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Abstract
The paper presents the results of qualitative analysis

[Poincare A., 1947] of conservative systems. The mod-
ified Routh-Lyapunov technique is used as a tool for
their study. Special attention is paid to the algorithms
of finding and the analysis of invariant manifolds on
which the elements of algebra of problem’s first inte-
grals assume a stationary value.
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1 Introduction
We present an approach to the analysis of dynamic

systems having smooth first integrals. Our approach is
based on the Routh-Lyapunov method for the analysis
of such systems and computer algebra methods.
Using the Gröbner bases technique, we find station-

ary sets of differential equations of the systems, i.e.
the sets of any finite dimension, for which necessary
conditions of an extremum of problem’s first integrals
are satisfied. Zero dimensional sets are known as sta-
tionary solutions, while positive dimensional sets are
called invariant manifolds (IMs). Further, we investi-
gate properties of these sets (stability in the sense of
Lyapunov, bifurcations and etc.).
When bifurcations of the stationary sets are analyzed,

the Gröbner bases method is also applied for finding
the sets passing through bifurcation points. To in-
vestigate the stability of the stationary sets, we use
the Mathematica package STABILITY [Banshchikov,
Burlakova, Irtegov, and Titorenko, 2011] developed by
the authors together with their colleagues. The algo-
rithms of the package are based on the Lyapunov sta-
bility theorems for linear approximation and the 2nd
Lyapunov method.
In this paper, our approach is demonstrated by the

study of two problems: dynamic systems described
by Euler’s equations with first integrals, and the prob-
lem of motion of a rigid body in double force field.
Similar problems arise, for example, in space dynam-
ics [Sarychev and Gutnik , 2015], quantum mechanics
[Adler, Marikhin, and Shabat, 2012], [Smirnov, 2008].

2 The Family of Euler’s Equations
The differential equations of the problem can be writ-

ten as [Borisov, Mamaev, and Sokolov, 2001]:

ṡ1=α(r1s2−αr2r3)−(βr3−s2)(βr2+s3),
ṡ2=β (βr1r3−r2s1)+(αr3−s1) (αr1+s3),
ṡ3 = (βr1 − αr2)s3,
ṙ1 = r2(αr1 + βr2 + 2s3)− r3s2

−x
(
(α2 + β2)r3s2 + βs23

)
,

ṙ2 = r3s1 − r1(αr1 + βr2 + 2s3)
+x

(
(α2 + β2)r3s1 + αs23

)
,

ṙ3 = r1s2 − r2s1 + x(βs1 − αs2)s3.


(1)

Here ri, si are the phase variables, α, β, are some con-
stants, x is the parameter of the family.
Equations (1) can be interpreted as the Kirchhoff

equations for the motion of a rigid body in ideal fluid
for x = 0, as the Poincaré-Zhukowskii equations for a
rigid body with an ellipsoidal cavity filled with a liq-
uid for x = 1, and as the Euler equations on the Lie
algebras so(4) and so(3, 1) for x > 0 and x < 0, re-
spectively.
Equations (1) have the following first integrals:

2H = s21 + s22 + 2(αr1 + βr2)s3 + 2s23
−(α2 + β2)r23 = 2h,
V1 = r1s1 + r2s2 + r3s3 = c1,
V2 = r21 + r22 + r23 + x(s21 + s22 + s23) = c2,
V3 = x(βs1 − αs2)

2s23 + (r1s1 + r2s2)
(
(α2

+β2)(r1s1 + r2s2) + 2(αs1 + βs2)s3
)

+s23
(
s21 + s22 + (αr1 + βr2 + s3)

2
)
= c3.


(2)
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The problem is to find the stationary sets (both zero
and non-zero dimension) for equations (1) and to in-
vestigate their stability.

