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Abstract: This paper presents the study of necessary optimum control conditions for stochastic
systems of random abrupt nature to describe the operation of a flying vehicle being bounded by
various system objectives and requirements, and being subjected to disturbances conditioned
by random parameters spread, additive and multiplicative noise, and random Poisson stream
of subsystem failures. The inter-orbit flight problem being subject to a failure of one of two
sections of simultaneously working engines is analyzed.
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1. INTRODUCTION

Despite known optimization outcomes of stochastic sys-
tems with random structure (Kazakov and Artem’ev,
1980; Bodner et al., 1987; Solodov, 1988), the problem
of statistical optimization of the flying vehicle and its
control systems being the subject to choice of main design
objectives and characteristics to be closely connected with
the accuracy and reliability of flight missions or statisti-
cally defined by sets of conditions and application goals
turned out to be the least researched. Considering relia-
bility factors while optimizing the flying vehicle movement
leads to a change of known programs of control as well as
optimum parameters. The factors mentioned point out to
the relevance of stochastic system optimization of flying
vehicles, the failures being taken into account.

2. THE PROBLEM STATEMENT

We consider nonlinear stochastic system
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(i = 1, . . . , n; j = 0, . . . , k), t ∈ [Tj , Tj+1],
T0 = t0, Tk+1 = tf ,

which describes an operation of a flying vehicle, its switch-
ing structure forming a stationary Poisson stream of ran-
dom events with probabilities
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at the time-segment [t0, tf ] or non-stationary one

Pk =
1
k!

 tf∫
t0

λ(t) dt

k

exp

− tf∫
t0

λ(t) dt

 , (2)

(k = 0, 1, ..., k0)

with k break-points at the segment [t0, tf ], with stream
density λ = λ(t) as a known function of time.

Control objectives ν = (u, a) and different system require-
ments are described by mixed limitations of equalities of
system parameters, control functions, and phase coordi-
nates:
Is (ν) = M [Fs(Xk

f ) | k ≤ k0] = cs, s ∈ J1 = { 1, . . . , q} .(3)

Efficiency of control ν = (u, a) of the system (1) is
described by the minimum of the functional

I0 (v) = M [F0(Xk
f , a) | k ≤ k0]. (4)

In (1)–(3) there is t as time; t0, tf being initial and final
points of the considered time-interval [t0, tf ]. T1, ..., Tk –
the system of random values over [t0, tf ] with k break-
points having distribution density ψk(t1, ..., tk| k) at T1 <
T2 < · · · < Tk for stationary and non-stationary Poisson
stream respectively being defined by the following formulas
(Kozhevnikov, 1966):

ψk(t1, ..., tk| k) = k! (tf − t0)−k,

ψk(t1, ..., tk| k) = k!
k∏
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where

t1, ..., tk are realizations of random values T1, ..., Tk;

Xk(t) is n−dimensional random system state vector-
function with k break-points being t−continuous over each
time-interval [Tj , Tj+1], (j =0,. . . , k);

u(t) is a sectionally-continuous deterministic r−dimensional
vector-function of control over time-segments [Tj , Tj+1];

a is a deterministic m−dimensional vector of control that
defines the rated parameters of design and energy for the
system in question;



Bj is a random l−dimensional vector, being constant over
[Tj , Tj+1], its components relating to random continuous
values to characterize, specifically, deviations of the system
control parameters from their rated values a over time-
segments [Tj , Tj+1];

dWiq (t), dηq(t) are Stratonovich stochastic differentials of
Wiener processes Wiq (t), ηq (t).

The right-hand members of (1) meet the known require-
ments for a solution to exist over continuity segments
[Tj , Tj+1] (Gihman and Skorohod, 1977). The upper index
j on the right sides of (1) characterizes the system struc-
ture over the time-segment [Tj , Tj+1], Is(ν) s ∈ {0} ∪ J1

are the limited functionals being differentiable over the set
of variables to represent the conditional mathematical ex-
pectation values. The averaging operation of (6) is carried
out over the partial area [0, ∞] of realizations of a random
argument k, k0−is a nonnegative integer.

