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Abstract
Nuclear medicine is a branch of medical science in-

volving the application of radioactive substances in the
diagnosis and treatment of disease. The data process-
ing in nuclear medicine is very important for the es-
timation of the functional status of the various organs
and body systems. Single-photon emission computed
tomography (SPECT) data processing is considered in
this work. The main stages of data processing are stud-
ied. The purpose of this study is to develop and apply
mathematical methods for SPECT data processing
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1 Introduction
Data processing has been involved the following

main stages: data correction, tomography reconstruc-
tion, three-dimensional visualization, functional im-
ages construction, mathematical modeling of studied
processes and calculation of diagnostic parameters.
Mathematical modeling of static, dynamic and gated
processes in nephrology, osteology, endocrinology and
cardiology is considered for quantitative analysis in pa-
pers [Balykina et al., 2014; Kotina, 2012; Kotina and
Ploskikh, 2012]. In this paper we consider motion cor-
rection, reconstruction and functional images construc-
tion in cardiology.

2 Motion Correction
Motion correction problems exist for diagnostic stud-

ies [Germano et al., 1993], as well as for plan-
ning radiation therapy [Elizarova, Ovsyannikov and
Cheremisin, 2007].
The finding and correction of the patient motion are

one of the most important step of the processing of ra-
dionuclide studies. Even small dislocation of the pa-

tient or of the target organ during the process of data
collection may affect to the accuracy of diagnostic re-
sults. It is impossible to avoid the position changing of
the patient or its target organs during data acquisition.

2.1 Method of the Cross-correlation Function
The method of cross-correlation function is applied to

determine and correct motion [Sarkar et al. , 2007]. It
is based on the analysis of cross-correlation function
defined for consecutive planar images.
Let introduce two coordinate systems. The moving

system of coordinates (x, y), associated with the detec-
tor, which rotates in a circular orbit around the center
of fixed coordinate system (x′, y′, z′). This system as-
sociated with the gamma camera gantry (Fig. 1).

Figure 1. The coordinate systems. The moving system (x, y). The
fixed system (x′, y′, z′)

The transverse motion is the position displacement of
the examined organ parallel to the plane (x′, y′), and a
longitudinal — parallel to the axis z′.
We consider the correlation between the one frame

and the next. The cross-correlation function for two
consecutive frames with indices k and k + 1 will have
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the form [Eisner et al., 1987]

fxk =
n∑

j=1

CjkCj+s,k+1,−K 6 s 6 K, (1)

fyk =
n∑

i=1

DikDi+s,k+1,−K 6 s 6 K, (2)

whereK ∈ N ,Cj+s,k+1 = 0, if j+s < 1 or j+s > n,
and Di+s,k+1 = 0, if i + s < 1 or i + s > n, Cjk

and Dik — total profiles along the Ox and Oy axes
respectively [Ovsyannikov, Kotina and Shirokolobov,
2013].
Formulas ( 1) and ( 2) represent a view of the cross-

correlations function to determine transverse and lon-
gitudinal movements respectively.

2.2 SPECT
The camera turns around the patient, during the data

collection of the SPECT. This fact must be taken into
account for motion correction.
In the case when there is no patient motion, the tra-

jectory of the point projection (x′, y′, z′) must be sinu-
soidal relative to the axisOx and the line relative to the
axis Oy.
It is nessesary to determine the interval on the frames,

before we start detection of the motion (Fig. 2).

Figure 2. Interval selection

The sinogram and linogram [Kotina and Maximov,
2011] are built for the visual detection of displacement
along the Ox and Oy axes respectively and futher cor-
rection by cross-correlation method.
The final value of the frame displacement is deter-

mined by the parabolic fitting of the peak of the cross-
correlation function.
Figure 3 are shows the sinograms before and after mo-

tion correction.

2.3 Planar Imaging
During dynamic planar acquisition detector is station-

ary. A sequence of images with a fixed exposure is
formed for each detector.

Figure 3. Sinogram before (left) and sinogram after (right) correc-
tion

In the case when there is no patient motion, the tra-
jectory of the point projection (x′, y′, z′) must be lines
relative to the axis Ox and Oy.
With the purpose to increase the ratio signal-to-noise

for the investigated organ, it is necessary to determine
the area of interest, before we start detection of the mo-
tion (Fig. 4).