2.1 Finding Stationary Sets

The method of obtaining the stationary sets for equa-
tions (1), which is used in this work, reduces this prob-
lem to solving a system of polynomial algebraic equa-
tions with parameters. In order to find the desired so-
lutions, we construct a linear combination of first inte-
grals (2)

2K = 2λ0H − 2λ1V1 − λ2V2 − λ3V3 (λi = const)
(3)

and write down the conditions of stationarity for the
integral K with respect to the phase variables ri, si:

∂K/∂s1 = s1λ0 − r1λ1 − xs1λ2−((
α2 + β2

)
r1 (r1s1 + r2s2)

+ (αr2s2 + r1 (2αs1 + βs2)) s3+((
1 + xβ2

)
s1 − xαβs2

)
s23
)
λ3 = 0,

∂K/∂s2 = s2λ0 − r2λ1 − xs2λ2−((
α2 + β2

)
r2 (r1s1 + r2s2)

+ (βr1s1 + r2 (αs1 + 2βs2)) s3+
(s2 + xα (−βs1 + αs2)) s

2
3

)
λ3 = 0,

∂K/∂s3 = (αr1 + βr2 + 2s3)λ0 − r3λ1−
xs3λ2 − ((αs1 + βs2) (r1s1 + r2s2)+(
(αr1 + βr2)

2 +
(
1 + xβ2

)
s21 − 2xαβs1s2

+
(
1 + xα2

)
s22
)
s3+

3 (αr1 + βr2) s
2
3 + 2s33

)
λ3 = 0,

∂K/∂r1 = αs3λ0 − s1λ1 − r1λ2−((
α2 + β2

)
s1 (r1s1 + r2s2) + s1 (αs1

+βs2) s3+α (αr1+βr2) s
2
3+αs33

)
λ3 = 0,

∂K/∂r2 = βs3λ0 − s2λ1 − r2λ2−((
α2+β2

)
s2 (r1s1+r2s2) + s2 (αs1

+βs2)s3 + β (αr1 + βr2) s
2
3 + βs33

)
λ3 = 0,

∂K/∂r3=
(
α2+β2

)
r3λ0+s3λ1 + r3λ2 = 0



(4)

These equations allow one to determine both the sta-
tionary solutions and the IMs for equations (1).

2.2 Solving Stationary Equations with Respect to
Phase Variables

For equations (4), we find both general solutions (ex-
isting without any restrictions on the parameters of the
problem) and particular solutions (existing under some
conditions on the parameters). For this purpose, we
construct a Gröbner basis for system (4) with respect
to the phase variables. After a factorization the basis

has the form:

(
a1s1 + a2s2 + a3s3

)(
a4 + a5s

2
1 + a6s

2
2

+a7s1s3 + a8s2s3 + a9s
2
3

)
= 0,

s3
(
a10s1 + a11s3

)(
a12 + a13s

2
1 + a14s

2
2

+a15s1s3 + a16s2s3 + a17s
2
3

)
= 0,

s3 f1(s1, s2, s3) = 0, f2(s1, s2, s3) = 0,
f3(s1, s2, s3) = 0, s3 f4(s1, s2, s3) = 0,
f5(s1, s2, s3) = 0, s3 f6(s1, s2, s3) = 0,
a18r2 + f7(s1, s2, s3) = 0,
a19r1 + f8(s1, s2, s3) = 0,
a20r3 + a21s3 = 0.



(5)

Here fi are the polynomials of the 4th-6th degrees, aj
are the polynomials of λ0, λ1, λ2, λ3, x, α, β.
System (5) is decomposed into several subsystems.

We have computed a lexicographic Gröbner basis for
each of the subsystems. Below, some of these bases
are represented.

(α2 + β2)2λ3χ r42 − 2α2χκ r22
+α4κ

(
λ2
1 + λ2κ

)
= 0,

αr1 + βr2 = 0, r3 = 0, s3 = 0,
α3λ1κ s1 − α2βλ2κ r2 + βχ r32 = 0,
α2λ1 κs2 + α2λ2κ r2 − χ r32 = 0,
where κ = λ0 − xλ2, χ = (α2 + β2)2λ2λ3.


(6)

b30s
4
3s

4
1+(b31s

2
3+b35)s

3
3s

3
1 + (b32s

4
3 + b22s

2
3

+b10)s
2
3s

2
1+(b33s

6
3+b21s

4
3+b9s

2
3 + b16)s3s1

+b34s
8
3 + b20s

6
3 + b5s

4
3 + b7s

2
3 + b14 = 0,

(b28s
2
3+b4)s3s2+b37s

3
3s

3
1+(b38s

2
3+b41)s

2
3s

2
1

+(b39s
4
3 + b19s

2
3 + b12)s3s1 + b40s

6
3

+b23s
4
3 + b1s

2
3 + b17 = 0,

b45s3r2 + b42s
2
3s

2
1 + s3(b43s

2
3 + b46)s1

+b44s
4
3 + b29s

2
3 + b13 = 0,

s3(b27s
2
3 + b3)r1 + b36s

3
3s

3
1

+(b25s
2
3 + b18)s

2
3s

2
1 + (b24s

4
3 + b2s

2
3

+b11)s3s1 + b26s
6
3 + b6s

4
3+b8s

2
3+b15 = 0,

b47r3 + b48s3 = 0,



(7)

where bi are polynomials of λj , x, α, β.
We can obtain the information on dimension of the

solutions and find the solutions directly from the above
bases.
System (6) has the finite number of solutions: 4 gen-

eral solutions. Below, some of them are represented.

