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Phase synchronization [1] is ubiquitous in nature. It is 
common in weakly coupled nonlinear systems. Basically 
two types of phase synchronization, in-phase and antiphase 
or out-of-phase are seen in both instantaneously coupled 
[2-4] and delay coupled [5] systems. A transition to either 
of the synchronization states can be induced by changing 
the coupling strength [3, 4] in instantaneously coupled 
systems or by changing delay time [6] in delay coupled 
systems. However, the transition from inphase to antiphase 
state or vice versa is found intercepted by a 
desynchronization regime [3,4] in instantaneously coupled 
systems. On the contrary, a sharp transition from inphase to 
antiphase is observed [6] in two delay coupled oscillators 
when the time delay is varied above a critical value. 
Obviously, the phase difference of the coupled oscillators 
jumps from 0 to π at the critical time delay. This 
phenomenon of sharp transition from inphase to antiphase 
with time delay is defined [6] as phase-flip bifurcation. The 
phase-flip is accompanied by a large change in oscillator 
frequency from a lower to higher value respectively. 
Similar large change in oscillation frequency is also noted 
in antiphase and inphase states for instantaneously coupled 
oscillators too but no such sharp transition between the 
antiphase to inphase states is found as mentioned above. A 
close analogy of phase-flip bifurcation is found in sharp 
transition from antiphase pattern to inphase pattern in 
coordinated rhythmic movements of limbs [7] when a 
gradual increase in the frequency of movements are made. 
The frequency of limb cycle is the control parameter there.  
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We describe here our
experimental on phase-flip 
theoretical framework of p

identical Rössler oscillators and then its experimental 
evidence in electronic circuit of two delay coupled Chua 
oscillators. 

 It is to be noted that the phase-flip bifurcation is found  
[6] in different dynamical regimes like amplitude death, 
periodic to periodic, quasiperiodic to quaisperiodic and 
chaotic to chaotic transition states of many delay coupled 
nonlinear oscillators. For simplicity, we take two identical 
Rössler oscillators and coupled them via the y-variable as 
given in eq.(1). 
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Subscripts (1, 2) denote individual oscillators. The 

uncoupled (ε=0) subsystems are chaotic for selected 
a=b=0.1, c=14. We study the coupled system as a function 
of coupling strength ε and the time delay τ. For 
instantaneous coupling (τ=0) this system has been studied 
in great details and a variety of interesting dynamical 
phenomena are known to occur. We report here the 
existence of phase-flip bifurcation in time-delay-coupled 
Rössler system. Figure 1 schematically shows the different 
dynamical states that arise for a range of parameters ε and 
τ. The shaded region, marked by C, corresponds to chaotic 
states while the white region shows regions of regular 
behaviors. These include the fixed point (FP) regime 
corresponding to amplitude death, periodic (P) and 
quasiperiodic (QP) dynamics. The phase-flip bifurcation 
takes place across the bold line in the whole range of ε and 
for selected range of τ. The arrows denote the direction of 
the transition from inphase to antiphase (or out-of-phase) 
motion. The attached numbers with the arrows label 
different dynamics before and after this bifurcation: 1 has 
amplitude death (or FP) both before and after the transition, 
2 is from periodic to periodic dynamics, 3 and 5 are from 
periodic to chaotic, 4 is from chaotic to chaotic motion. 
While 6 denotes transition from periodic to quasiperiodic 
εεεε
entical coupled Rössler oscillator. The 
hase-flip bifurcation and the numbered 
inphase to antiphase. 

 results both theoretical and 
bifurcation. First we present the 
hase-flip bifurcation using two 

motion.  
The largest lyapunov exponents as a function of the time-

delay parameters are shown for the coupled Rössler system 
in Fig.2 across different settings of the phase-flip 
bifurcation.  Figure 2(a) is for the transition along the 
arrow 1 at coupling strength, ε=0.16. Since the largest 



 

