian systems. Finally, we will show some nu-
merical examples.
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1 Introduction
The purpose of this paper is to create a unified

framework of boundary controls and numerical cal-
culus from a scaling free molecular dynamics (MD),
called renormalized molecular dynamics (RMD). MD
method [Thijssen, 1999] is used for reproducing be-
haviors of microscopic targets. MD is described by in-
teractions between atoms. The MD method consumes
much of calculation time if we apply it to larger tar-
gets with numerous atoms. To overcome this disad-
vantage, the acceleration technique of the MD method,
RMD method has been presented [Ichishima, 2006]. A
renormalization [Rudd, 1998] is a scaling symmetry

that actual physical systems have. The RMD method
is achieved by the iteration of coarse grainings that
preserve the statistical properties of systems between
different scales. The coarse graining consists of scal-
ing of momenta, positions, masses and the number of
atoms. The RMD method can not only extend the ap-
plication range of MD, but also provide a new calcu-
lating method for partial differential equations (PDEs)
without ad-hoc settings of boundary conditions and dis-
continuous solutions. That is, switching between each
phase: solid, liquid and vapor are naturally generated
in MD method if the interactions are exact.
On the other hand, macroscopic views are essential

in mathematical formulations of PDEs. Although hu-
mans recognize a solid object as a subdomain of 3-
dimensional space with a boundary, the definition of
boundaries for solid objects, i.e., the group of vibrat-
ing atoms is not unique. Boundaries are necessary for
boundary controls and connecting systems with differ-
ent scales in the RMD method.
A distributed port-Hamiltonian system [Van der

shcaft, 2002] (DPH system) is a framework of bound-
ary controls based on passivity and boundary connec-
tions for PDEs [Duindam, 2009]. A DPH system
is derived from a Dirac structure [Dorfman, 1993],
called a Stokes-Dirac structure [Van der shcaft, 2002].
Dirac structures are generalized symplectic and Pois-
son structures. Moreover, Stokes-Dirac structures im-
ply boundary integrability in the sense of Stokes theo-
rem. Because of the boundary integrability, the inter-
nal energy flow of systems defined on a domain can
be transformed into energy flows across the boundary
of the domain. In DPH systems, the pair of variables
called a boundary port plays the role of boundary in-
put/output variables. We can connect with DPH sys-
tems by boundary ports without loss of the consistency
with respect to energy. Thus, the DPH system of RMD
is used for boundary controls and boundary connec-
tions.
This paper is constructed as follows. In Section 2, we



recall RMD methods and extend it to be able to treat
higher order potential functions. In Section 3, we first
make clear the relationship between continuum me-
chanics and the DPH system. Then, we introduce the
DPH systems of RMD and the boundary power balance
of the system. Finally, we will show some numerical
examples.

2 Renormalized molecular dynamics method
This section is devoted to explain the fundamentals of

the RMD method [Ichishima, 2006].

2.1 MD systems
The Hamiltonian of a monatomic MD is given by

H(p, q) =
N∑

i=1

p2
i

2m
+

N∑
i=1

N∑
j>i

φ(qij), (1)

where p = (p1, · · · , pN ), q = (q1, · · · , qN ), pi is the
momentum of the i-th particle, qi is the position of the
i-th particle, N is the number of particles, m is a mass,
φ is a potential function (e.g., see the Lennard-Jones
potential for inactive atoms or the Morse potential for
metals [Kittel, 2005]), and qij = |qi−qj| is the distance
between two particles.

2.2 Statistical equivalence of Hamiltonian systems
Let us consider an MD system governed by a canoni-

cal ensemble without quantum effects. In this case, the
states of the system can be approximately described by
the probability density

P =
1
Z

exp[−βH ], (2)

Z =
1

N !hμN

∫ ∞

−∞

N∏
i=1

dpi dqi exp[−βH ], (3)

such that
∫∞
−∞
∏N

i=1 dpi dqi P (p, q) = 1, where β =
(kBT )−1, kB is the Boltzmann constant, T is the abso-
lute temperature H(p, q) is the (classical) Hamiltonian
[Kadanoff, 1999; Huang, 1987], the normalization con-
stant Z is called a partition function, N is the number
of particles, μ is the spatial dimension, h is the Planck
constant, and the integral is with respect to each pi and
qi.
The probability density P and the partition functionZ

yield the statistical properties of the system in thermo-
dynamic equilibrium. Therefore, if the Hamiltonian H
is invariant with respect to a certain coarse graining, the
systems determined by it are equivalent in the statistical
sense under the coarse graining. In the following sub-
sections, we shall describe the way of coarse graining,
i.e., transformations of the Hamiltonian.

