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Abstract
The unknown input estimation problem for linear dy-

namic systems exposed to the disturbances is studied in
the paper. A novel approach to designing sliding mode
observer is suggested for systems not satisfying match-
ing, minimum phase, and detectability conditions. To
apply this approach, the reduced-order model of the orig-
inal system is used. Such a model allows to reduce the
dimension of the sliding mode observer, besides the re-
strictions placed on the original system are relaxed.
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1 Introduction
This work investigates the problem of unknown input

estimation in linear control systems. The unknown input
can be interpreted as a function describing faults in engi-
neering systems, and the problem is reduced to the fault
diagnosis one. This problem was intensively studied for
the past 30 years; see, for example, [Blanke et al.(2006);
Ding(2014); Samy et al.(2011); Witczak(2014)]. Differ-
ent tools for solving the problem have been developed:
identification, diagnostic observers, parity relations. The
interesting method of identification is based on sliding
mode observers (SMO), it uses features of sliding mo-
tion studied in [Utkin(1992)].

To solve the problems of unknown input esti-
mation and fault reconstruction, SMOs are used
in linear systems [Edwards et al.(2000); Edwards

and Spurgeon(1994); Tan and Edwards(2003); Tan
and Edwards(2009); Zhirabok et al.(2021); Zhirabok
et al.(2019)], in nonlinear systems [Fridman et al.(2008);
Yan and Edwards(2007)], and in singular systems [Chan
et al.(2017)]. Besides, SMOs are used to ensure fault-
tolerant properties [Alwi and Edwards(2008); Edwards
et al.(2012); Edwards et al.(2010)]. To design SMO, two
conditions should be satisfied: the minimum phase con-
dition and the matching condition [Edwards et al.(2000);
Floquet et al.(2007); Defoort et al.(2016)]; they restrict
the possibility of SMO application.

To relax the matching condition, two methods are used.
The first one is based on a high-order sliding mode dif-
ferentiator [Bejarano and Fridman(2010); Fridman et
al.(2007); Floquet et al.(2007); Fridman et al.(2008);
Yang et al.(2013)]; such a differentiator generates the
derivatives of the outputs to transform the original sys-
tem into a system which satisfies the matching condition.
Multiple SMOs in cascade are used in the second method
[Tan and Edwards(2009)]. Both methods proved good
results but assume that the system is a minimum phase
and the estimation scheme has a complex structure.

The method suggested by [Alwi et al.(2009)] relaxes
the matching condition but the unknown input estimate
is corrupted by the fault derivative. The method sug-
gested in [Rios et al.(2014)] does not ensure asymptotic
convergence, as a result, the estimation errors are only
bounded. The minimum phase condition is relaxed in
[Bejarano et al.(2009)] for systems where the unknown
inputs are at the dynamics and output, and sufficient
and necessary conditions for unknown input and state
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reconstruction are received. These conditions are less
limiting than strong detectability. The method in [Be-
jarano(2011)] under some restrictions solved the prob-
lem of partial unknown input estimation. In [Hmidi et
al.(2020)] and [Wang et al.(2017)] the detectability con-
dition is used instead of the minimum phase one.

Note that all cited above papers consider vector un-
known inputs and vector functions describing faults. Be-
sides, the dimension of SMOs in [Edwards et al.(2000)]
and similar papers coincides with that of the original sys-
tem.

The main contribution of the present paper is that
SMOs are designed for systems which do not satisfy
common conditions: minimum phase, matching, and de-
tectability ones. This is explained by that SMO is de-
signed not for the full order model of the original system
but for its reduced order model. Such a model has not
some special features of the full order model which pre-
vent the possibility for SMO design. As an example, the
full order model is non-detectable while the reduced or-
der model has the detectability property. Besides, the
canonical form of matrices describing such a model is
used. As a result, the limitations placed on the full or-
der model, are relaxed and the dimension of the observer
decreases.