As it is known (Gihman and Skorohod, 1968), random
parameters being present on the right sides of (1), the
process described by (1) is not necessarily Markovian.
So, in order for (1) to describe the Markovian process,
a vector-function of extended phase coordinates is intro-
duced Zk = (Xk, Bj). Then (1) being relative to Zk comes
to the equivalent system of diffusion stochastic differential
equations
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(j = 0, ..., k; k = 0, ..., k0), t ∈ [Tj , Tj+1],

T0 = t0, Tk+1 = tf .

The equations (6), (7) describe the diffusion Markov-
ian process with discontinuous coefficients of drift and
diffusion over [t0, tf ], and over the adjoining segments
[Tj , Tj+1] , (j = 1, ..., k) in a successive manner, its prob-
ability density of states p(t, z) over the process continu-
ity segments Zk(t) meeting the equation of Kolmogorov-
Fokker-Plank (KFP) (9) and coupling conditions (10), (11)
at break-points tj . So, with respect to the expanded vector
of states Zk = (Xk, Bj), the initial problem described by
(1)–(4) is reduced to the equivalent one – the problem
with distributed parameters (8) – (12) being relative to
the probability density p(t, z):

I0 (ν) = M [F0(Xk
f , a) | k ≤ k0] → min (8)
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The expressions in square brackets (11)–(12) [F (·)] =
F (·)− − F (·)+ designate a difference of the expressions
contained in them left and right off break-points tj .

3. NECESSARY OPTIMUM CONTROL CONDITIONS

Optimum control conditions of the problem described by
(6) – (10), similarly to Rodnischev (2001) are defined by

Theorem 1 (the weak principle of the minimum). If
(p∗, ν∗) is the optimum solution (6) – (10), then there exist
a vector γ = (γ1, ..., γq) and a function λ (t, z) ∈ C1,2 to be
simultaneously nonzero, the function λ (t, z) ∈ C1,2 being
defined by the solution to the boundary problem
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(i = 1, . . . , n; p = 1, . . . , n; j = 1, . . . , k);

the vector γ = (γ1, . . . , γq) and the function λ (t, z) ∈ C1,2

are so that:

a) the optimum control u∗ = u∗(t) for almost all t ∈
[tj , tj+1], (j = 0, . . . , k) and all u ∈ U in the uniformly
close neighborhood of the point u∗ satisfies the inequality(
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b) the parameters a∗ satisfy the following conditions:
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To define the problem of optimum control (8)–(13), that
meets the optimum conditions stipulated by theorem 1, the
solutions to the KFP-equation (10) as well as the coupled
Bellman parabolic equation are necessary. However, as
it is known, solving them for higher order systems, only
the solutions to linear stochastic systems can be obtained
(Krasovsky, 1974; Kazakov, 1977); only special cases of
nonlinear systems of no higher order than third can also
be solved (Kolosov, 1984). Therefore, to solve (8) – (12), it
is suggested to use a method by Rodnishchev (2001) based
on employing statistics – semi-invariants of the process (6),
(7), the distribution density p(t, z) being involved.

4. OPTIMUM CONTROL DETERMINATION USING
SYSTEM PHASE-STATE STATISTICS

With respect to the statistics, (9) – (13) is narrowed down
to the problem of
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with the differential bonds (20) for normal differential
equations of the 2n + n(n + 1)/2 + (N − 2) degree with
respect to the semi-variants ωi

1, ω
ip
11, ω

i
Ni

of a random
process Z(t), the semi-variants having been obtained from
the KFP-equation (10) of the logarithm of the process
characteristic function (7), (8). The upper indices of the
semi-invariants indicate the component numbers of the
state-vector, the lower indices – the semi-invariants order.
(N − 2) – the number of semi-invariants of higher than
second order, z̃i = zi − ωi

1.

Relations (18) – (21) represent a problem of the theory
of optimum processes being bound by inequalities and
equalities. Numerical methods may be used, particularly
stated in Bodner et al.(1987), to solve this problem.