r1 = ±β
√

(ρ+λ1

√
d)/λ3

α2+β2 ,

r2 = ∓α
√

(ρ+λ1

√
d)/λ3

α2+β2 , r3 = 0,

s1 = ∓β
√

(ρ+λ1

√
d)/(d λ3)

(α2+β2) ,

s2 = ±α
√

(ρ+λ1

√
d)/(d λ3)

(α2+β2) , s3 = 0;

where ρ = λ0 − xλ2, d = −ρ/λ2.


(8)
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These are the families of stationary solutions of equa-
tions (1), which are parameterized by λi.
System (7) has infinitely many solutions. For finding

the general solutions of equations (7), it is necessary
to solve an equation of 4th degree. In this case, the
solutions will be bulky. Here, we restrict ourselves the
particular solutions of this system, which have been ob-
tained for λ1 = 0. Below, some of these solutions are
represented.

r1 = (βσ + αϱ)ϱ/((α2 + β2)λ3s3),
r2 = −(ασ − βϱ)ϱ/((α2 + β2)λ3s3),
r3 = 0,
s1 = ±(ασ − βϱ)

√
λ2/((α

2 + β2)λ3s3),
s2 = ±(βσ + αϱ)

√
λ2/((α

2 + β2)λ3s3),

 (9)

where ϱ =
√

λ0 − λ2x− λ3s23, σ =√
(α2 + β2)xλ3s23 − ϱ2. Solutions (9) are the

families of one-dimensional IMs of equations (1).
Having eliminated the problem’s parameters and the

parameters λi from the expressions of stationary solu-
tions (8), we obtain four equations

r1 + s1 = 0, r2 + s2 = 0, r3 = 0, s3 = 0,

which determine the IM of system (1). The vector
field on this IM can be written as:

ṙ1 = r2(αr1 + r2), ṙ2 = −r1(αr1 + βr2).

The latter system obviously has the first integral:
W = r21 + r22.

Since the 2nd variation of the above integral is sign
definite, then the equilibrium position r1 = r2 = 0 of
the system is stable.

2.3 Solving Stationary Equations with Respect to
Some Part of Phase Variables and Parameters

Let us consider another technique for finding the so-
lutions of equations (4). Using this technique, it is
possible to obtain IMs together with the first integrals
of differential equations on these IMs [Irtegov and
Titorenko, 2009]. The latter allows us to set the prob-
lem for finding and the analysis of the stationary sets
of these differential equations. Following this tech-
nique, we have computed a lexicographical Gröbner
basis for equations (4) with respect to the variables
r3, s2, λ1, λ2, λ0. As a result, we have obtained a sys-
tem which is decomposed into two subsystems:

λ0 − λ3 (αr1 + βr2 + s3) s3 = 0, λ2 = 0,
αλ1 + (α2 + β2)λ3 (αr1s1 + βr2s1
+s1s3) = 0,
αs2 − βs1 = 0, αr3 − s1 = 0.

 (10)

b12λ
2
0 + b2λ0 + b1 = 0,

b15λ2 + b7λ0 + b4 = 0,
b11λ1 + b6λ0 + b8 = 0,
b10s2 + b14λ0 + b5 = 0,
b9r3 + b13λ0 + b3 = 0,

 (11)

where bi are polynomials of s1, s3, r1, r2, λ3, x, α, β.
It is easy to see that system (10) has one solution, and

system (11) has two solutions.
The latter two expressions of (10) determine the IM of

equations (1).
The differential equations of vector field on this IM

are given by:

ṡ1 = (βr1 − αr2)s1, ṡ3 = (βr1 − αr2)s3,

ṙ1 = αr1r2 + 2r2s3 − βs21(β
2x+ 1)/α2

+β(r22 − (s21 + s23)x),

ṙ2 = −αr21 − r1(βr2 + 2s3) + α(s21 + s23)x
+s21(β

2x+ 1)/α.