Consider a control system

ẋ(t) = Ax(t) +Bu(t) + Zz(t) +Dd(t),
y(t) = Cx(t),

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the
vector of control, y(t) ∈ Rl is the output vector, A, B,
C, Z, and D are known matrices, z(t) ∈ R is the un-
known bounded input, ∥z(t)∥ ≤ β, d(t) ∈ Rp is the
unmatched disturbance, one assumes that d(t) is an un-
known bounded function.

Remark 1. The relation z(t) ∈ R corresponds to the
most probable single faults. If z(t) ∈ Rs, s > 1, the
suggested method should be applied to each component
of the vector function z(t) presenting multiple faults.

The method suggested in [Yan and Edwards(2007)]
assumes that system (1) meets two conditions: 1)
rank(C[Z D]) = rank([Z D]), 2) system is a min-
imum phase; the methods suggested in [Hmidi et
al.(2020); Wang et al.(2017)] assume that (1) is de-
tectable. In our paper, the unknown input estimation
problem will be solved without these conditions. The
method suggested in the paper is based not on the full
order model of the original system but on its reduced or-
der model, besides, the identification canonical form of
such a model is used.

Note that another type of matching condition with re-
spect to the disturbance was considered in [Antipov et
al.(2021); Utkin et al.(2022)]: rank(B) = rank(B D).
In our paper we assume that the disturbance is un-
matched.

2 Reduced order model design
One proposes that (A,C) is non-detectable that is

Ker(V (n)) ̸= ∅, where

V (n) =


C
CA
...

CAn−1

 ,

besides, unobservable part of (1) is unstable.
Assumption. Im(Z) ̸⊆ Ker(V (n)).
Let rz be minimal relative degree of y with respect to

z(t). The output y∗(t) corresponds to rz and the matrix
R∗ exists satisfying the condition R∗y(t) = y∗(t). As-
sumption means that rz < ∞ and the unknown input can
be identified.

Remark 2. If Im(Z) ⊆ Ker(V (n)), the unknown in-
put cannot be estimated because it lies in the unobserv-
able part of system (1). If Im(Z) ̸⊆ Ker(V (n)), the
output y∗(t) is affected by the unknown input which can
be estimated.

The problem is solved on the basis of the reduced order
model of (1) generally described as follows:

ẋ∗(t) = A∗x∗(t) +B∗u(t) +G∗y(t)
+Z∗z(t) +D∗d(t),

y∗(t) = C∗x∗(t),
(2)

where x∗(t) ∈ Rk is the vector of state A∗, B∗, G∗,
C∗, D∗, and Z∗ are matrices to be determined. One as-
sumes that x∗(t) = Φx(t) for the matrix Φ to be deter-
mined. As is known [Zhirabok et al.(2017a); Zhirabok
et al.(2017b)], that matrices R∗ and Φ meet the condi-
tions

ΦA = A∗Φ+G∗C, R∗C = C∗Φ,
ΦB = B∗, ΦD = D∗, ΦZ = Z∗.

(3)

Our purpose is to develop the method to construct the
model (2) insensitive to the disturbance that allows solv-
ing the problem of unknown input estimation.

We specify the matrices A∗ and C∗ in the identification
canonical form

A∗ =


0 1 0 ... 0
0 0 1 ... 0
... ... ... ...
0 0 0 ... 0

 , C∗ = (1 0 0 ... 0 ). (4)

Remark 3. This form exists if (A∗, C∗) in (2) is
observable. Otherwise, system (2) can be transformed
into the observable canonical form [Kwakernaak and
Sivan(1972)], and then the observable part of this form
can be transformed into (4) of less dimension.

Based on (4), one obtains from (3) the following rela-
tions:

Φ1 = R∗C, ΦiA = Φi+1 +G∗iC, i = 1, ..., k − 1,
ΦkA = G∗kC.

(5)
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Here Φi and G∗i are i-th rows of the matrices Φ and
J∗, i = 1, ..., k, respectively. One can show [Zhirabok
et al.(2017b)] that (5) are transformed into the equation

( 1 −G∗1 ... −G∗k )W
(k) = 0, (6)

where

W (k) =


R∗CAk

CAk−1

...
C

 .

