Phase-flip bifurcation: Theory and Experiment
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Phase synchronization [1] is ubiquitous in nature. It is
common in weakly coupled nonlinear systems. Basically
two types of phase synchronization, in-phase and antiphase
or out-of-phase are seen in both instantaneously coupled
[2-4] and delay coupled [5] systems. A transition to either
of the synchronization states can be induced by changing
the coupling strength [3, 4] in instantaneously coupled
systems or by changing delay time [6] in delay coupled
systems. However, the transition from inphase to antiphase
state or vice versa is found intercepted by a
desynchronization regime [3,4] in instantaneously coupled
systems. On the contrary, a sharp transition from inphase to
antiphase is observed [6] in two delay coupled oscillators
when the time delay is varied above a critical value.
Obvioudly, the phase difference of the coupled oscillators
jumps from O to mat the critica time delay. This
phenomenon of sharp transition from inphase to antiphase
with time delay is defined [6] as phase-flip bifurcation. The
phase-flip is accompanied by a large change in oscillator
frequency from a lower to higher value respectively.
Similar large change in oscillation frequency is aso noted
in antiphase and inphase states for instantaneously coupled
oscillators too but no such sharp transition between the
antiphase to inphase states is found as mentioned above. A
close analogy of phase-flip bifurcation is found in sharp
transition from antiphase pattern to inphase pattern in
coordinated rhythmic movements of limbs [7] when a
gradual increase in the frequency of movements are made.
The frequency of limb cycleisthe control parameter there.
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Fig.1. Phase diagram (e-1) for identical coupled Rosser oscillator. The
thick line indicates the locus of phase-flip bifurcation and the numbered
arrows indicate the transtion from inphase to antiphase.

We describe here our results both theoretical and
experimental on phase-flip bifurcation. First we present the
theoretical framework of phase-flip bifurcation using two

identicall Rosder oscillators and then its experimental
evidence in electronic circuit of two delay coupled Chua
oscillators.

It is to be noted that the phase-flip bifurcation is found
[6] in different dynamica regimes like amplitude death,
periodic to periodic, quasiperiodic to quaisperiodic and
chaotic to chaotic transition states of many delay coupled
nonlinear oscillators. For simplicity, we take two identical
Rossler oscillators and coupled them via the y-variable as

givenineq.(1).
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Subscripts (1, 2) denote individual oscillators. The
uncoupled (e=0) subsystems are chaotic for selected
a=b=0.1, c=14. We study the coupled system as a function
of coupling strength € and the time delay 1. For
instantaneous coupling (t=0) this system has been studied
in great details and a variety of interesting dynamical
phenomena are known to occur. We report here the
existence of phase-flip bifurcation in time-delay-coupled
Rossler system. Figure 1 schematically shows the different
dynamical states that arise for a range of parameters € and
T. The shaded region, marked by C, corresponds to chaotic
states while the white region shows regions of regular
behaviors. These include the fixed point (FP) regime
corresponding to amplitude death, periodic (P) and
quasiperiodic (QP) dynamics. The phase-flip bifurcation
takes place across the bold line in the whole range of € and
for selected range of 1. The arrows denote the direction of
the transition from inphase to antiphase (or out-of-phase)
motion. The attached numbers with the arrows label
different dynamics before and after this bifurcation: 1 has
amplitude death (or FP) both before and after the transition,
2 is from periodic to periodic dynamics, 3 and 5 are from
periodic to chaotic, 4 is from chaotic to chaotic motion.
While 6 denotes transition from periodic to quasiperiodic
motion.

The largest lyapunov exponents as a function of the time-
delay parameters are shown for the coupled Rossler system
in Fig.2 across different settings of the phaseflip
bifurcation. Figure 2(a) is for the transition along the
arrow 1 at coupling strength, €=0.16. Since the largest