 

lyapunov exponent λ1 is negative, the dynamics moves to a 
FP attractor. The inset in Fig.2(a) are the representative 
trajectories at τ=1.52 before the bifurcation and at τ=1.63 
after the bifurcation. The trajectories of the coupled 
oscillators are inphase for τ=1.52 before the bifurcation 
and out-of-phase for τ=1.63 after the bifurcation. The 
bifurcation is clearly seen as the largest lyapunov exponent 
changes its slope at a critical time delay value (marked by 
an downward arrow) and close to τ ≈1.6. Note that the 
largest lyapunov exponent remains negative before and 
after the change in slope. Hence the coupled systems 
remain in amplitude death situation before and after the 
bifurcation. The relative phase of the coupled Rossler 
oscillators in Fig.2(b) jumps from 0 to 2π at the transition 
or bifurcation point. The frequency of the locked oscillators 
also jumps in Fig.2(c) from a lower value to a larger value 
which is even larger than the frequency of the uncoupled 
oscillators.  This large increase in oscillation frequency in 
antiphase states is also recorded compared to inphase states 
[4] in instantaneously coupled oscillators although no sharp 
transition can be seen. The mechanism of such increase in 
oscillator frequency is yet to be explained. 
 

 

     
 
Fig.3. Phase-flip bifurcation in two identical coupled Rössler oscillators: 
(a) largest lyapunov exponents (λ1, λ2) plotted with time delay; inset on 
the left shows inphase motion of the oscillators, inset on the right shows 
antiphase motion, (b) relative with time delay, (locked frequency of the 
oscillators with time delay.  Largest lyapunov exponents are both negative 
before and after the bifurcation that indicate the motion of the coupled 
oscillators are in amplitude death (or FP) regime as marked by the number 
1 corresponding to Fig.1. 
 

 
The phase-flip bifurcation in other dynamical regimes of 

two coupled Rössler oscillators are indicated by upward 
arrows in Fig.3. Trajectories before and after the 
bifurcation for the regions marked by 2, 3 and 4 in Fig.1 
are shown in Fig.3(a)-(c) in the insets. When the transition 
is from one limit cycle to another, λ1, remains zero across 
the transition but λ2 shows a discontinuity in Fig.3(a). In 
the transition from a limit cycle to a chaotic attractor λ1 and 
λ4 are discontinuous while λ2  =λ3 remain equal to 0 in 
Fig.3(b). In chaotic to chaotic transition, λ1 and λ2 are 
positive discontinuous while λ4 has a maximum at the 
phase–flip bifurcation point as shown in Fig.3(c). The 

signature of phase-flip bifurcation is thus noted as a sharp 
transition in relative phase from 0 to π  value with time 
delay in coupled oscillators accompanied by a jump in 
oscillator frequency to higher value. 

We attempted for experimental evidence of phase-flip 
bifurcation with two nonidentical Chua oscillators since it 
is difficult to design two identical oscillators, in reality. As 
a consequence asymmetry is introduced in the coupled 
oscillators in terms of both coupling and time delay and 
found the existence of phase-flip bifurcation even in 
presence of both types of asymmetries.  So far we are 
successful in finding experimental evidence of phase-flip 
bifurcation during the period-period transition, however, 
this, at least, provides the necessary experimental support 
to the theoretical frameworks of phase-flip bifurcation. 

 

 
 
Fig.3. Phase-flip bifurcation in different regimes of coupled Rössler 
oscillators: largest lyapunov exponents for Rössler system in eq.(1) as a 
function of timer delay: (a) for fixed coupling strength ε=0.16,  periodic to 
periodic transition marked 2, (b)  for fixed coupling strength ε=2, periodic 
to chaotic transition marked by 3 (c) for fixed coupling strength ε=0.01, 
chaotic to chaotic transition marked by 4. All trajectories before and after 
the transitions are shown in the insets. 

 
 
   The coupled circuit is shown in Fig.4. Each Chua 

oscillator [7] consists of a passive resistor R1,10, two 
capacitors C1,3 and C2,4 and, inductor L1,2 with  leakage 
resistance R2,9 while the piecewise linear function f(•) is 
simulated by using two op-amp U1-U2 (or U2-U4) and 
associated resistances. All component values are noted 
against each component in the circuit diagram. The op-amp 
U5 is used for unidirectional current flow from the node of 
C3 capacitor of one oscillator (numbered as 2) to the node 
of C1 capacitor of another oscillator (numbered as 1). A 
delay  network D2 (RC network with resistor R22 and 
capacitor C5) with a series resistance R17 are used to 
introduce delay coupling from the oscillator 2 to oscillator 
1. The resistor R22 is tuned to control time delay τ1 while 
R17 controls the coupling strength ε1. Similarly, the op-amp 

(a)

(b) 

(c)



 

 

U6 allows unidirectional current to flow from the node of 
C1 capacitor of the oscillator 1 to the node of C3 capacitor 
of the oscillator 2 via another delay network D1 
(combination of resistor R21 and capacitor C6) and the 
series resistance R18. Accordingly, the resistor R17 controls 
the delay time τ2 and R18 controls the coupling strength ε2. 
A bi-directional delay coupling is thus established between 
the two Chua oscillators using delay networks and 
resistances (R17, R18).  
 