Insensitivity to the disturbance in the form of con-
dition ΦD = 0 one can take into consideration as
( 1 −G∗1 ... −G∗k )D

(k) = 0 [Zhirabok et al.(2017a);
Zhirabok et al.(2017b)] where

D(k) =


R∗CD R∗CAD ... R∗CAk−1D

0 CD ... CAk−2D
... ... ... ...
0 0 ... 0

 .

Clearly, this equation and (6) can be written as

( 1 −G∗1 ... −G∗k )(W
(k) D(k)) = 0. (7)

Solve this equation for minimal k ≥ rz and design the
model (8) as

ẋ∗(t) = A∗x∗(t) +B∗u(t) +G∗y(t) + Z∗z(t),
y∗(t) = C∗x∗(t).

(8)

Note that assumption Im(Z) ̸⊆ Ker(V (n)) means that
Z∗ ̸= 0.

If (7) has not solution for all k < n, the model is sen-
sitive to the disturbance and the problem of exact un-
known input estimation has no solution. In this case, the
problem of approximate unknown input estimation can
be solved [Zhirabok et al.(2019)]. Another approach is
to estimate the disturbance d(t) and then use such an es-
timate in (2) [Alvarez-Sanchez et al.(2013)].

Rewrite (7) as

ẋ∗1(t) = x∗2(t) +B∗1u(t) +G∗1y(t) + Z∗1z(t),
ẋ∗∗(t) = A∗2x∗∗(t) +B∗2u(t) +G∗2y(t) + Z∗2z(t),
y∗(t) = x∗1(t),

(9)
where A∗2 is submatrix of the matrix A∗ corresponding
to the vector x∗∗ = (x∗2, ..., x∗k)

T ,(
B∗1
B∗2

)
= B∗,

(
G∗1
G∗2

)
= G∗,

(
Z∗1
Z∗2

)
= Z∗.

Transform the above model into the form

ẋ∗(t) =

(
ẋ∗1(t)
ẋ∗∗(t)

)
=

(
0 A∗1
0 A∗2

)(
x∗1(t)
x∗∗(t)

)
+B∗u(t) +G∗y(t) + Z∗z(t),

where A∗1 = (1 0 ... 0).
Remark 4. The model (9) corresponds to that in [Ed-

wards et al.(2000); Wang et al.(2017)] with stable matrix
A∗2 since the original system is a minimum phase or de-
tectable by assumption. In contrast to this, A∗2 in our
approach may be unstable; stability of SMO is provided
below by feedback.

3 Sliding mode observer design
SMO is sought in the from(
˙̂x∗1(t)
˙̂x∗∗(t)

)
=

(
0 A∗1
0 A∗2

)(
x̂∗1(t)
x̂∗∗(t)

)
+B∗u(t) +G∗y(t)

−Kv(t)−
(

l1 0
L2 0

)
e(t),

(10)
where v(t) = sign(e1),

e(t) =

(
e1(t)
e2(t)

)
=

(
ŷ∗(t)−R∗y(t)
x̂∗∗(t)− x∗∗(t)

)
, K =

(
k1
k2

)
,

the coefficients l1 and L2 provide the observer stability;
they exist due to the canonical form (4).

The error e(t) is described by

ė(t) =

(
−l1 A∗1
−L2 A∗2

)
e(t)−Kv(t)− Z∗z(t)

= A∗∗e(t)−Kv(t)− Z∗z(t),
(11)

or

ė1(t) = −l1e1(t) +A∗1e2(t)− k1v(t)− Z∗1z(t),
ė2(t) = −L2e1(t) +A∗2e2(t)− k2v(t)− Z∗2z(t),

(12)
where A∗∗ is stable matrix.

Remark 5. It is known that if e(t) meets the equation
ė(t) = F̄ e(t) + g(t) with stable matrix F̄ and the func-
tion g(t) is bounded, then e(t) is bounded as well that is
∥e(t)∥ ≤ γ for some scalar γ.