2.3 Coarse graining of potential energy
Here, we derive the coarse graining of arbitrary higher

order potential functions although the original coarse
graining is for 3rd order potential functions [Ichishima,
2006]. Removing particle j that lies at the middle point
of a line connecting particles i and k can be executed
by integrating with respect to the particle j in (3). This
reduction can be expressed as scaling transformations
of parameters.

Lemma 2.1. Consider three particles i, j and k lying
on a one-dimensional lattice such that the interaction is
defined by Hamiltonian (1). Then the following holds:

∫ ∞

−∞
exp [−β {φ(qij) + φ(qjk)}]dqj

= Ξp(uik) exp
[
−β′φ

(qik
2

)]
, (4)

where β′ = 2β and

Ξp(uik) =
n∑

y=1

1
y

Γ
[

1
2y

]
(βΨ2y)−

1
2y , (5)

Ψ2y =
r∑

s=2y

(−1)s2
(
s

2y

)
φ(s)(a)
s!

(uik

2

)s−2y

(6)

for any integer r ≥ 2. Here, a is the distance between
two lattice points, ui = qi−ai is the displacement from
the stable point ai of particle i, uij = ui − uj , Γ is the
Gamma function,Ψ2y > 0, and integern is the quotient
when r is divided by 2, i.e., r = 2n or r = 2n+ 1.

Proof. Omitted. �

Proposition 2.2. Let us consider (4). The coefficient
Ξp(uik) can be considered to be the constant

Ξ0
p =

n∑
y=1

1
y

Γ
[

1
2y

] (
βΨ0

2y

)− 1
2y , (7)

Ψ0
2y = 2

φ(2y)(a)
(2y)!

, (8)

i.e, |Ξp(uik) − Ξ0
p | � |Ξ0

p | for all uik such that
|uik| � a.

Proof. Omitted. �

Hence, we introduce the following assumption.

Assumption 1. Systems with N particles are included
in a larger uniform system with M particles, where N
is even and M > N . The coarse graining is applied to
the system with M particles.

From these relations, we can derive the scaling invari-
ance of the potential function.



Theorem 2.3. Consider N neighboring particles in-
cluded in a sequence of particles on the one-
dimensional lattice. If |uik| � a, the following holds:

∫ ∞

−∞

N∏
i=1

dqi exp

⎡
⎣−β N∑

i=1

N∑
j>i

φ(qij)

⎤
⎦ ∝

∫ ∞

−∞

N ′∏
i=1

dqi exp

⎡
⎣−β′

N ′∑
i=1

N ′∑
k>i

φ
(qik

2

)⎤⎦ , (9)

where N ′ = 2−1N and β′ = 2β, and particles N ′ +
1, · · · , N have been removed.

Proof. Removing every second particle from the se-
quence in accordance with Lemma 2.1 reduces the
number of particles by half, so (4) holds for each near-
est pair of particles. By Proposition 2.2,Ξp(uik) in (4)
can be considered to be Ξ0

p in (8). �

Systems determined by Hamiltonians with the differ-
ent potential functions in (9) are equivalent in the sta-
tistical sense, because the constant coefficients of the
probability density (2) are normalized by the partition
function (3). This proportional relation can be extended
to higher dimensional cases by using the potential mov-
ing method [Kadanoff, 1999].

Theorem 2.4 ([Ichishima, 2006]). A relation corre-
sponding to (9) for the μ-dimensional case is given by
N ′ = 2−μN and β′ = 2μβ, where μ ≥ 1.

Remark 2.1. The condition Ψ2t > 0 in Lemma 2.1
is required for the Gauss integral [Gradshteyn and
Ryzhik, 2007]. However, we can consider that this con-
dition always holds without loss of generality, because
the potential function can be translated by adding con-
stants.

2.4 Coarse graining of kinetic energy
The coarse graining of kinetic energy is defined by re-

moving a particle and rescaling a momentum of a par-
ticle. This reduction can be performed by integrating
the relative momentum for a pair of particles.