(12)

The first three expressions of (10) are the first integrals
of equations (12).
The general solutions of system (11) are bulky, here

we represent the particular solutions obtained when
s3 = 0:

r3 =
σ s1

r2(αr2 − βr1)
, s2 = −r1s1

r2
, s3 = 0,

λ0 = 0, λ1 = 0, λ2 = 0;

r3 = 0, s2 =
r2s1
r1

, s3 = 0, λ0 =
λ3σ s21
r21

,

λ1 =
λ3σs1(s

2
1 − (α2 + β2)(r21 − s21x))

r1(r21 − s21x)
,

λ2 = − λ3σ s41
r41 − r21s

2
1x

, (where σ = r21 + r22).

The first three expressions of each of the above solu-
tions define the IMs of equations (1), and the latter
three expressions of each of the solutions are the first
integrals of differential equations on these IMs.

2.4 Parametric Analysis of Stationary Sets
Using the Gröbner bases technique, we have found a

series of the solutions of equations (4) under some con-
ditions imposed on the parameters.
For the case λ0 = xλ2, λ1 = 0, x = −1/(α2 + β2),

the solution

r1 = − αs3
α2 + β2

, r2 = − βs3
α2 + β2

, r3 = 0 (13)

has been obtained. It represents the 3-dimensional IM
of equations (1).
For the case λ0 = 0, λ1 = 0, λ2 = 0, the solution

βr2 + αr1 + s3 = 0, βs1 − αs2 = 0

has been found. It represents the 4-dimensional IM of
equations (1).
It is easily verified that the above solutions pass

through the zero solution. The elements of the fami-
lies of one-dimensional IMs (9) also pass through the
zero solution when λ0 = λ1 = λ2 = 0. So, the zero
solution is a bifurcation point.
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2.4.1 Stability of Stationary Sets Let us investi-
gate the stability of both the zero solution and the IM
passing through this solution by the Routh-Lyapunov
method [Lyapunov, 1954]. In simple cases, the prob-
lem is reduced to verifying the sign-definiteness condi-
tions for the 2nd variation of integral K (3) obtained in
the neighbourhood of the solution under study.
The 2nd variation of the integral K in the neighbour-

hood of the zero solution can be written as:

2 δ2K=−λ2y
2
1 − λ2y

2
2−((α2+β2)λ0

+λ2)y
2
3 − 2λ1y1y4 + (λ0 − λ2x)y

2
4

−2λ1y2y5 + (λ0 − λ2x)y
2
5 + 2αλ0y1y6

+2βλ0y2y6 − 2λ1y3y6 + (2λ0 − λ2x)y
2
6 .

 (14)

Here yi are the deviations of the perturbed solution
from the unperturbed one.
Using Sylvester’s criterion, we can write down the

conditions for the positive definiteness of the quadratic
form δ2K as

λ2 < 0, D1 < 0, (α2 + β2)λ2
0(λ0 − xλ2)

+D1(2λ0 − xλ2) < 0,
(D1 +D2λ0)(λ

2
1 +D2(λ0 − xλ2)) > 0,

 (15)

where D1=λ2
1+λ2(λ0−xλ2), D2=(α2+β2)λ0+λ2.

Inequalities (15) are compatible under the following
constraints imposed on the parameters λi, α, β, x:

α ̸= 0 and β ̸= 0 and λ2 < 0 and
((

λ0 > 0

andλ0 +
λ2

α2+β2 < 0 and x >
λ2
1+D2λ2

D2λ2

)
or

(
λ0 ≤ 0 and x >

λ2
1+(λ2+D2)λ0

λ2
2

))
.

 (16)

Conditions (16) are sufficient for the stability of the
zero solution.
Further, let us investigate the stability of IM (13).
The variation of the integral K̃ = 2λ0H − λ2V2 −
λ3V3 in the neighbourhood of this IM is:

2∆K̃ = −λ2y
2
2 − λ2y

2
3 − λ3(αy2 + βy3)

2s23

−(α2 + β2)λ3(s1y2 + s2y3)
2.