Theorem. The observer (10) generates the following
estimates for the function z(t): if Z∗2 = 0, then

ẑ(t) = −Z+
∗1k1veq(t), (13)

and

ẑ(t) = −Z+
∗2k2veq(t) (14)

when Z∗2 ̸= 0, where Z+
∗1 = (ZT

∗1Z∗1)
−1ZT

∗1 and
Z+
∗2 = (ZT

∗2Z∗2)
−1ZT

∗2, veq(t) is the continuous ap-
proximation of the discontinuous function v(t) [Edwards
et al.(2000)]:

veq(t) =
e1(t)

|e1(t)|+ ε
,

ε is a small positive scalar.
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Proof. Note that proof is similar to that developed in
[Wang et al.(2017)]. Firstly one proves that ∥e(t)∥ ≤ δ
for some δ. Because ∥v(t)∥ = 1 and the function z(t) is
bounded, then ∥Z∗z(t) +Kv(t)∥ ≤ g0 for some scalar
g0. It is evident from (12) and Remark 5 that the function
e(t) is bounded and ∥e(t)∥ ≤ δ for some δ.

Secondly, one proves that e1 = 0 in finite time due
to choices of the observer gains; as a result, sliding mo-
tion is achieved. Introduce Lyapunov candidate function
V1 = e21 and using (12) take its derivative:

V̇1 = 2e1ė1 = 2e1(−l1e1 +A∗1e2 − k1v − Z∗1z).

Since v = sign(e1), then e1k1v = k1|e1| and

V̇1 ≤ −2l1e
2
1 + 2|e1|(−k1 + ∥A∗1∥∥e2∥+ ∥Z∗1∥∥z∥)

≤ −2l1e
2
1 + 2|e1|(−k1 + δ∥A∗1∥+ β∥Z∗1∥).

If k1 satisfies

k1 > δ∥A∗1∥+ β∥Z∗1∥, (15)

then V̇1 < 0, and sliding motion (e1 = ė1 = 0) happens
in finite time.

Thirdly, one proves that e2 = 0 in finite time due
to choices of the observer gains, and sliding motion is
achieved. Because A∗∗ is stable matrix, there exist pos-
itive definite symmetric matrices P and W such that
AT

∗∗P + PA∗∗ = −W. Write down the matrix P in the

form P =

(
p1 P2

PT
2 P3

)
where P3 is positive definite sym-

metric matrix. Consider Lyapunov candidate function
V2 = eTPe and take its derivative using (11):

V̇2 = eT (AT
∗∗P + PA∗∗)e− 2eTP (Z∗z +Kv).

It is evident from (12) and e1 = ė1 = 0 that A∗1e2 =
k1v + Z∗1z. Using k2 = P−1

3 AT
∗1k3 for some k3 > 0

and e1 = 0, we obtain

V̇2 = −eTWe− 2eTPZ∗z

−2(0 eT2 )

(
p1 P2

PT
2 P3

)(
k1
k2

)
v

= −eTWe− 2eTPZ∗z

−2(eT2 P
T
2 eT2 P3)

(
k1
k2

)
v

= −eTWe− 2eTPZ∗z
−2(eT2 P

T
2 k1 + eT2 P3k2)v

= −eTWe− 2eTPZ∗z
−2(eT2 P

T
2 k1 + (A∗1e2)

T k3)v
= −eTWe− 2eTPZ∗z

−2(eT2 P
T
2 k1v + (k1v + Z∗1z)

T k3v)
≤ −eTWe+ 2δ∥PZ∗∥β + 2k1δ∥P2∥

−2k1k3 + 2k3β∥Z∗1∥.

If one chooses k3 and k1 as

k3 > 2δ∥P2∥, k1 > 2β∥Z∗1∥ (16)

and then k3 is chosen as

k3 >
2βδ∥PZ∗∥

k1 − 2β∥Z∗1∥
, (17)

then V̇2 < 0. Theorem has been proved.
Based on (15), (16), and (17), the coefficients k1 and

k3 should be chosen as

k1 > max{δ∥A∗1∥+ β∥Z∗1∥, 2β∥Z∗1∥},
k3 > max

{
2δ∥P2∥, 2βδ∥PZ∗∥

k1−2β∥Z∗1∥

}
.