Lemma 2.5 ([Ichishima, 2006]). Consider N neigh-
boring particles included in a sequence of particles on
the one-dimensional lattice, where the motions of the
particles are determined by Hamiltonian (1). Next, we
remove every second particle from the set of N parti-
cles. Consider three neighboring particles, i, j, and k.
We assign pk = (pi + pj)/2 to the momentum of par-
ticle k after removing particle j. Then the following

relation holds:

∫ ∞

−∞

N∏
i=1

dpi exp

⎡
⎣−β N∑

i=1

N∑
j>i

p2
i + p2

j

2m

⎤
⎦

= Ξk

∫ ∞

−∞

N/2∏
k=1

dpk exp

⎡
⎣−β′

N/2∑
k=1

p2
k

2m

⎤
⎦ , (10)

where β′ = 2β and Ξk = (4πm/β)
N
4 .

Theorem 2.6 ([Ichishima, 2006]). Consider N
neighboring particles included in a sequence of parti-
cles on a one-dimensional lattice. Then, the following
holds:

∫ ∞

−∞

N∏
i=1

dpi exp

(
−β

N∑
i=1

p2
i

2m

)
∝

∫ ∞

−∞

N ′∏
i=1

dpi exp

⎛
⎝−β′

N ′∑
i=1

p2
i

2m

⎞
⎠ , (11)

where N ′ = 2−1N , and β′ = 2β.

This transformation is equivalent to the cutting off of
high frequency. By repeating the same coarse graining
on each spatial axis, the following relation in higher
order dimensional space can be derived.

Theorem 2.7 ([Ichishima, 2006]). A relation corre-
sponding to (11) for the μ-dimensional case is given
by N ′ = 2−μN and β′ = 2μβ, where μ ≥ 1.

2.5 Renormalized Hamiltonian systems
We can prove the invariance of the partition function

under the above two ways of coarse graining:

Z =
1

N ′!hμN ′

∫ ∞

−∞

N ′∏
i=1

dpi dqi

exp

⎡
⎣−β′

N ′∑
i=1

⎧⎨
⎩ p2

i

2m
+

N ′∑
j>i

φ
(qij

2

)⎫⎬
⎭
⎤
⎦ , (12)

where N ′ = 2−μN , β′ = 2μβ, and we have normal-
ized the coefficients Ξ0

p and Ξk. We can define the
following transformation satisfying dpidqi = dp′idq

′
i.

Definition 2.1. An operator R in a μ-dimensional
space is defined as follows:

R : (pi, qi,m,N) �→
(p′j , q

′
j ,m

′, N ′) = (2pj , 2−1qj , 22m, 2−μN), (13)

where μ ≥ 1, 1 ≤ i ≤ N , 1 ≤ j ≤ N ′, and i = j for
1 ≤ j ≤ N ′.



In this paper, we assume that the inverse R−1 is
unique. Finally, the formal system representation is as
follows.

Definition 2.2. A γ-th order renormalized Hamilto-
nian (RH) system of a monatomic MD determined by
(1) in a μ-dimensional space is defined as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
dp′i
dt

= −∂Hγ

∂q′i
= − ∂

∂q′i

N ′∑
j>i

φ
(
q′ij
)
,

dq′i
dt

=
∂Hγ

∂p′i
=

p′i
m′ ,

(14)

where γ is any integer, and (p′i, q
′
i,m

′, N ′) =
(2γpi, 2−γqi, 22γm, 2−γμN) for 1 ≤ i ≤ N ′ and
Hγ(p′, q′) = H(p, q) ◦R−γ(p′, q′) are defined.

3 Boundary power balance of renormalized
Hamiltonian systems

RH systems consist of particles; therefore, boundaries
of the system cannot be uniquely defined. This sec-
tion derives the continuum representation RH systems
with a unique boundary. The continuum representa-
tion is given by the inverse limit of renormalizations in
terms of a new scaling, where we assume that a par-
ticular coarse-graining rule is given. The boundary is
used for defining the boundary power balance of RH
systems. The boundary power balance means that the
energy variation in an internal system domain is equal
to the supplied energy flowing across the boundary of
the domain. Hence, the boundary power balance can be
applied to boundary energy controls for RH systems.