Here y1 = r1 + αs3/(α
2 + β2), y2 = r2 +

βs3/(α
2 + β2), y3 = r3 are the deviations of the per-

turbed solution from the unperturbed one.
Next, we introduce the following variables z1 =
(αy2 + βy3)s3, z2 = s1y2 + s2y3. In the vari-
ables y2, y3, z1, z2, the ∆K̃ has the form: 2∆K̃ =
−λ2

(
y22 + y23

)
− λ3

(
z21 + (α2 + β2)z22

)
.

The latter quadratic form is sign definite with respect
to the variables y2, y3, z1, z2 when the following con-
ditions α2 + β2 ̸= 0 and λ2 > 0, λ3 > 0 (or
λ2 < 0, λ3 < 0) hold. Hence, these conditions are
sufficient for the stability of IM (13) with respect to the
variables y2, y3.

2.5 Euler’s Equations at x = 0
Let us consider the problem of motion of a rigid body

in ideal fluid in case [Sokolov, 2001]. The differential
equations of motion

ṙ1 = (αr1 + βr2 + 2s3)r2 − r3s2,
ṙ2 = −(αr1 + βr2 + 2s3)r1 − r3s1,
ṙ3 = r1s2 − r2s1,
ṡ1 = −(βs3 + (α2 + β2)r2)r3
+(αr1 + βr2 + s3)s2,
ṡ2 = (αs3 + (α2 + β2)r1)r3
−(αr1 + βr2 + s3)s1,
ṡ3 = (βr1 − αr2)s3


(17)

admit the following first integrals:

2H = (s21 + s22 + 2s23) + 2(αr1 + βr2)s3
−(α2 + β2)r23 = 2h,
V1 = s1r1 + s2r2 + s3r3 = c1,
2V2 = r21 + r22 + r23 = c2,
2V3 = (r1s1 + r2s2)((α

2 + β2)(r1s1 + r2s2)
+2(αs1 + βs2)s3)
+s23(s

2
1 + s22 + (αr1 + βr2 + s3)

2) = 2c3.


(18)

For obtaining the stationary solutions and the IMs of
system (17), we construct a linear combination of prob-
lem’s first integrals (18):

K = λ0H − λ1V1 − λ2V2 − λ3V3. (19)

The necessary conditions for integral K (19) to
have an extremum with respect to the variables
s1, s2, s3, r1, r2, r3

∂K/∂s1 = 0, ∂K/∂s2 = 0, ∂K/∂s3 = 0,
∂K/∂r1 = 0, ∂K/∂r2 = 0, ∂K/∂r3 = 0.

}
(20)

define the families of stationary solutions and the fam-
ilies of IMs for differential equations (17).
The Gröbner basis technique is applied for finding so-

lutions of system (20). We have constructed a Gröbner
basis for this system with respect to λ0, λ1, λ2, r3, s3.
As a result, we have obtained the system:

λ2(pz
2λ2 + q2w2λ3) = 0, −q2wλ1

−z((βr1 + αr2)s
2
1 − 2(αr1 − βr2)s1s2

−(βr1 + αr2)s
2
2)λ2 −Gq2w2λ3=0,

−pq2λ0 − (β2r41 − 2αβr31r2 + r22(α
2r22

+s21)− 2r1(αβr
3
2 + r2s1s2) + r21(Gr22

+s22))λ2 = 0, −yzλ2 − q2ws3λ3 = 0,
−pz(αr1 + βr2)λ2 + qw2(Gr3 − αs1
−βs2)λ3 = 0.


(21)

Here the following denotations are used:

q = βs1 − αs2, p = r21 + r22, w = r1s1 + r2s2,
y = r1s2 − r2s1, z = βr1 − αr2, G = α2 + β2.
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Let us consider one family of the solutions of system
(21):

s3 = xy/pz, r3 = y/z, λ2 = −q2w2λ3/pz
2,

λ1 = −
(
w
(
−pq2 +Gy2 +Gpz2

)
λ3

)
/pz2,

λ0 = w2
(
y2 + pz2

)
λ3/p

2z2,


(22)

where λ3 is the family parameter.
The expressions for r3, s3 (22) define the IM of differ-

ential equations (17). The vector field on this IM has
the form:

ṙ1 = r2

(
2wy
pz + αr1 + βr2

)
− ys2

z ,

ṙ2 = −r1

(
2wy
pz + αr1 + βr2

)
+ ys1

z ,

ṡ1 = −y(wyβ+Gpzr2)+z(wy+pz(αr1+βr2))s2
pz2 ,

ṡ2 = y(wyα+Gpzr1)−z(wy+pz(αr1+βr2))s1
pz2 .