lyapunov exponent A; is negative, the dynamics moves to a
FP attractor. The inset in Fig.2(a) are the representative
trajectories at 1=1.52 before the bifurcation and at 1=1.63
after the bifurcation. The trgectories of the coupled
oscillators are inphase for 1=1.52 before the bifurcation
and out-of-phase for 1=1.63 after the bifurcation. The
bifurcation is clearly seen as the largest lyapunov exponent
changes its dope at a critical time delay value (marked by
an downward arrow) and close to 1=1.6. Note that the
largest lyapunov exponent remains negative before and
after the change in dope. Hence the coupled systems
remain in amplitude death situation before and after the
bifurcation. The relative phase of the coupled Rosdsler
oscillators in Fig.2(b) jumps from 0 to 21t at the transition
or bifurcation point. The frequency of the locked oscillators
also jumps in Fig.2(c) from a lower value to a larger value
which is even larger than the frequency of the uncoupled
oscillators. This large increase in oscillation frequency in
antiphase states is a so recorded compared to inphase states
[4] in instantaneoudly coupled oscillators although no sharp
transition can be seen. The mechanism of such increase in
oscillator frequency is yet to be explained.
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Fig.3. Phase-flip bifurcation in two identical coupled Rossler oscillators:
(a) largest lyapunov exponents (A1, Az) plotted with time delay; inset on
the left shows inphase motion of the oscillators, inset on the right shows
antiphase motion, (b) relative with time delay, (locked frequency of the
oscillators with time delay. Largest lyapunov exponents are both negative
before and after the bifurcation that indicate the motion of the coupled
oscillators are in amplitude death (or FP) regime as marked by the number
1 corresponding to Fig.1.

The phase-flip bifurcation in other dynamical regimes of
two coupled Rossler oscillators are indicated by upward
arrows in Fig.3. Traectories before and after the
bifurcation for the regions marked by 2, 3 and 4 in Fig.1
are shown in Fig.3(a)-(c) in the insets. When the transition
is from one limit cycle to another, A;, remains zero across
the transition but A, shows a discontinuity in Fig.3(a). In
the transition from a limit cycle to a chaotic attractor A; and
A4 are discontinuous while A, =A; remain egual to 0 in
Fig.3(b). In chaotic to chaotic transition, A; and A, are
positive discontinuous while A, has a maximum at the
phase—flip bifurcation point as shown in Fig.3(c). The

signature of phase-flip bifurcation is thus noted as a sharp
transition in relative phase from 0 to 1t valuewith time
delay in coupled oscillators accompanied by a jump in
oscillator frequency to higher value.

We attempted for experimental evidence of phase-flip
bifurcation with two nonidentical Chua oscillators since it
is difficult to design two identical oscillators, in reality. As
a consequence asymmetry is introduced in the coupled
oscillators in terms of both coupling and time delay and
found the existence of phase-flip bifurcation even in
presence of both types of asymmetries. So far we are
successful in finding experimental evidence of phase-flip
bifurcation during the period-period transition, however,
this, at least, provides the necessary experimental support
to the theoretical frameworks of phase-flip bifurcation.
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Fig.3. Phaseflip bifurcation in different regimes of coupled Rossler
oscillators: largest lyapunov exponents for Rossler system in eg.(1) as a
function of timer delay: (a) for fixed coupling strength €=0.16, periodic to
periodic transition marked 2, (b) for fixed coupling strength e=2, periodic
to chaotic transition marked by 3 (c) for fixed coupling strength €=0.01,
chaotic to chaotic transition marked by 4. All trajectories before and after
the transitions are shown in the insets.

The coupled circuit is shown in Fig.4. Each Chua
oscillator [7] consists of a passive resistor Ry, two
capacitors C;3 and C,4 and, inductor L;, with leakage
resistance R, while the piecewise linear function f(s) is
simulated by using two op-amp U1-U2 (or U2-U4) and
associated resistances. All component values are noted
against each component in the circuit diagram. The op-amp
U5 is used for unidirectional current flow from the node of
C; capacitor of one oscillator (numbered as 2) to the node
of C; capacitor of another oscillator (numbered as 1). A
delay network D2 (RC network with resistor R,, and
capacitor Cs) with a series resistance R;; are used to
introduce delay coupling from the oscillator 2 to oscillator
1. The resistor Ry, is tuned to control time delay 1, while
R17 controls the coupling strength €;. Similarly, the op-amp



U6 alows unidirectional current to flow from the node of
C, capacitor of the oscillator 1 to the node of C; capacitor
of the oscillator 2 via another delay network D1
(combination of resistor R,; and capacitor Cs) and the
series resistance Ryg. Accordingly, the resistor Ry; controls
the delay time 1, and R controls the coupling strength €.
A bi-directional delay coupling is thus established between
the two Chua oscillators using delay networks and
resistances (R;7, Rig).
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Fig.4. Two delay coupled Chua oscillators: two oscillators are drawn
inside dotted boxes numbered by 1, 2. Delay networks D1 and D2 are
separately drawn.