3.1 Distributed port-Hamiltonian systems
We shall start at the recalling of continuous distributed

port-Hamiltonian systems [Van der shcaft, 2002].
Let Z be an n-dimensional smooth manifold with

an (n − 1)-dimensional smooth boundary ∂Z . Let
fp ∈ Ωp(Z), f q ∈ Ωq(Z), ep ∈ Ωn−p(Z), and eq ∈
Ωn−q(Z), where Ωi(Z) is the space of differential i-
forms onZ . Then the distributed port-Hamiltonian sys-
tem is given by

[
fp

f q

]
=
[
0 (−1)rd
d 0

][
ep

eq

]
,

[
f b

eb

]
=
[

ep|∂Z

(−1)peq|∂Z

]
, (15)

where d is the exterior differential operator, r = pq+1,
p + q = n + 1, and ei = ∂H/∂αi that means vari-
ational derivatives and f i = −∂αi/∂t are derived
from a Hamiltonian density H(αp, αq) ∈ Ωn(Z) for
i ∈ {p, q}. In (15), f b and eb are called boundary port
variables, which are a pair of boundary inputs/outputs.
Because, f b and eb satisfy the following power bal-
ance:

∫
Z

(ep ∧ fp + eq ∧ f q) +
∫

∂Z

eb ∧ f b = 0 (16)

saying that the total energy change of the systems de-
fined within the domain Z with the boundary ∂Z is
equal to the energy flowing across the boundary ∂Z .

3.2 Continuum representation of renormalized
Hamiltonian systems

Recall the conventional model of continuums derived
from ordinary differential equations [Arnold, 1989].
The limit of one-dimensional mass-spring systems can
be defined as a continuum; i.e., the transformation of
Hamiltonians,

Hms =
N∑

i=1

p2
i

2m
+

N−1∑
i=1

k

2
(qi+1 − qi)2

�→ Hms dx =
(

1
2ρ

(πt)2 +
κ

2
ψ2

x

)
dx (17)

is taken to the limits: a → 0, m → 0, N → ∞ and
k → ∞ under the constraints: l = aN , ρ = m/a
and κ = ka, where we have defined ψt = ∂ψ/∂t =
lima→0 q̇i, ψx = ∂ψ/∂x = lima→0(qi+1 − qi)/a and
πt = ρψt, m is the mass, a is the lattice length, l is the
length of the system domain V , k is the constant of the
spring, ψ(x, t) is the wave function for x ∈ V , and the
Hamiltonian density functional Hms =

∫
V Hms dx is

defined by the identification a = dx for an infinitesimal
a.
A second-order potential function is used in this in-

terpretation; however, the potential function of RMD
is generally of higher order. Furthermore, the lattice
length a grows as the number of particles increases. To
fill in the differences between the inverse limit of RMD
and the conventional continuum limit, we can consider
another scaling Sγ of the domain of the RH systems
according to the lattice expansion.

Proposition 3.1. Consider system (14) in a μ-
dimensional spatial domain V . Let Sγ : (q′i,m

′) �→
(q′′i ,m

′′) = (2γq′i, 2
−γm′) for 1 ≤ i ≤ N ′ and

H ′′
−∞ = limγ→−∞Hγ ◦ (Sγ)−1(q′′i ,m

′′). We define
the (standard) Hamiltonian density and its functional
form as follows:

H ′′
−∞ = H dx(μ)

=

{
1
2ρ

(πt)2 +
r∑

s=0

Θs (ψx − 1)s

}
dx(μ), (18)

H =
∫
V′′

H dx(μ), (19)

where t is the time coordinate, x = (x1, · · · , xμ) is the
set of spatial coordinates,

πt = lim
γ→−∞ ρ q̇i, ψxl = lim

γ→−∞
τlqij
2γa

, (20)

Θs = lim
γ→−∞

[
φ

(s)
γ (2γa)
s!

(2γa)s−μ

]
, (21)



ρ = 2γm/(2γa)μ, τlqij is the variable in the di-
rection of axis Xl in hypercubic coordinates, ψxl is
the partial derivative of ψ with respect to xl, ψx =
(ψx1 , · · · , ψxµ), V ′′ is the system domain V scaled by
Sγ , and dx(μ) = (2γa)μ is defined for an infinitesimal
2γa when γ → −∞.

Proof. The size of the domain re-scaled by Sγ

is invariant with respect to Rγ , because 2γq′ =
2γ2−γq = q. The potential function φ(qij) =∑r

s=0(φ
(s)(a)/s!)(qij − a)s for neighboring particles

i and j is scaled by Sγ as follows:

φγ(2γq′ij) =
r∑

s=0

φ
(s)
γ (2γa)
s!