It is evident from (12) that if Z∗2 = 0, the unknown
input z(t) is estimated based on the first expression in
(12) by (13); otherwise, one uses the second expression
in (12) and obtains (14).

4 Examples
4.1 Practical example

Consider the control system

ẋ1(t) =
1
ip
x2(t) + d(t),

ẋ2(t) = −Kd

JH
x2(t) +

KM

JH
x3(t),

ẋ3(t) = −Kω

Lm
x2(t)− Rm

Lm
x3(t) +

KU

Lm
u(t) + z(t),

y1(t) = x1(t), y2(t) = x3(t).
(18)

Equations (18) constitute a model of electric servoactu-
ator where x1 is the output rotation angle at the reducer
output shaft; x2 is the output rotation velocity at the mo-
tor output shaft; x3 is the current through the servoac-
tuator windings; ip is the reducing ratio of the reducer;
JH is the moment of inertia of the electric servoactua-
tor and of the rotating parts of the reducer; Kω and KM

are the respective coefficients of the counter EMF and of
the torque; Kd is the torques of the Coulomb friction at
the motor output shaft; Rm and Lm are the active and
inductive resistances of the electric servoactuator wind-
ings, respectively; KU is the amplification factor.

One assumes that the unknown input z(t) =

− R̃(t)
Lm

x3(t) is caused by the deviation R̃(t) of the active
resistances from its nominal value Rm.

Note that the unknown input estimation problem for
this example can be solved by known methods (for ex-
ample, [Edwards et al.(2000)]) but we use our approach
to demonstrate its efficiency.

Denote γ1 = 1/ip, γ2 = −Kd/JH , γ3 =
KM/JH , γ4 = −Kω/Lm, γ5 = −Rm/Lm, γ6 =
KU/Lm. System (18) is described by the matrices

A =

 0 γ1 0
0 γ2 γ3
0 γ4 γ5

 , B =

 0
0
γ6

 , C =

(
1 0 0
0 0 1

)
,

Z =

 0
0
1

 , D =

 1
0
0

 .
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Figure 2. Behavior of fault estimation error R̂m(t)−Rm(t).

Figure 1. Behavior of function R̃(t).

Design the model insensitive to d(t). One can show
that (7) is solvable with k = 2 and

(R∗ −G∗1 −G∗2 ) = ( 0 1 0 −γ2 − γ5 0 −γ3γ4 + γ2γ5 )

which gives R∗ = (0 1),

G∗ =

(
0 γ2 + γ5
0 γ3γ4 − γ2γ5

)
, Φ =

(
0 0 1
0 γ4 −γ2

)
,

B∗ =

(
γ6

−γ2γ6

)
, Z∗ =

(
1

−γ2

)
.

The model is given by

ẋ∗1(t) = x∗2(t) + (γ2 + γ5)y2(t) + γ6u(t) + z(t),
ẋ∗2(t) = (γ3γ4 − γ2γ5)y2(t)− γ2γ6u(t)− γ2z(t).

Choosing λ1 = −1 and λ2 = −2 as eigenvalues of the
matrix A∗∗, one obtains l1 = 3, L2 = 2; SMO is given
by

˙̂x∗1(t) = x̂∗2(t) + (γ2 + γ5)y2(t) + u(t)
−k1v(t)− 3e1(t),

˙̂x∗2(t) = (γ3γ4 − γ2γ5)y2(t)− γ2γ6u(t)
−k2v(t)− 2e1(t),

ŷ∗(t) = x̂∗1(t),

(19)

where e1(t) = ŷ∗(t) − y2(t), v(t) = sign(e1(t)). The
function z(t) is estimated as ẑ(t) = k1veq

For simulation, consider system (18) and the observer
(19) with u(t) = sin(t), d(t) = 2sin(2t), k1 = 10,
k2 = 20, β = 1, and |e1(0)| = 0. Simulation results
are presented in Figs. 1 and 2; behavior of function R̃(t)
and the estimation error ∆R̃(t) = R̂m(t) − Rm(t) for
the function Rm(t) are shown.