The model equations of the delay coupled Chua oscillator
are given by
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Eq.(29) is the governing equation of the two delay coupled
oscillators while the piecewise linear function of the
oscillators is defined in eq.(1b). The dlopes of the
piecewise linear function &, and b, , are given in eqg.(1c)
and other parameters are defined in eq.1(d). The Vg
denotes the node voltage at ith capacitor C; (i=1,2,3,4) and
Ij denotes current through jth inductor L; (j=1,2).

In experiment, firstly, we decide the dynamics of the two
uncoupled Chua oscillators by fixing the resistances R;
=1525 Q and Ry =1507 Q. In uncoupled state, the first
oscillators is period-2 for R; =1525 Q while the second
oscillator is period-4 for Ryg =1507 Q . After coupling, we
fix the coupling strength &,=1/R;; and &, =1/Ri;g by
appropriate selection of Ry; =21.36kQ and R;g =65.2kQ
and also fix one of the time delays 1,=R,Cs by the choice
of Ry, =523 Q and Cs=100.8nf. The delay 1;=R»,Cs is only
varied by varying R,; while keeping the capacitor
Ce=36.7nf fixed.
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Fig.5 Phase dlip bifurcation, (a) phase difference Ag(t1), (b) frequency of

the locked oscillators with with time delay 1;.: solid lines with black
circles denote estimated phase difference in (a) and frequency of the
locked oscillatorsin (b)

The voltage V¢; and Vg3 at capacitor nodes C; and Cs
respectively are monitored using a 2-channel digital
oscilloscope (TEKTRONIX, TDS 220, 100MHz) with a
maximum sampling rate of 1.0GS/s and record length of
2500 data points in each snapshot. The instantaneous
phases @(t) of measured oscillatory voltages, V¢ and Vcs,



are estimated using Hilbert transform [1] separately. The
phase difference A@ of the oscillatory voltages of the
coupled oscillators is then plotted with delay time t1; as
shownin Fig.5(a) which reveals a sharp transition from 0 to
2mt value as indicated by the discontinuity of the solid line
plots with black circles. This transition is accompanied by a
sharp increase in frequency of the coupled system as shown
in Fig.5(b). The frequency is estimated from the average
rate of change in instantaneous phase <d@(t)/dt>. The
experimental results in Fig.5 confirm the existence of
phase-flip bifurcation as defined above. In fact, the Chua
oscillators become chaotic under bi-directional coupling
with small time delay, however, the coupled oscillators
move to periodic state when the delay time 1, is increased.
The coupled Chua oscillators remain periodic with increase
in delay t; and maintain inphase synchrony until switches
to antiphase synchrony above a critical time delay. The
measured voltage time series of V¢; and Vs are plotted in
Fig.6(@) in solid and dotted lines respectively for
1,=14.46us (R»=394Q) which show inphase synchrony
while they switch over to antiphase (or out-of-phase) for
1;=14.75us (R;;=402Q) as shown in Fig.6(b). The phase
flip bifurcation or the sharp transition from inphase to
antiphase occurs above the critical time delay 1,=14.64us
(R2;=399Q) as shown in Fig.5.
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Fig.6. Experimental time series: (a) inphase synchrony:
Vei(t), Ves(t) in solid and dotted lines respectively for
T1=14.46HS (R21=394Q), (b) anti phase VCl(t), Vc3(t) in
solid and dotted lines respectively for 1,=14.75us
(R21=4OZQ)

It may be noted that the phase-flip bifurcation is observed
here for two different time delay (1, 1) and different
strength (g4, €,) of bi-directional coupling. Such asymmetry
of coupled system is unavoidable in experimental system
due to natural parameter mismatch of similar oscillators. It
confirms the existence of phase-flip bifurcation even in
presence of asymmetry. We aso observed phase flip

bifurcation in amplitude death regime, however, we failed
to record the transition point due to limitation in our
measurement facilities in capturing the transient time
series.
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