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Abstract

This work deals with linear systems with scalars in a
commutative ring R with the property of being “von
Neumann regular”, i.e. R is zero-dimensional and has
no nonzero nilpotents. We prove that every single-input,
n-dimensional system over R is feedback equivalent to
a special normal form, whose existence actually char-
acterizes the class of von Neumann regular rings. This
normal form, which captures completely the structure
of the reachable submodule of the system, is associated
to a collection of n principal ideals generated by idem-
potent elements f1, . . . , fn, each dividing the following
one. The normal form can be obtained by an explicit al-
gorithm, which is implemented in PARI-GP in the case
R= Z/(dZ), where d is a squarefree integer.

1. Introduction and notation

Let R be a commutative ring with 1. Anm-input,
n-dimensional system (or a system of size(n,m)) over
R is a pair of matrices(A,B), with A ∈ Rn×n andB ∈
Rn×m. See the motivation for studying linear systems
over commutative rings in [1]. The pair(A,B) can be
regarded as the control process with states(xi)i≥0 ∈ Rn

and inputs(ui)i≥1 ∈ Rm:

x0 = 0, xi = Axi−1 +Bui , for i ≥ 1.

Then, the set of all states reachable from the origin is
the submodule ofRn given by the image of the matrix
A∗B = [B|AB| · · · |An−1B]. The system(A,B) is reach-
able if the columns ofA∗B generateRn.

More generally, for alli = 1, . . . ,n, one can de-
fine NΣ

i (see [4]), the submodule ofRn given by
im([B|AB| · · · |Ai−1B]). These submodulesNΣ

i are in-
variant under feedback equivalence. Recall that two
systems(A,B) and (A′,B′) are feedback equivalent if
there exist invertible matricesP∈ GLn(R),Q∈ GLm(R)
and a matrixK ∈ Rm×n such that(A′,B′) = (PAP−1 +
PBK,PBQ), i.e. (A′,B′) can be obtained from(A,B) by
a combination of basis changes and state feedback.

The present article is motivated by the following
situation. In [2], single input systems(A,b) over a
Bézout domainRare studied, with the condition that the
system(A,b) is weakly reachable, i.e. the square matrix
A∗b has nonzero determinant. It is shown that any such
system is feedback equivalent to a reduced form




Ã =




∗ ∗ ∗ · · · ∗
d2 ∗ ∗ · · · ∗
0 d3 ∗ · · · ∗
...

. . .
. . .

. . .
...

0 · · · 0 dn ∗




, b̃ =




d1

0
...
...
0







,

where thedi ’s are nonzero, and the∗’s in row i of Ã
can be “adjusted” modulodi to derive a canonical form.
If all the di ’s are equal to 1, then there are no∗’s, i.e.
the system is reachable and the reduced form coincides
with the classical controller canonical form.

The purpose of this work is to generalize that re-
duced form to systems which are not weakly reachable,
and also to allow B́ezout rings with zero-divisors. If
eachdi is idempotent, then the∗’s in that row can be
easily transformed elements orthogonal todi by per-
forming elementary transformations. We prove that
the class of commutative von Neumann regular rings
is characterized precisely as those rings for which any
single-input system is equivalent to such a normal form
with eachdi idempotent and orthogonal to the∗’s in
the corresponding row. An algorithm is given to com-
pute explicitely the normal form of a system. Next, for
a given single-input systemΣ, we prove that the struc-
ture of each submoduleNΣ

i can be recovered in terms of
d1, . . . ,di . We show with two examples that the princi-
pal idealsdiR do not characterize the feedback equiva-
lence class of a system, at least not trivially, some fur-
ther work must still be done. Finally, the algorithm is
illustrated with a numerical example.



2. Main results

All rings will be commutative and with 1. A von
Neumann regular ring, also called absolutely flat ring,
is a ringRsuch that for anya∈R there existsx such that
a = a2x. There are many equivalent conditions, for ex-
ampleR is zero-dimensional and has no nonzero nilpo-
tent elements, or every finitely generated ideal is prin-
cipal (i.e.R is Bézout) and generated by an idempotent
(see [5]), or every element is the product of a unit with
an idempotent. See [3, Lemma 10]. An important fact
we need to know is thatR is an elementary divisor ring,
i.e. for anyn×m matrix B overR there exist invertible
matricesP ∈ GLn(R) andQ ∈ GLm(R) such thatPBQ
is diagonal, with diagonal entriesd1|d2| · · · |dr , where
r = min{n,m} (see [3, Theorem 11]). Also,R has Bass
stable range 1: if(a,b) = R, there existsk such that
a+ bk is a unit ofR (if u,v are units such thata2 = ua
andb2 = vb, we can takek = u−a

v ).
We are now ready to prove our main result.

