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Abstract
This is an attempt to develop ideas about a possi-

ble Relativistic Quantum Control Theory that could be
valuable to enhance the performance of particle detec-
tion and collision. In order to achieve this goal, a pre-
cise formulation of Optimal Control Systems in terms
of the Classical Field Theory is proposed in such a
way that the resulting dynamics, as well the constraint
relations that systems should obey, must be invariant
to Lorentz transformations, i.e., must be expressed in
a covariant manner. A quantization procedure of the
whole Optimal Control System is carried out, which
has been made Lorentz-invariant. The resulting Op-
timal Control System could be studied and applied to
problems involving quantum particles in the relativis-
tic regime allowing for minimizing times, average dis-
tances and/or energy costs of the processes.
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1 Introduction
Along the 20th century, Physics and Cybernetics ex-

perienced a strong development giving decisive contri-
butions to modern science in spite of the weak inter-
actions between them. This fact, may be is due to the
different approaches with Physics being a descriptive
science and Cybernetics, a prescriptive one [Fradkov,
2007].
However, it can not be denied that automatic sys-

tems play an important role concerning physical exper-
iments, but in most cases, the control theory is consid-
ered to be secondary with no effective contributions to
explain physical phenomena [Fradkov, 2007].
In the late 1980s, with the development of ultra fast

lasers, methods based on optimal control were devel-
oped to control molecular systems [Krempl et. al,
1992]. The interest in this kind of problem increased in
the early 1990s and the concept of classical and quan-
tum approaches were developed [Dahleh et. al, 1996;

Brumer and Shapiro, 2003; Gonzalez-Henao et. al,
2015].
Additionally, researches on quantum computation

hardware can be implemented by manipulating the
quantum state of trapped ions via laser or electrical
fields [Hangan et. al, 2004]. Consequently, it seems
to be important to formulate optimal control strategies
to quantum particles in the relativistic regime allowing,
for example, for minimizing times, average distances
and/or energy costs of the processes meant to be con-
trolled in such a physical domain.
Besides, a Relativistic Quantum Control Theory could

be valuable to enhance the performance of particles de-
tection and collision processes, as well in the purpose
of promoting controlled annihilation of particles and
antiparticles. Here some ideas about the Relativistic
Quantum Control Theory are developed, starting with
Optimal Control basic points.
The optimal control problem is formulated by using

a classical field theory approach. An expression of a
functional is obtained, in a covariant notation. The next
step is the quantization of the covariant optimal control
system by using canonical procedures.
Next, the main section of the paper is presented with a

possible formulation of optimal control theory in Quan-
tum Electrodynamics (QED). A few remarks and con-
clusions complete the work.

2 General Ideas About Optimal Control
The general optimal control problem, object of the

conventional Control Theory, is to look for an ad-
missible control u∗(t) that causes the dynamical sys-
tem of interest to follow an admissible trajectory x∗(t)
that minimizes a certain performance or cost functional
measure.
Consequently, this problem can be formulated as fol-

lows: given a set X of state vector-valued functions
x(t), with t ∈ ℜ : [to, tf ], and a set U of control func-
tions u(t) : ℜ → ℜm, find the functions x ∈ X and
u ∈ U for the dynamical system ẋ = f(x, u(t)), with
f being a smooth vector field, which minimizes a cost
functional J : XxU → ℜ given by:
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J(u) = h(x(tf ), tf ) +∫ tf

t0

g(x(t), u(t), t)dt, (1)

with h and g being smooth functions depending on the
variables x(t), u(t) and on the value of x(tf ), such that
h : ℜnxℜ → ℜ and g : ℜnxℜmXℜ → ℜ, which
are judiciously chosen regarding the particular optimal
control problem to be solved.
Expression (1) defines the so-called “Bolza’s prob-

lem” in Optimal Control Theory, which comprises
the two particular cases, namely “Mayer’s prob-
lem” and “Lagrange’s problem”, corresponding to set
g(x(t), u(t)) or h(x(tf )) to zero, respectively [Kirkov,
1970; Sieniutycz, 2014].
Concerning to non relativistic quantum evolution, ex-

amples of Mayer’s problems are minimum time prob-
lems, in which the control goal is to drive and initial
state to a given target state in minimum time.
Lagrange’s problem describes a situation in which the

control cost accumulates with time. This is the case,
for example, of minimizing the energy used during the
control action and/or the average distance of the trajec-
tory in a quantum evolution process, starting in a given
state.
Finally, Bolza’s problem, being a combination of

both, arises when there is a cumulative cost which in-
creases during the control action, but special emphasis
is placed on the situation at the final time in a quantum
dynamics evolution.
To generalize this ideas to relativistic quantum sys-

tems, the time must be included as a state coordinate
and the formulation must be modified with new defi-
nitions for the functionals to be optimized, regarding
to the electric and magnetic fields operating the control
actions.