(23)

The expressions for λ0, λ1, λ2 (22) are the first inte-
grals of equations (23).
One can show that the following integrals of initial

differential equations (17)

λ̃0 =
(V1(HV1 ±Mλ3))

(V 2
1 − 4GV 2

2 )
,

λ̃1 =
(2GHV1V

2
2 ± (V 2

1 − 2GV 2
2 )Mλ3)

(V2(V 2
1 − 4GV 2

2 ))
,

λ̃2 =
(V 2

1 (4GHV 2
2 ± V1Mλ3))

(V 2
1 − 4GV 2

2 )
,

correspond to the integrals λ0, λ1, λ2. Here M =√
(V 2

1 (H
2 − 2V3) + 8GV 2

2 V3).
These nonlinear combinations of the fist integrals of

the initial system can be used to analyze it by the tech-
nique applied above.

3 A Rigid Body under the Influence of Two Force
Fields

The rotation of a rigid body around a fixed point in
uniform gravitational and magnetic force fields is con-
sidered. The distribution of mass in the body corre-
sponds to the Kowalewski integrable case.
The equations of motion of the body in the coordinate

system rigidly attached to the body can be written as:

2ṗ = bδ3 + q r, γ̇1 = γ2r − γ3q,
2q̇ = x0γ3 − p r, γ̇2 = γ3p− γ1r,
ṙ = −bδ1 − x0γ2, γ̇3 = γ1q − γ2p,

δ̇1 = δ2r − δ3q, δ̇2 = δ3p− δ1r,

δ̇3 = δ1q − δ2p.

 (24)

Here p, q, r are the projections of the angular velocity
vector onto the axes related to the body, γ1, γ2, γ3 are
the direction cosines of the upward vertical, δ1, δ2, δ3

are the direction cosines of the constant magnetic mo-
ment vector, the parameters x0, b are proportional to
the coordinate of the mass center of the body and the
coordinate of the constant magnetic moment vector, re-
spectively.
The equations admit the following first integrals:

2H=2(p2 + q2) + r2+2(x0γ1−b δ2)=2h,
V1=(p2−q2−x0γ1 − b δ2)

2 + (2p q−x0γ2
+b δ1)

2 = c1, V2 = γ2
1 + γ2

2 + γ2
3 = 1,

V3 = δ21 + δ22 + δ23 = 1,
V4 = γ1δ1 + γ2δ2 + γ3δ3 = c2.

 (25)

When b = 0, the system under consideration corre-
sponds to the Kowalewski integrable case.
On the invariant manifold of codimension 2

p2−q2−x0γ1−b δ2 = 0, 2pq−x0γ2+b δ1 = 0 (26)

system (24) has an additional cubic integral [Bogoy-
avlenskii, 1984] and is completely Liouville integrable.
Further, we study the above differential equations writ-
ten on IM (26):

2ṗ = q r + b δ3, δ̇1 = r δ2 − q δ3,

2q̇ = x0γ3 − p r, δ̇2 = δ3p− δ1r,

ṙ = −2(p q + b δ1), δ̇3 = δ1q − δ2p,
x0γ̇3 = −((p2 + q2) q + b (p δ1 + q δ2)).

 (27)

The first integrals of equations (27) are given by

2H̃ = 4p2 + r2 − 4b δ2 = 2h̃,

Ṽ2 = γ2
3 + (2p q+b δ1)

2

x2
0

+ (q2−p2+bδ2)
2

x2
0

= 1,

V3 = δ21 + δ22 + δ23 = 1,

Ṽ4 = 2p q δ2+(p2−q2) δ1
x0

+ γ3 δ3 = c̃2,

2V5=(p2 + q2) r − 2x0p γ3 + 2bq δ3=m.


(28)

Within the framework of the study of the phase space
of system (27), we state the problem to find IMs of this
system for their simplest classification and to investi-
gate their stability.