(2γa)s

(
2γq′ij
2γa

− 1
)s

,

(22)

lim
γ→−∞φγ(2γq′ij) =

r∑
s=0

Θs (ψx − 1)s dx(μ), (23)

where q′ij = 2−γqij and the stable point of φγ

is 2γa; i.e., φγ is a horizontally scaled function of
φ, and the kinetic energy function is scaled as fol-
lows: p′′2i /(2m′′) = (2−γm′2γq′i)/{2(2−γm′)} =
p′2i /{2(2−γm′)} = (πt)2(2γa)μ/(2ρ), where m′ =
22γm and ρ = 2−γm′/(2γa)μ. By substituting (21)
into these functions, we get (19). �

3.3 Boundary power balance of renormalized
Hamiltonian systems

From the scaled Hamiltonian (19), we obtain the fol-
lowing standard representation for boundary energy
controls.

Proposition 3.2. Let V ′′ be a μ-dimensional con-
nected compact submanifold of R

μ with a boundary
∂V ′′. Consider the Hamiltonian density functional in
(19). Then, the following distributed port-Hamiltonian
system [Van der shcaft, 2002] can be derived from (19):

[
fp

fq

]
=
[

0 d
(−1)ξd 0

][
ep

eq

]
,

[
fb

eb

]
=
[
ep|∂V′′

−eq|∂V′′

]
, (24)

where ξ = μ+ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fp = − ∂

∂t
πt = − ∂

∂t
(ρψt) dx(μ),

fq = (−1)ξ ∂

∂t

∂H
∂πx

= (−1)ξ ∂

∂t
ψx dx

(1),

ep =
∂H
∂πt

= ψt,

eq = πx = −
r∑

s=1

sΘs (ψx − 1)s−1
dx(μ−1),

(25)

t is the time coordinate, x = (x1, · · · , xμ) is the set
of spatial coordinates, r is a positive integer, dx(k) is
a differential k-form defined on R

μ, and H(ψ, πi) =

πiψi − L(ψ, ψi) and πi = ∂L(ψ, ψi)/∂ψi for i ∈
{t, x} are defined. The system (24) with variables (25)
satisfies the following boundary power balance:

∫
V′′

(ep ∧ fp + eq ∧ fq) +
∫

∂V′′
eb ∧ fb = 0, (26)

which means the energy variation in the internal do-
main V ′′ is equal to the energy flowing across the
boundary ∂V ′′.

Proof. The proof is by direct calculation. First, (24)
is the formal form of distributed port-Hamiltonian sys-
tems [Van der shcaft, 2002] in the case of p = μ and
q = 1. In the first equation of (24), the first row
fp = deq is equivalent to the Euler-Lagrange equation,

{
∂

∂t
(ρψt) −

μ∑
i=1

∂

∂xi

(
r∑

s=1

sΘs (ψx − 1)s−1

)}

dx(μ) = 0, (27)

which is the dual expression of the scaled Hamiltonian
system v−∞ = F−∞d(H ′′

−∞), and the second row is
the identity, where the second term of (27) is equal to
deq ,

μ∑
i=1

∂

∂xi

(
r∑

s=1

sΘs (ψx − 1)s−1

)
dx(μ)

= d

(
r∑

s=1

sΘs (ψx − 1)s−1
dx(μ−1)

)
, (28)

which comes from integration by parts in the varia-
tional calculus of L(ψ, ψi). Equation (26) was proven
by means of Stokes theorem in [Van der shcaft, 2002].
Here, we check the relation between (26) and the
Hamiltonian density in (19). Indeed, the energy vari-
ation of (24) can be derived from

ep ∧ (−fp) + eq ∧ (−fq)

=
∂

∂t
πt ∂H
∂πt

dx(μ) − πx ∂

∂t

∂H
∂πx

dx(1) ∧ dx(μ−1)

= iX dH dx(μ), (29)

where i ∈ {t, x}, iX is the interior product with re-
spect to the vector field X = (∂πi/∂t)(∂/∂πi) +
(∂ψ/∂t)(∂/∂ψ), dH = (∂H/∂πi)dπi+(∂H/∂ψ)dψ,
∂/∂t

(
πiψi

)
= 0, and ∂H(ψ, πi)/∂πi = ψi. Hence,

the energy variation is the time derivative of an energy
function. �

The variables eq and ep in (25) have the dimensions
of force and velocity. The product eq · ep is power. The
variables eq and ep for the particles i, j ∈ ∂Vγ are used
as the input and output called boundary ports for the



passivity-based boundary controls. Typical passivity-
based boundary controls are shaping Hamiltonians and
damping assignments [Van der Schaft, 2000; Duindam,
2009]. The former means connecting controllers to
change Hamiltonians by means of boundary ports. The
latter means stabilizing the system to the global mini-
mum of the shaped Hamiltonian by assigning velocity
feedbacks to the ports. These methods make systems
robust against disturbances.