Figure 4. Determine the area of interest - the liver - for the subse-
quent motion correction

The linograms along the Ox and Oy axes are built for
the visual detection of displacement along the Ox and
Oy axes respectively.
Figure 5 are shows the linograms before and after mo-

tion correction.
The motion correction problem for dynamic planar

imaging can be considered as problem of ROI contour
correction in case of organ motion. It can take place
under consideration of hepatobiliary scintigraphy dy-
namic planar imaging, for example, gallbladder con-
tour position correction [Shirokolobov, 2014].
In static planar imaging, the data acquisition protocol

needed to be exchanges from static to dynamic modal-
ity with purpose of application of the same motion-
correction scheme.
We can note also that the use of the approache de-

scribed in [Ovsyannikov and Kotina, 2012] can be
helpful for the motion correction as well. These ap-
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Figure 5. Linogram before (left) and linogram after (right) correc-
tion

proach is based on the determination of the velocity
field and can be used for the solving of motion cor-
rection problems for radionuclide studies.

3 Reconstruction
The diagnostically important parameters in nuclear

medicine are often calculated from the volumetric
radoipharmaceutical density distribution function. The
unknown distribution is calculated from the data ac-
quired from SPECT device. The calculation process is
known as tomographic reconstruction and it is a time-
consuming and computationally intensive task.

3.1 Definitions
Let us recall the basic notation used in tomographic

image reconstruction. Commonly used SPECT data
acquisition model considers the tomographic device as
a linear transformation from the volume space to the
projection data space. The unknown radiopharmaceu-
tical distribution density is denoted by f(x, y, z). The
SPECT device sums the influence of each volume point
(x, y, z) and outputs the data for each detector bin. The
data for all the detectors is gathered in the vector pi.
The distribution density f(x, y, z) samples are enumer-
ated and denoted as a vector fj . Fig. 6 shows the details
of the acquisition process. On the left is the detector
grid and on the right is the volumetric array of point
where the distribution density function is sampled.{Px

{Pz

p1
pPx

pPxPz {

Nx

{
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Figure 6. Discrete volume and detectors

The measurement process is expressed in the relation

p = Af. (3)

Matrix A is called the system response matrix (SRM)
or the projection matrix. Its computation for SPECT is
considered in details in [Dey and King, 2009]. The el-
ement of the projection matrix is the probability that a
gamma quantum creation event in the cell j is detected
in the bin i. The probability is the product of a multi-
ple factors. In this system we consider only the most
important geometric factor which is proportional to the
volume of intersection of the cell and visibilty cone of
the i-th detector. The detector visibility cone is shown
in Fig. 7.

Pi

Figure 7. Visibility cone

To simplify the calculations we consider the planar
case. The extension of the calculation to three dimen-
sions is straightforward.
The two-dimensional slice and a typical grid detector

arrangement shown in Fig. 8.

fj
pi

Figure 8. Null angle detector position

To calculate the intersection volume of the voxel and
the visibility cone simple trigonometric considerations
are used. First we calculate the solid angle φ and divide
it by 4π, the area of a unit sphere, to get the geomet-
ric probability of a photon to get into the i-th detector.
Then we check if the straight line from the voxel center
to the detector center does not intersect the collimator.
The detector visibility angle φ is shown in Fig. 9.
The dx and dy are the horizontal and vertical distances

from the voxel center to the detector bin center, dp is
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Figure 9. Detector visibility

the height of the detector and p is the collimator thick-
ness.

d =
√
dx2 + dy2, a =

dp · dx
d

, b =
h · dy
d

,

Using these values the φ angle is calculated. Finally,
the matrix element aij is calculated if the visibility an-
gle is greater than zero.

φ =
(a− kb) dp

d2
, aij =


φ

4π
, φ ≥ 0,

0, φ < 0.

3.2 Algorithms
Typical dimensions of the reconstructed image slice

are large (up to 256x256 pixels) and the number of
detectors is also large (64x64). To solve the system
of equations (3) iterative methods are used. The most
common algorithm is the Maximum Likelihood Ex-
pectance Maximization (MLEM) by Shepp and Vardi
[Shepp and Vardi, 1982] and its modification, Ordered
Subsets EM (OSEM) by Hudson and Larkin [Hudson
and Larkin, 1994]. Single iteration of the algorithm
consists of the following calculations:

fk+1 = fk
AT

(
p
Af

)
AT 1

.