3 Optimal Control: A Classical Field Theory ap-
proach

Expression (1) can be written in the framework of
Classical Field Theory as:

I(u(xµ)) = h(Φα(B)) +∫ B

A

d4xg(Φα(xµ), u(xµ), xµ) , (2)

where xµ = (x0, x1, x2, x3) = (ct, x, y, z) is
the space-time covariant four-vector, defined in the
Minkowski space; A and B the initial and the final
event in the four-dimensional space-time; h(Φα(B))
the smooth Mayer function evaluated on Φα(B), i.e.,
the value assumed by the classical field of interest in
the space-time coordinates given by B.

Here, the control action u(xµ) depends explicitly on
the space-time coordinates and the Lagrange function
g(Φα(xµ), u(xµ), xµ) depends on Φα(xµ), (xµ), and
u(xµ). I(u(xµ)) represents the cost functional to be
minimized [Campos et. al, 2010].
Expression (2) is composed of a scalar function and

a volumetric integral in the space-time of other scalar
quantities and, consequently, is Lorentz-invariant by
Jacobian transformations of coordinates. The cost
functional is thus invariant by Lorentz transformations.
It is worth observing that the functional proposed

presents certain generality concerning the Classical
Field Theory, so that field Φα can be taken either as the
real or complex scalar field, Dirac field, or the electro-
magnetic field, adequately expressed in their covariant
form [Barut, 1980].
As an example and to clarify some points about opti-

mal control in the classical field theory context, some
facts about the covariant formulation of the electromag-
netic field are presented. In order to do this, a notation
is established:

Aµ = (ϕ,A) = (A0, A1, A2, A3): electromag-
netic four potential;
Fµν = ∂µAν − ∂νAµ: electromagnetic field ten-
sor,

with Fµν = −Fνµ, i.e., Fµν is antisymmetric with rank
2.
Electric field E and magnetic field B are related to

potentials A and Φ as:

E = −∂A

∂t
−∇Φ;

B = ∇xA,

with the covariant gauge condition: A
′

µ = Aµ + ∂µΛ,,
which accounts for the invariance of Aµ, with Λ being a

smooth scalar function, and ∂µ =
∂

∂xµ
corresponding

to the covariant derivative.
The Lagrangian Density of the electromagnetic field

in the presence of charged particles and currents is
given by:

L = −FµνF
µν

4
− 1

c
JµAµ, (3)

where Jµ is the current four-vector, with Jµ =
(cρ, J1, J2, J3), which satisfies the covariant continu-
ity equation ∂µJ

µ = 0.
Therefore, considering equation (3), the electromag-

netic action is expressed as:

S(Aµ, ∂µA
µ) =

∫ b

a

Ld4x =

−
∫ b

a

(
FµνF

µν

4
+

1

c
JµAµ) d

4x. (4)
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Consequently, imposing the first variation of the ac-
tion equal to zero, (δS = 0), the dynamic equa-
tion of the electromagnetic field becomes [Barut, 1980;
Greiner and Reinhart, 1996]:

∂µF
µα =

Jα

4π
, (5)

that represents Maxwell’s non-homogeneous equations
in Gaussian unities.
Here, the classical field Φα corresponds to Aµ, so

that action functional S depends on this field and on
its space-time derivative ∂µA

µ [Jackson, 1999].
Thus, in order to define a suitable control action in

terms of a four-vector uµ it is possible to set the
time-component of the four-potential Aµ as the time-
dependent control action in direct analogy with the con-
ventional u(t) found in the standard Optimal Control
Theory.
Therefore the electric potential, once made time-

dependent, could work as control action over the sys-
tem dynamics. Considering the same type of argumen-
tation, the cost functional (2) can be rewritten as [Cam-
pos et. al, 2010]:

I(Φ(x0)) = h(Aµ(B)) +∫ B

A

g(Aµ,Φ(x0), xµ) d
4x. (6)

4 Quantization of Covariant Optimal Control Sys-
tems

In the context of the Non-Relativistic Quantum Me-
chanics, Canonical Quantization can be regarded as the
process that associates Classical Mechanics quantities
to Hermitian operators in Quantum Mechanics. These
operators act on the state vectors defined in the Hilbert
Space associated to a given quantum system. Such a
process allows replacing the classical description by
the quantum one.
Here, this procedure is applied to a simple example,

deriving the quantum Hamiltonian from the classical
counterpart allowing the construction of a functional to
be applied in quantum optimal control.
Considering the harmonic oscillator, i.e., a system

with a Lagrangian L, which classical Hamiltonian ex-
pressed in the conjugated variables p and q is given by:
H(p, q) = p2

2m + 1
2mω2q2.