5. THE PROBLEM OF INTER-ORBITAL FLIGHT

Let us consider the problem of transfer of a material point
moving in the central force field from one orbit to another
by the use of reactive force of the propulsion unit consisting
of two simultaneously working engine sections. Unlike the
known problem of the optimum transfer of a material point
into a circular orbit (Krasovsky, 1968), let define the rela-
tive speed of the mass consumption of a material point u(t)
being subject to the additive disturbance ξ(t), parametric
noise η(t) and interferences in a form of Poisson process of
dotted events leading to a failure of one of the propulsion
unit sections. The propulsion unit provides minimum mass
consumption being defined by the functional

I0(u) =

T∫
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while transferring a material point along the trajectory
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onto another orbit to a position defined by the following
expressions:
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where ξ(t) is disturbance of jet acceleration caused by
white noise of the angular traction vector; η(t) is para-
metric excitation caused by erosive fuel burning in the
combustion chamber. The processes ξ(t) and η(t) are not
correlated, k = 0, 1 — realizations of faults, j = 0, k and
a0 = 1, a 1 = 0.5.

The equations (23) describe the diffusion Markovian
process. With respect to the semi-variants of this process
and taking into account that semi-variants of the first or-
der ωi

1 are coincident with the mathematical expectations
of the state-vector components ωi
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where P0 is probability of non-failure operation of the
propulsion unit: P0 = 1−P1, P1 is probability of failure of a
propulsion unit section: P1 = λT exp(−λT ), λ = 0, 002,
ψ = 1/T .

To find the solution to problem (26)–(28), the graded
projection method (Bodner et al., 1987) with the algo-
rithm convergence to the necessary optimum conditions of
theorem 1 is used. The solution to a deterministic problem
(Krasovsky, 1977) with control u(t) = 0, 025Sgn(cos t),
t ∈ [0, T ], T = 2π was taken as an initial approximation.
Under this control, a material point firstly accelerates
during time 0 ≤ t ≤ π/2. At time-point t = π/2 a
control switching takes place and during time-segment
π/2 ≤ t ≤ 3π/2 the material point slows down. At time-
point t = 3π/2 a new switching takes place, the mate-
rial point accelerates again, and at t = 2π the material
point goes to a desired orbit along a tangent line. At this
moment, the control is released. While solving problems
(26)–(28) the following alternatives were explored.

Alternative 1. Non-failure functioning of the propulsion
unit with probability P0 = 1−P1. A failure of one section
with probability P1 over time-segment [0, 2π].

Alternative 2. A failure of the propulsion unit section with
probability P1 over time-segment [0, 2π].

Alternative 3. Non-failure functioning of the propulsion
unit over time-segment [0, π/2]. A failure of a section with
probability P1 over time-section [π/2, 2π].

Alternative 4. Non-failure functioning of the propulsion
unit over time-section [0, 3π/2]. A failure of a section with
probability P1 over time-section [3π/2, 2π].

Approximations of the solutions to problem (26)–(28) by
using criterion (26) are given in Tab. 1 and Tab. 2.

Table 1. Values of functional

Iter. number
Approximations of I0(u)
by alternatives of failures
1 2 3 4

1
2
3
4
5
6
7
8
9

0,157
0,151
0,144
0,138
0,131
0,125
0,119
0,113
0,107

0,157
0,157
0,157
0,157
0,157
0,157
0,157
0,157
0,157

0,157
0,155
0,153
0,151
0,149
0,147
0,144
0,142
0,139

0,157
0,157
0,156
0,156
0,156
0,155
0,155
0,154
0,154

Table 2. Optimum control

Time
Optimum control u∗ by alternatives of failures
1 2 3 4

0
0,628
1,257
1,885
2,513
3,142
3,770
4,398
5,027
5,655
6,283

0,025
0,025
0,025
−0, 025
−0, 025
−0, 025
−0, 025
−0, 025
0,025
0,025
0,025

0,0343
0,0343
0,0342
−0, 0158
−0, 0159
−0, 0159
−0, 0159
−0, 0159
0,0342
0,0342
0,0344

0,0425
0,0429
0,0424
−0, 0248
−0, 0250
−0, 0251
−0, 0252
−0, 0252
0,0249
0,0251
0,0251

0,0360
0,0360
0,0360
−0, 0141
−0, 0142
−0, 0144
−0, 0145
−0, 0146
0,0269
0,0268
0,0266

The values of the average state–vector variances X =
(X1, X2, X3) for optimum problem solution to each failure
alternative are presented in Tab. 3.