The T superscript denotes matrix transposition, 1 is
the vector with all elements equal to 1. The division
and multiplication are performed element-wise. The
multiplication of matrix A and its transpose by the vec-
tors f and p is performed according to the standard lin-
ear algebraic rules. One might note that the denomina-
tor is the vector with j-th element equal to the sum of A
matrix components in the j-th row.
The single iteration of the MLEM algorithm consists

of three basic operations:

Projection or the multiplication by A.
Backprojection or the multiplication by the trans-
posed matrix A .

Correction element-wise multiplication of the im-
age by the projection and backprojection ratio.

Third step of the iteration is easily parallelizable and
takes less time compared to step 1 and 2. First two steps
are essentially the same and consist only of the matrix
by vector multiplication.
In our system a custom parallel implementation of

MLEM using an OpenCL [Munshi, 2014] program-
ming language is used for SPECT image reconstruction
[Kotina, Latypov and Ploskikh, 2013]. This technology
allows the program to run on any modern GPU from
major manufacturers as nVidia, AMD and Intel. For
2D reconstruction of the image and a typical SPECT
detector configuration it is possible to upload the whole
system response matrix to the GPU memory using the
Yale compression scheme also known as compressed
row storage [Pissanetzky, 1984].

3.3 Results
The slices of the volumes reconstructed from SPECT

data are shown in Fig. 10 and Fig. 11. The source data
is acquired with the EFATOM SPECT scanner [Arly-
chev et al. 2009].

Figure 10. Slices of a SPECT brain scan.

4 Data Processing in Cardiology
Cardiology is one of the main medical areas of ra-

dionuclide methods and SPECT usage. Radionuclide
methods in cardiac studies allow performing functional
diagnostics of the cardiovascular system. One of the
most needed tomographic methods is gated SPECT
myocardial perfusion imaging (MPI). MPI is mod-
ern radionuclide method of investigation of the heart,
which allows visualizing three-dimensional distribu-
tion of radiopharmaceuticals in myocardium at differ-
ent time points of “representative” cardiac cycle. The
functional images has been playing significant role in
diagnostics.
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Figure 11. Slices of a SPECT heart scan.

4.1 Functional Images Construction
Algorithm of data processing of MPI studies al-

lows defining physiologically meaningful indicators of
perfusion and function of the heart was considered
[Kotina, Ploskikh, and Babin, 2013]. Let consider in
details the algorithm of functional images construction
(phase images and parametric images of systolic and
diastolic dyssynchrony) for measuring and visualizing
ventricular dyssynchrony. The use of wavelet analysis
method is proposed for the building of these functional
images.
The functional images are constructed using Fourier

analysis for comparative analysis. Phase analysis us-
ing Fourier harmonic functions has been developed for
measuring left ventricular (LV) systolic dyssynchrony
from gated SPECT MPI [Chen et al., 2005]. It is im-
portant that dyssynchrony as assessed by phase analy-
sis can provide incremental prognostic information to
other parameters measured from gated SPECT MPI
such as perfusion and LV ejection fraction and pre-
dict response to cardiac resynchronization therapy [Os-
troumov et al., 2011].
These functional images are represented as polar dia-

grams “bull eye” [Taylor and Grant, 2006], which al-
low representing three-dimensional object on a plane.
On the diagrams the ventricular apex is displayed in the
center, septum on the left, anterior, lateral and posterior
walls - respectively at the top, right and bottom.
Input data for wavelet analysis method is sequence of
N three-dimensional distribution of radiopharmaceuti-
cals, corresponding to N intervals of “representative”
cardiac cycle. These distributions are represented as N
polar diagrams of perfusion (Ps, s = 1, N ), which are
used for construction of sequence of wall thickening
curves. Using approximation of the curves based on
wavelet analysis, we obtain these functional images.

As wavelet is considered complex B-spline wavelet
with the following basal function:

ψ(t) = e2πit
sin((t/3)3)

(t/3)3
.