The corresponding quantum Hamiltonian is given by:
Ĥ(p, q) = p̂2

2m+ 1
2mω2x̂2, with x̂ and p̂ being the quan-

tum operators position and momentum, respectively.
As known from Quantum Mechanics, these opera-

tors must obey the canonical commutation relation:
[x̂i, p̂j ] = i~δi,j , where δi,j is the Kronecker symbol.
In the context of the Quantum Field Theory, it is nec-

essary to define the canonical momentum density con-

jugated to a field Φ(x, t) as:

π(x, t) =
∂L

∂Φ̇(x, t)
= ∂0Φ(x, t), (7)

where L stands for the covariant classical Lagrangian,
and with the canonical commutation given by:

[π(x, t),Φ(x
′
, t)] = [∂0(x, t),

Φ(x
′
, t)] = iδD(x− x

′
), (8)

where δD(x − x
′
) is the D-dimensional Dirac’s func-

tion with respect to two points in the four-dimensional
space-time [Greiner and Reinhart, 1996].
Regarding the physical quantities defined and their

physical meaning, it must be stressed that position is
not an operator here, but rather an argument of quan-
tum field Φ, that plays the role of the position operator
from Quantum Mechanics.
Therefore, a generic Bolza’s cost functional for a field
Φ, by means of the canonical quantization procedure,
can be written as [Dahleh et. al, 1996]:

I(u(x, t)) = h(Φ(xF, tF )) +∫ B

A

dx4g(Φ(x, t), u(x, t), (x, t)), (9)

considering that the field Φ(x, t) obeys the canonical
commutation relation (8). Moreover, the control action
is provided by an external field, imposed by an external
source.

5 Optimal Control in Quantum Electrodynamics
Quantum Electrodynamics (QED) is an Abelian gauge

theory with symmetry group U(1), that is, the multi-
plicative group of all complex numbers with absolute
value 1, i.e., the unit circle in the complex plane.
To study the control of the charged spin-1/2 fields

(electron-positron field) it must be considered that the
gauge field that mediates their interaction is the elec-
tromagnetic field. The QED Lagrangian density for a
spin-1/2 field interacting with the electromagnetic field
is given, in natural unities (~ = 1; c = 1), by the real
part of:

L = Ψ̄(i, γµDµ −m)Ψ

−1

4
FµνF

µν . (10)

In equation (10), γµ is a Dirac matrix, Ψ is a bispinor
field of spin-1/2 particle, and Ψ̄ = Ψ†γ0 is the Dirac
adjoint.
Additionally, Dµ = ∂µ + ieAµ + ieBµ is the gauge

covariant derivative, e is the electric charge of the
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bispinor field, Aµ is the covariant four-potential of the
electromagnetic field generated by the electron itself,
Bµ is the external field imposed by the external source,
and Fµν = ∂µAν − ∂νAµ is the electromagnetic field
tensor.
Applying the expression of the gauge covariant

derivative Dµ to the Lagrangian (10):

L = iΨ̄γµΨ− eΨ̄γµ(A
µ

+Bµ)Ψ−mΨ̄Ψ− 1

4
FµνF

µν . (11)

Expression (11) allows inserting Ł in the Lagrange
equation of motion for a covariant field:

∂µ[
∂L

∂(∂µΨ)
]− ∂L

∂Ψ
= 0, (12)

allowing the derivation of the field equations for
QED. Considering the calculations [Butkovskiy and
Samoilenko, 1990; D’Alessandro, 2003]:

∂µ[
∂Ł

∂(∂µΨ) ] = ∂µ(iΨ̄γµ);

∂Ł
∂Ψ = −eΨ̄γµ(A

µ +Bµ)Ψ−mΨ̄Ψ,

equation (12) results:

i∂µΨ̄γµ −mΨ̄ =

eΨ̄γµ(Aµ +Bµ) = 0. (13)

It can be observed that the left hand side of (13) is like
the Dirac equation for a free particle, and the right hand
side stands for the interaction with the electromagnetic
field.
Consequently, equations (12) and (13) are the motion

equations of the field Ψ̄ and Ψ, respectively.
The equation for field Aµ can be obtained by consid-

ering:

∂ν [
∂Ł

∂(∂νAµ) ] = ∂ν(∂
µAν − ∂νAµ);

∂Ł
∂Aµ

= −eΨ̄γµΨ,

in the Lagrange equation for Amu, obtaining:

∂νF
νµ = eΨ̄γµΨ. (14)

Finally, imposing the Lorentz gauge condition, results:

∂µ∂mu = eΨ̄γµΨ. (15)

Considering the points explained, a cost functional for
Optimal Control in the context of Quantum Electrody-
namics for the Bolza type problem can be [Butkovskiy
and Samoilenko, 1990; D’Alessandro, 2003]:

I(Bµ(x, t) = h(Ψ(xF , tF ) +∫ B

A

d4xg(Ψ(x, t), Bµ(x, t), (x, t)), (16)

where h depends on field Ψ (electron-positron field)
final state, as well on the final state itself. Function g
has dependence on the field (Ψ), on the state (space-
time coordinates) and on the external field Bµ due to
an external source.
Consequently, expression (16) can be used as a gen-

eral expression of a function to be minimized when
a control action must be designed over a quantum
electro-dynamical system. As the control is repre-
sented by the external field Bµ, the current distribution
that generates it can be correctly built.

6 Conclusions
Some ideas about how to formulate an Optimal Quan-

tum Control Theory starting with ideas about optimal
control for classical systems is observed herein. By us-
ing Lorentz gauge condition for covariant variables, a
function is proposed representing the quantum Bolza
type problem in the context of quantum electrodynam-
ics.
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