Theorem 1 (Normal form for single-input systems)
For a commutative ring R, the following statements are
equivalent:

(i) R is von Neumann regular.

(ii) Any single input system(A,b) of size(n,1) over R
is feedback equivalent to one in the form:




Ã =




∗ ∗ ∗ · · · ∗
d2 ∗ ∗ · · · ∗
0 d3 ∗ · · · ∗
...

. . .
. . .

. . .
...

0 · · · 0 dn ∗




, b̃ =




d1

0
...
...
0







,

with each di idempotent, and all the∗’s in row i of
Ã orthogonal to di .

Proof. (i) ⇒ (ii) Let (A,b) be a single-input system over
a von Neumann regular ringR, with A∈ Rn×n, b∈ Rn.
The proof will be done by induction onn. If n = 1, the
system is just a pair of scalars(a,b). Put b = p−1d,
with p a unit andd idempotent. Then,(a,b) is feedback
equivalent to the system

(pap−1 + pb(−a), pb) = ((1−d)a,d)

in the required normal form.
Let n > 1. As R is an elementary divisor ring,

there exists an invertible matrixP such thatb′ = Pb=[
d1

0

]
. Consider the matrixA′ = PAP−1 partitioned as

[
a11 a12

a21 A22

]
, with A22 ∈ R(n−1)×(n−1), d1 ∈ R and the

remaining blocks of appropriate sizes. Applying induc-
tion to the system(A22,a21) of dimensionn−1, there
exists an(n− 1)× (n− 1) invertible matrixP1 and a
matrixK1 ∈ R1×(n−1) such that

(Ã22, ã21) = (P1A22P
−1
1 +P1a21K1,P1a21)

is in the required normal form, with associated idem-
potent elementsd2, . . . ,dn, and eachdi orthogonal to all
the∗’s in row (i −1) of Ã22:




Ã22 =




∗ ∗ ∗ · · · ∗
d3 ∗ ∗ · · · ∗
0 d4 ∗ · · · ∗
...

. . .
. . .

. . .
...

0 · · · 0 dn ∗




, ã21 =




d2

0
...
...
0







.

Now, define the matrixP′ =

[
1 −K1P1

0 P1

]
, with in-

verse P′−1 =

[
1 K1

0 P−1
1

]
and consider the system

(P′A′P′−1,P′b′) of the form
([

∗ ∗

P1a21 P1A22P
−1
1 +P1a21K1

]
,

[
d1

0

])
.

At this point,(P′A′P′−1,P′b′) is almost in reduced form.
Finally, denoting byv the first row ofP′A′P′−1, we see
that v− d1v is orthogonal tod1, hence we can define
K′ = −v and it follows that the system

(Ã, b̃) = (P′A′P′−1 +P′b′K′,P′b′)

is feedback equivalent to(A′,B′) (and thus equivalent to
(A,B)) and has the desired form, which proves (ii).

(ii) ⇒ (i). Conversely, we will prove that any
finitely generated ideal is principal and generated by an
idempotent element. LetI be an ideal generated by the
entries of some column vectorb∈ Rn, and consider any
system of size(n,1) of the form(A,b). By (ii), there
exists an invertible matrixP such thatPb is the column
vector [d1,0, . . . ,0]′, with d1 idempotent. ButPb also
generatesI , so we are finished. ¤

This normal form is similar to that obtained for
Bézout domains in [2]. Also, if the firstr elementsdi

are equal to 1, we recover the reduced form associated
to the residual rankr obtained in [6, Proposition 2.5]
for rings such that unimodular rows can be completed
to invertible matrices. Finally, if all thedi ’s are equal to
1, the system is reachable and the normal form is simply
the classical controller canonical form.

Now, observe that the proof of (i)⇒ (ii) is in some
sense constructive, which gives rise to an effective al-
gorithm, if the ringR is such that Hermite normal forms
are computable.



Algorithm 2 (NormalForm) .-

• INPUT: matrices A∈ Rn×n,b∈ Rn.

• OUTPUT: matrices P̃, K̃ such that (P̃AP̃−1 +
P̃bK̃, P̃b) is in normal form.

• STEP 1: Find P such that Pb=
[

d1
0

]
is in Hermite

normal form. If necessary, multiply P by a unit to
obtain d1 idempotent.

• STEP 2: if n= 1, return with output(P̃ = P, K̃ =
−A). If not, continue with STEPS 3 . . . 6.

• STEP 3: Extract (A22,a21) from PAP−1 =[a11 a12
a21 A22

]
.