4.2 Phase Images Construction
Let consider construction of phase polar diagram Φ on

base of wavelet analysis. The wall thickening curve,
corresponding distribution density of radiopharmaceu-
ticals in myocardium at differentN intervals of cardiac
cycle is constructed for finding element (m,n) of the
phase polar diagram Φ. This wall thickening curve is
a graph of a periodic function f (t), whose values are
known at N points ( fs=Ps(m,n), s = 1, N ). Wavelet
series of the function is defined as follows:

F (t) = Re(
∑
J,K

CJKψJK(t)), (4)

where ψJK = 2−J/2ψ(2−J t − K) (J - scale, K -
displacement). Coefficients CJK are calculated by the
formula

CJK =
N∑
s=1

fsψ
∗
JK(s− 1),

where ψ∗
JK is function, the complex conjugate of the

function ψJK . After series of algebraic transformation
formula ( 4) takes the following form

F (t) = (
∑
J,K

AJK cos(2π(
2−J

N
t−K)− φJK)).

CoefficientsAJK and φJK are obtained using the fol-
lowing formulas

AJK =

√
aJK2 + bJK

2, φJK = arctan(
bJK
aJK

).

As result, elements of phase polar diagram Φ can be
founded as

Φ(m,n) =
180

π
arctan(

bJK(m,n)

aJK(m,n)
).

For B-spline wavelet, coefficients aJK and bJK are
calculated by formulas
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aJK =

N∑
s=1

Ps(m,n)2
−J sin(((

2−J (s−1)
N −K)/3)3)

((2
−J (s−1)

N −K)/3)3
×

× sin(2π(
2−J(s− 1)

N
−K)),

bJK =
N∑
s=1

Ps(m,n)2
−J sin(((

2−J (s−1)
N −K)/3)3)

((2
−J (s−1)

N −K)/3)3
×

× cos(2π(
2−J (s− 1)

N
−K)).

Phase images of right ventricular (RV) based on
Fourier analysis and wavelet analysis are represented
on Fig. 12. Wavelet analysis using more accurate ap-
proximation of thickening curves allows getting more
detailed phase images.

Figure 12. Phase images of RV are based on Fourier analysis (a)
and B-spline wavelet (b).

4.3 Dyssynchrony Functional Images Construc-
tion

Let consider construction of functional images of sys-
tolic and diastolic dyssynchrony with using wavelet
analysis. Algorithm of construction these images is
represented on Fig. 13.
For finding element (m,n) of diagrams systolic

dyssynchrony SD and diastolic dyssynchrony DD,
corresponding wall thickening curve is constructed on
base of sequence of N polar perfusion diagrams. Then
this curve is approximated by wavelet analysis using
following formula:

F (t) =
∑
JsKs

AJsKs cos(2π(
2−Js

N
t−Ks)− φJsKs),

where Js and Ks (s = 1, 3) are set of scale parame-
ters, which allow to get more accurate approximation

Figure 13. Functional images of systolic and diastolic dyssyn-
chrony construction.

of wall thickening curve. As result, the element (m,n)
of diagram of systolic dyssynchrony SD equals first in-
tersection of graphs of approximation curve F (t) and
Fourier zero harmonic, which is interpreted as onset of
mechanical contraction (OMC) [Chen et al., 2011].
The element (m,n) of diagram of diastolic dyssyn-

chrony DD equals second intersection of these graphs.
This value is interpreted as onset of mechanical relax-
ation (OMR) [Chen et al., 2011].
For comparative analysis we construct functional im-

ages with using Fourier analysis. In the case wall thick-
ening curves are approximated by sum of the three har-
monics Fourier [Hsu et al., 2013].
Functional images of diastolic dyssynchrony of LV on

base wavelet analysis and 3-harmonic analysis are rep-
resented on Fig. 14. Phase analysis using wavelet func-
tions can better approximate the variation of myocar-
dial wall thickness over the cardiac cycle to calculate
the OMC and OMR as measures of LV systolic and di-
astolic dyssynchrony.

Figure 14. Functional images of diastolic dyssynchrony of LV are
based on 3-harmonic phase analysis (a) and wavelet analysis (b).

5 Conclusion
Mathematical and software data processing of ra-

dionuclide studies allows defining a wide range of di-
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agnostic parameters. Developed software is installed
and tested in radioisotope laboratory of Central Clinical
Hospital No. 2 named after Semashko OAO “RZD”, in
“Federal Research Center of Transplantology and Arti-
ficial organs named after Academician V.I. Shumakov”
and “Federal Research and Clinical Center of special-
ized types of health care and medical technology of the
Federal Medical and Biological Agency” in Moscow.
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