4.2 Illustrative example
Consider non-minimum phase and non-detectable sys-

tem control system:

ẋ1(t) = −x1(t) + x2(t) + u(t),
ẋ2(t) = −x2(t) + x4(t) + z(t),
ẋ3(t) = x3(t) + x4(t) + d(t),
ẋ4(t) = −x4(t) + d(t),
y1(t) = x1(t), y2(t) = x4(t).

(20)

The system is described by the following matrices:

A =


−1 1 0 0
0 −1 0 1
0 0 1 1
0 0 0 −1

 , B =


1
0
0
0

 ,

H =

(
1 0 0 0
0 0 0 1

)
, Z =


0
1
0
0

 , D =


0
0
1
1

 .

It can be shown that the system is not minimum phase
and detectable. Really, Rozenbrock matrix R(s) for sys-
tem (20) is given by

R(s) =

(
sI −A −[D Z]

C 0

)

=


s+ 1 −1 0 0 0 0
0 s+ 1 0 −1 0 −1
0 0 s− 1 −1 −1 0
0 −1 0 s+ 1 −1 0
1 0 0 0 0 0
0 0 0 1 0 0

 .

Since rank(R(s)) = 5 under s = 1, then s = 1
is invariant zero of (A, [D Z], C), therefore the system
is no minimum phase. Besides, one can shown that
Ker(V (3)) = (0 0 1 0)T and the unobservable part
of the system presented by x3 is unstable, therefore the
system is non-detectable. Then the methods suggested
in [Tan and Edwards(2003); Wang et al.(2017)] cannot
be used in this case but SMO can be designed by our
method.

Clearly, Im(Z) ̸⊆ Ker(V (n)), rz = 2, y∗ = y1, and
R∗ = (1 0). The solution of (7) is G∗1 = (−2 0) and
G∗2 = (−1 1); then

Φ1 = (1 0 0 0), Φ2 = (1 1 0 0),

Z∗ =

(
0
1

)
, B∗ =

(
1
1

)
.

Thus, the model (8) is of the form

ẋ∗1(t) = x∗2(t)− 2y1(t) + u(t),
ẋ∗2(t) = −y1(t) + y2(t) + u(t) + z(t),
y∗(t) = x∗1(t) = y1(t),
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Figure 3. Behavior of step-shaped function z(t).

Figure 4. Behavior of fault estimation error ∆(t) = ẑ(t)− z(t).

where x∗1 = x1 and x∗2 = x1 + x2.
One chooses λ1 = −1 and λ2 = −2 as eigenvalues

of the matrix A∗∗ and obtains l1 = 3, L2 = 2; SMO is
described by equations

˙̂x∗1(t) = x̂∗2(t)− 2y1(t) + u(t)− k1v(t)− 3e1(t),
˙̂x∗2(t) = −y1(t) + y2(t) + u(t)− k2v(t)− 2e1(t),
ŷ∗(t) = x̂∗1(t),

(21)
e1(t) = ŷ∗(t)−y1(t), v(t) = sign(e1(t)). The function
z(t) is estimated as ẑ(t) = k2veq.

For simulation, consider system (20) and the observer
(21) with u(t) = sin(t), d(t) = 20sin(2t), k1 = 2,
k2 = 3, β = 1.5, and |e1(0)| = 0. Simulation results
are shown in Figs. 3 and 4; graphics of the function
z(t), its estimation ẑ(t) and the estimation error ∆(t) =
ẑ(t)− z(t) for step-shaped type of the function z(t) are
presented.

5 Conclusion
The problem of unknown input estimation for systems

which do not satisfy the matching, minimum phase, and
detectability conditions is studied. The suggested meth-
ods is based on the reduced order model of the original
system insensitive to the disturbance. The practical and
illustrative examples show the effectiveness of the pro-
posed method. Future work is developing algorithms for
unknown input and parameter estimation for nonlinear
systems such that considered in [Furtat et al.(2022)] to
compare the results with [Furtat and Orlov(2020)].
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