Table 3. The average state-vector variances

Variables
Values of variables
by alternatives of failures
1 2 3 4

m1(T ) 1,46 1,56 1,51 1,57

m2(T ) 0,87 1,12 1,06 1,16

m3(T ) 0,064 0,063 0,059 0,058

R11(T ) 3,50 4,61 4,50 4,80

R22(T ) 1,12 1,76 1,63 1,88

R33(T ) 0,067 0,069 0,068 0,069

The optimum control u∗(t), which carries out an inter-
orbital flight of a material point by first failure alternative,
puts into effect the following regime of flight. Over time-
segment 0 ≤ t ≤ 1, 257 the material point accelerates with
relative mass consumption u = 0, 025.

Then, over the time-segment 1, 257 ≤ t ≤ 1, 885, a
switching is made by the linear law; over time-segment
1, 885 ≤ t ≤ 4, 398 a slowing-down takes place with
the relative mass consumption u = 0, 025. Over time-
segment 4, 398 ≤ t ≤ 5, 027 a new switching takes place
by the linear law; over time-segment 5, 027 ≤ t ≤ 6, 283
the material point accelerates again with relative mass
consumption u = 0, 025. At time t = 6, 283 the control
is released. The relative mass consumption during such
flight amounts to value 0,107.

The optimum control u∗(t), which carries out an interor-
bital flight of a material point by the second failure alter-
native, puts into effect the following regime of flight. Over
time-segment 0 ≤ t ≤ 1, 257 the material point accelerates
with the relative mass consumption u = 0, 0343.

Then, over the time-segment 1, 257 ≤ t ≤ 1, 885 a
switching is made by the linear law; over time-segment
1, 885 ≤ t ≤ 4, 398 a slowing-down takes place with
the relative mass consumption u = 0, 0159. Over time-
segment 4, 398 ≤ t ≤ 5, 027 a new switching takes place
by the linear law; over time-segment 5, 027 ≤ t ≤ 6, 283
the material point accelerates again with relative mass
consumption u = 0, 0342. At time t = 6, 283 the control is
released. The relative mass consumption during such flight
amounts to value 0,157.

The optimum control u∗(t), which carries out an interor-
bital flight of a material point by the third failure alter-
native, puts into effect the following regime of flight. Over
time-segment 0 ≤ t ≤ 1, 257 the material point accelerates
with relative mass consumption u = 0, 0425.

Then, over the time-segment 1, 257 ≤ t ≤ 1, 885, a
switching is made by the linear law; over time-segment
1, 885 ≤ t ≤ 4, 398 a slowing-down takes place with
relative mass consumption u = 0, 0252. Over time-segment
4, 398 ≤ t ≤ 5, 027 a new switching takes place by
the linear law; over time-segment 5, 027 ≤ t ≤ 6, 283
the material point accelerates again with relative mass
consumption u = 0, 0251. At time t = 6, 283 the control is
released. The relative mass consumption during such flight
amounts to value 0,139.

The optimum control u∗(t), which carries out an interor-
bital flight of a material point by fourth failure alternative,
puts into effect the following regime of flight. Over time-
segment 0 ≤ t ≤ 1, 257 the material point accelerates with

relative mass consumption u = 0, 036. Then, over the time-
segment1, 257 ≤ t ≤ 1, 885, a switching is made by the
linear law; over time-segment 1, 885 ≤ t ≤ 4, 398 a slowing-
down takes place with relative mass consumption u =
0, 0141 ÷ 0, 0146. Over time-segment 4, 398 ≤ t ≤ 5, 027
a new switching takes place by the linear law; over time-
segment 5, 027 ≤ t ≤ 6, 283 the material point accelerates
again with relative mass consumption u = 0, 0266÷0, 0269.

At time t = 6, 283 the control is released. The relative mass
consumption during such flight amounts to value 0,154.

Thus, designing a flight program of a material point being
subjected to parametric and additive disturbances as well
as possible failures of the propulsion unit, it is necessary
to foresee the relative mass consumption of 0. 157.

6. CONCLUSION

To find the optimum control for non-linear stochastic sys-
tems of random abrupt nature, the approach presented
here lets build, at the average, the optimum program
control for sufficiently large range of expected conditions
of functioning of flying vehicles and their subsystems,
parametric disturbances, additive disturbances and fail-
ures being conditioned, in particular, by Poisson stream.
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