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Abstract 
In the paper, a dynamic model of the game of two 
coalitions in conditions of uncertainty is constructed. 
As a solution of the game the "coalitional guaranteed 
equilibrium" is suggested. The performing of the 
equalities of collection rationality gives maximality of 
solution by Pareto (under suggestion of well-
disposeness of players inside each coalition). The two-
coalitional game in uncertainty conditions is 
transformed into the special three-person game 
(without uncertainty). It is proved that Pareto-Slater 
equilibrium of the new game is the coalitional 
guaranteed equilibrium in the initial game. For linear-
quadratic game the sufficient conditions of optimality 
are obtained. 
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1 Introduction 
  A variety of interacting manufacturing, computer and 
other systems forms a network structure. Each system 
can be regarded as an active component (agent). To 
achieve their goals some agents can create a new 
structure, which is called a coalition. Formation of 
coalitions is a way to configure virtual organizations 
of agents with coordinated strategies depending on 
dynamically changing conditions [Lewis, Zhang, 
Hengster-Movric and Das, 2014; Li, Duan, 2014]. 
  The game approach [Engwerda, 2005; Gu, 2008] is 
useful for studying the dynamic interaction between 
coalitions. It is concerned with the possibility of 
adequate description by the game theory facilities the 
complex controlled systems and making in them 
optimum decisions. Whereas in an optimization model 
one is interested in location the best decision, that 
minimizes or maximizes a given objective function, in 
a game problem the objective is a function of 
arguments that can be chosen independently by 
multiple decision makers, possibly with conflicting 
individual objectives. 

  Coalitional game theory is a branch of game theory 
dealing with cooperative behavior. In a coalitional 
game, the key idea is to study the formation of 
cooperative groups, i.e., coalitions among a number of 
players. By cooperating, the players can strengthen 
their position in this particular game. In this context, 
coalitional game theory proves to be a powerful tool 
for modelling cooperative behavior in many 
networking applications [Saad, Han, Debbah, 
Hjorungnes and Basar, 2009; Niyato, Wang, Saad and 
Hjorungnes, 2010; Han, Niyato, Saad, Basar and 
Hjorungnes, 2011; Li, Xu, Wang and Guizani, 2011]. 
  In this article, a differential game of two coalitions 
(each consisting of two players) is considered. 
Relations between the players inside a coalition are 
considered to be friendly and are built on the basis of 
the maximum by Pareto. Therefore in appropriate 
mathematical models a construction of both individual 
and collective prizes is possible. A collective prize is 
created on the basis of the Pareto principle. 
  It is assumed that the interaction between the 
coalitions may be of different nature, even 
antagonistic. Therefore it is handy to use a guaranteed 
approach based on the concept of threats and 
counterthreats. 
  Decision making by the members of the coalitions 
occurs in conditions of uncertainty (for example, 
errors in measurements, inexact definition of 
parameters, revolting influence of external forces, 
interference in the information transfer process etc.). 
As a "special kind" of uncertainty, the "information 
uncertainty" concerning with full or partial absence of 
information about the following "move" of the 
coalition-opponent can be selected. So each coalition 
has to construct its decision based on some 
predetermined rule. This may be given, f.i., by using 
the Slater principle. 
  As a solution of the game of two coalitions in 
conditions of uncertainty considered in the article the 
coalitional guaranteed equilibrium is suggested. Its 



 
 

properties are investigated, for linear-quadratic game 
the sufficient conditions of optimality are obtained. 
 
2 Game theoretic problem 
  Let us consider a 4-person differential game in 
uncertainty conditions 
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4 Transformation of the two-coalitional game into 
the 3-person one 
  Let us consider an auxiliary non-coalition positional 
3-person game (the uncertainty performs the role of 
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5 Sufficient optimality conditions for the linear-
quadratic game 
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and the summary prizes of the players inside each 
coalition are 
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where functions  are defined earlier. i
  Remark 2. For the individual prizes of players 
(guarantees) to be found it is necessary to make 
appropriate functions , , to substitute in 

them the solutions indicated in the theorem 2, to 
equate them to zero and to integrate. 
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6 Conclusion 

  This paper has provided an approach to solving the 
network problems by the applicability of coalitional 
game theory. The principle of threats and couterthreats 
simulates potential conflict of interests of agents 
modeled as coalitions of players. In a network wherein 
informational exchange and conflicts are possible, 
either through a central controller or among agents 
themselves, the concept of coordinated equilibrium 
arises. We have suggested the coalitional guaranteed 
equilibrium. The results confirm the apparent utility of 
this equilibrium for solving the network problems: 
consideration the coalitions, rather than individual 
players, allows simulating groups of interacting agents 
in the network. The results show also that coalitional 
guaranteed equilibrium is preferably when compared 
to non-cooperative schemes. Sufficient conditions of 
optimality obtained in the paper allow reaching a 
consensus between coalitions. 
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