• STEP 4: Recursive call with input(A22,a21) and
output(P1,K1).

• STEP 5: Define P′ =
[

1 −K1P1
0 P1

]
and K′ = −(first

row of P′A′P′−1).

• STEP 6: Return with output(P̃ = P′P, K̃ = K′).

Next, we determine how thedi ’s are related to the
structure of the system.

Proposition 3 (Thedi ’s and the system’s structure)
Let Σ = (A,B) be a system of size(n,1) over a ring R
in the normal form of Theorem 1:

A =




∗ ∗ ∗ · · · ∗
d2 ∗ ∗ · · · ∗
0 d3 ∗ · · · ∗
...

. . .
.. .

. ..
...

0 · · · 0 dn ∗




,B =




d1

0
...
...
0




with di idempotents and the∗’s in row i of A orthogonal
to di . If we denote by fi = d1 · · ·di , for i = 1, . . . ,n, one
has:

(i) The reachability matrix A∗B is diagonal. Con-
cretely:

A∗B =




f1 0 · · · 0
0 f2 · · · 0
...

...
. . .

...
0 0 · · · fn




(ii) For each i= 1,2, . . . ,n, one has

NΣ
i
∼= f1R⊕ f2R⊕·· ·⊕ fiR

Proof. Since all the∗’s in row i of A are orthogonal
to di , the proof of (i) is immediate, and then for any
i = 1, . . . ,n, (ii) follows by looking at the firsti columns
of A∗B, which generateNΣ

i . ¤

Unfortunately, although thed′
i s are closely related

with the system’s structure, they do not characterize the
feedback equivalence, nor do theR-modulesNi , as will
be seen in the next examples.

Example 4 The systems(2,3) and(4,3) over the von
Neumann regular ringR = Z/(6Z) are in reduced
form with the same associated elementd1 = 3 and the
same submoduleN1, but are not feedback equivalent.
An equivalence would imply an equality of the form
p2p−1 + p3k = 4, i.e. 2= 3pk, which is impossible.

Example 5 Let R be a von Neumann regular ring and
e2 = e any idempotent which is not a unit (if no suche
exists, thenR is a field). The system

Σ :

(
A =

[
0 0
e e−1

]
,B =

[
e
0

])

is in reduced form with associated elementsd1 = d2 = e.
Consider the matrices

P =

[
e 1−e

1−e 2e−1

]
, P−1 =

[
1 1−e

1−e e

]
.

Then, Σ is feedback equivalent toΣ′ = (PAP−1,PB),
which is of the form:

([
e−1 0

1 0

]
,

[
e
0

])
.

Therefore,Σ′ is in reduced form with associated ele-
ments{d′

1 = e,d′
2 = 1}, which cannot be obtained from

those ofΣ by multiplying with units.

We conclude with a numerical example.

Example 6 We have used the PARI-GP calculator to
implement Algorithm 2 for systems over von Neumann
regular ringsR= Z/(dZ) , whered is a squarefree in-
teger. Here it is shown how the algorithm works on a
randomly generated example of fixed dimensionn = 6
and working modulod = 30:

A =




12 24 13 6 0 17
2 25 16 11 6 28
13 27 29 7 15 8
6 7 6 28 20 3
28 2 17 22 2 17
21 5 26 25 24 28




, b =




22
9
7
7
1
5




.



Running the algorithm, we obtain

P =




12 4 10 12 2 29
13 11 28 21 7 3
28 12 17 12 23 26
6 6 23 2 14 21
28 1 4 24 19 0
24 26 11 7 7 13




,

K =
[
12 15 5 21 14 26

]
,

which yield the normal form(PAP−1 +PbK,Pb) =






0 0 0 0 0 0
16 15 0 15 0 15
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 6 25 25
0 0 0 0 25 6




,




1
0
0
0
0
0







.

The above system is in the normal form of Theorem 1,
because 1,16,6,25 are idempotents, and the following
orthogonalities hold: 16· 15 = 0 = 6 · 25. Finally, the
reachabilty matrix of the normal form is computed:




1 0 0 0 0 0
0 16 0 0 0 0
0 0 16 0 0 0
0 0 0 16 0 0
0 0 0 0 6 0
0 0 0 0 0 0




,

thus obtaining the structure of all the modulesN(A,b)
i .

3. Conclusion

In this paper we have been able to give a precise al-
gebraic characterization (von Neumann regular rings)
to a linear system’s property (the equivalence of any
single-input system to a normal form). The normal form
obtained is associated to a collection of principal ideals
which allow the computation of all the submodulesNi

associated to a system. The following question still re-
mains open: How can the normal form be transformed
into a canonical form?
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