 

  
 Fig.4. Two delay coupled Chua oscillators: two oscillators are drawn 
inside dotted boxes numbered by 1, 2. Delay networks D1 and D2 are 
separately drawn.   
  
The model equations of the delay coupled Chua oscillator 
are given by 
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Eq.(2a) is the governing equation of the two delay coupled 
oscillators while the piecewise linear function of the 
oscillators is defined in eq.(1b). The slopes of the 
piecewise linear function a1,2 and b1,2 are given in eq.(1c) 
and other parameters are defined in eq.1(d). The VCi 
denotes the node voltage at ith capacitor Ci (i=1,2,3,4) and 
ILj denotes current through jth inductor Lj (j=1,2). 
    In experiment, firstly, we decide the dynamics of the two 
uncoupled Chua oscillators by fixing the resistances R1 
=1525 Ω and R10 =1507 Ω. In uncoupled state, the first 
oscillators is period-2 for R1 =1525 Ω while the second 
oscillator is period-4 for R10 =1507 Ω . After coupling, we 
fix the coupling strength ε1=1/R17 and ε2 =1/R18 by 
appropriate selection of R17 =21.36kΩ and R18 =65.2kΩ 
and also fix one of the time delays τ2=R22C5 by the choice 
of R22 =523 Ω and C5=100.8nf. The delay τ1=R21C6 is only 
varied by varying R21 while keeping the capacitor 
C6=36.7nf fixed.   
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 Fig.5 Phase slip bifurcation, (a) phase difference ∆φ(τ1), (b) frequency of 
the locked oscillators with with time delay τ1.:  solid lines with black 
circles denote estimated phase difference in (a) and frequency of the 
locked oscillators in (b)  
 
The voltage VC1 and VC3 at capacitor nodes C1 and C3 
respectively are monitored using a 2-channel digital 
oscilloscope (TEKTRONIX, TDS 220, 100MHz) with a 
maximum sampling rate of 1.0GS/s and record length of 
2500 data points in each snapshot. The instantaneous 
phases φi(t) of measured oscillatory voltages, VC1 and VC3, 
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are estimated using Hilbert transform [1] separately. The 
phase difference ∆φ of the oscillatory voltages of the 
coupled oscillators is then plotted with delay time τ1 as 
shown in Fig.5(a) which reveals a sharp transition from 0 to 
2π value as indicated by the discontinuity of the solid line 
plots with black circles. This transition is accompanied by a 
sharp increase in frequency of the coupled system as shown 
in Fig.5(b). The frequency is estimated from the average 
rate of change in instantaneous phase <dφi(t)/dt>. The 
experimental results in Fig.5 confirm the existence of 
phase-flip bifurcation as defined above. In fact, the Chua 
oscillators become chaotic under bi-directional coupling 
with small time delay, however, the coupled oscillators 
move to periodic state when the delay time τ1 is increased. 
The coupled Chua oscillators remain periodic with increase 
in delay τ1 and maintain inphase synchrony until switches 
to antiphase synchrony above a critical time delay.  The 
measured voltage time series of VC1 and VC3 are plotted in 
Fig.6(a) in solid and dotted lines respectively for 
τ1=14.46µs (R21=394Ω) which show inphase synchrony 
while they switch over to antiphase (or out-of-phase) for 
τ1=14.75µs (R21=402Ω) as shown in Fig.6(b). The phase 
flip bifurcation or the sharp transition from inphase to 
antiphase occurs above the critical time delay τ1=14.64µs 
(R21=399Ω) as shown in Fig.5.  
 

Fig.6. Experimental time se
VC1(t), VC3(t) in solid and d
τ1=14.46µs (R21=394Ω), (b)
solid and dotted lines respec
(R21=402Ω). 
 
It may be noted that the ph
here for two different tim
strength (ε1, ε2) of bi-direct
of coupled system is unav
due to natural parameter m
confirms the existence of 
presence of asymmetry. 

bifurcation in amplitude death regime, however, we failed 
to record the transition point due to limitation in our 
measurement facilities in capturing the transient time 
series. 
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