4 Numerical calculations
4.1 Computing environment
We carried out RMD methods by using the host com-

puter (Dual Xeon X5492 3.4GHz) with the accelera-
tion board MDGRAPE-3 (MD3-PCIX) [MDGRAPE-
3, RIKEN] (Fig.1) with MDGRAPE-3 chip developed
by Hitachi Device Development Center (Fig.2).

Fig. 1. MDGRAPE-3 (MD3-PCIX) Fig. 2. MDGRAPE-3 chip

4.2 Numerical experiment of bending of Alu-
minum bar with RMD methods

We used the Aluminum bar with 9.44× 1021 atoms in
33.5 × 6.35 × 6.35 [mm3], where the crystal is face-
centered cubic. After 21, 22 and 23 renormalizations,
the numbers of atoms become 10240, 1280 and 160, re-
spectively (see Fig.3 visualized by VMD [VMD, Univ.
of Illinois]).

10240 atoms 1280 atoms 160 atoms

Fig. 3. Renormalized aluminum bars

The performed times per the calculation time 5.0 ×
10−5 [sec] are 12.3, 8 and 5 [sec] for the cases of 21,
22 and 23 renormalizations, respectively. We consid-
ered the Timoshenko beam model, where the Young’s
modulus is 7.03 × 1010 [Pa], the shear modulus is
2.61 × 1010 [Pa], and the section of area is square.
Fig.4 shows the comparisons with the theoretical so-

lution of the Timoshenko beam model. In Fig.4, the
horizontal axis means the longitudinal coordinate, the
vertical axis means the lateral coordinate, the solid line

means the strain of the beam, and round points, square
points and diamond points correspond to the cases of
21, 22 and 23 renormalizations, respectively. We can
see that the approximate strains are reproduced by the
RMD method except the case of 160 atoms.
In Fig.5, the horizontal axis means the time evolu-

tion, the vertical axis means the amplitude of vibra-
tions, we see that the eigenfrequency of Timoshenko
beam model is 2.9× 104 [rad/s], and that of the case of
10240 atoms is 2.61×104 [rad/s]. However, the results
of 160 atoms are beyond the limits of measurements,
because the crystal structure was broken up by large
dynamical motions. As the number of atoms decreases,
the eigenfrequency becomes lower than the theoretical
value, because higher frequency modes might be elim-
inated by the renormalization.
Fig.6 shows the time response of the strain of the con-

trolled beams in the case of 10240 atoms. We applied
a boundary energy control, i.e., assigning dampings to
the boundary ports distributed on an area at the both
sides of beam. We can see that the beam is stabilized.

� � �� � � � � �� � � � � ��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� � � � �
�
�
�
�
�
�

�

�

�

�

�

�

�

�

�

�

�
� �

�

�

�

�

�

0.005 0.010 0.015 0.020 0.025 0.030

�0.0014

�0.0012

�0.0010

�0.0008

�0.0006

�0.0004

�0.0002

A
m

pl
itu

de
[m

]

160 atoms

theoretical

10240 atoms

1280 atoms

Time [s]

Fig. 4. Time response of strains with loads
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5 Conclusion
This paper derived the distributed port-Hamiltonian

(DPH) systems of renormalized molecular dynamics
(RMD) that is expected as a unified framework of
boundary controls and numerical calculus. The DPH
system of RMD is scale-free, i.e., we can apply this
representation not only to microscopic targets like
polymers, but also macroscopic targets like mechani-
cal systems. First, we introduced renormalized Hamil-
tonian systems. Next, we derived the continuum rep-
resentation of renormalized Hamiltonian systems from
the inverse limit of coarse graining. As a result, we
derived a standard boundary control representation of
renormalized Hamiltonian systems from DPH systems.
Finally, we will show some numerical examples.
We can connect DPH systems by means of boundary

ports on their common boundaries. Conversely, we di-
vide a DPH system into uniform subsystems by creat-
ing boundaries and boundary ports of each subsystem.
Thus, DPH systems provide us the freedom of meshing
of continuum mechanics. The structure of the connec-
tion can be described by bond graph theory [Karnopp,
2006]. We are interested in the developments of the
DPH systems in terms of such a freedom of mesh-
ing and parallel computations as more useful numerical
tools.
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