3.1 Finding Invariant Manifolds
Likewise as above, we construct a linear combination

of first integrals (28)

2K = λ0H̃ − λ1Ṽ2 − λ2V3 − 2λ3Ṽ4 − λ4V5 (29)

and write down the necessary conditions for the inte-
gral K to have an extremum with respect to the phase



228 CYBERNETICS AND PHYSICS, VOL. 6, NO. 4

variables p, q, r, γ3, δ1, δ2, δ3:

∂K/∂p = 4λ0p− 2λ1[(p
2+q2) p+b(q δ1−p δ2)]

x2
0

− 2λ3(p δ1+q δ2)
x0

+ λ4 (x0γ3 − p r) = 0,

∂K/∂q = −2λ1 [(p2+q2) q+b (p δ1+q δ2)]
x2
0

+ 2λ3 (q δ1−p δ2)
x0

− λ4 (q r + b δ3) = 0,

∂K/∂r = 2λ0 r − λ4 (p
2 + q2) = 0,

∂K/∂γ3 = −λ1γ3 − λ3 δ3 + λ4x0p = 0,

∂K/∂δ1 = −λ1b (2p q+b δ1)
x2
0

− λ2 δ1

−λ3 (p2−q2)
x0

= 0,

∂K/∂δ2=−2b λ0 − λ2 δ2− λ1b (q
2−p2+b δ2)
x2
0

− 2λ3p q
x0

= 0,

∂K/∂δ3 = −λ2 δ3 − λ3 γ3 − λ4 bq = 0.



(30)

We shall find the solutions of stationary equations (30)
with two procedures. The 1st procedure is based on
solving these equations with respect to some part of the
phase variables and the family parameters of the inte-
gral K. This technique was already used in the given
work.

The 2nd procedure finds new IMs by eliminating the
family parameters from the known solutions of the sta-
tionary equations. Both techniques provide a possibil-
ity to reveal embedded in one another IMs.

3.2 Applying First Procedure
We find the IMs of various dimension for equations

(27). Since first integrals correspond to IMs of codi-
mension 1, let us begin with IMs of codimension 2.
To this end, we take, e.g., δ1, δ2, λ1, λ2, λ0, λ4 as un-
knowns and construct a Gröbner basis with respect to
the lexicographic ordering δ1 > δ2 > λ1 > λ2 > λ0 >
λ4 for the polynomials of system (30). As a result, we
have the following system:

λ4 g1(p, q, r, γ3, λ3, λ4) = 0, g2(p, q, r, λ0, λ4) = 0,

g3(q, γ3, δ3, λ2, λ3, λ4) = 0,

g4(p, γ3, δ3, λ1, λ3, λ4) = 0,

g5(p, q, r, γ3, δ2, δ3, λ3, λ4) = 0,

g6(p, q, r, γ3, δ1, δ3, λ3, λ4) = 0,

where gj(j = 1, . . . , 6) are the polynomials of the ba-
sis. The resulting system is bulky, therefore it is not
represented explicitly here.

The system can be decomposed into two subsystems
given below.

The subsystem 1:

λ4b x0(ϱ− 2(p2 + q2)pq)− λ3(x0γ3(2p(p
2

+q2) + x0γ3r) + b (b δ3r
−2q (p2 + q2)) δ3) = 0,
2λ0 b x0 (ϱ− 2(p2 + q2) p q]) r − λ3 (p

2

+q2) (x0 γ3 (2p (p
2 + q2) + x0γ3 r)

+b (b δ3 r − 2q (p2 + q2)) δ3) = 0,
λ2 x0 (2(p

2 + q2) p q − ϱ) + λ3 b (2(p
2

+q2)q2 − ϱ2) = 0,
λ1 b (2(p

2 + q2) p q − ϱ) + λ3 x0 (2(p
2

+q2)p2 + ϱ2) = 0,



(31)

2b (p2 + q2) r δ2 + b (b r δ3r + q(r2

−2(p2 + q2))) δ3 − (p r − x0 γ3)
×(2p (p2 + q2) + x0 γ3 r) = 0,

−2b (p2 + q2) δ1 − p [2q (p2 + q2) + b δ3 r]
−x0γ3 q r = 0.

 (32)

The subsystem 2:

λ4 = 0, λ0 = 0, −(λ2δ3 + λ3γ3) = 0,
−(λ1γ3 + λ3δ3) = 0,

}
(33)

(x2
0γ

2
3 + b2 δ23) δ2 − (2x0γ3p q

+b (p2 − q2) δ3) δ3 = 0,
(x2

0γ
2
3 + b2 δ23) δ1 + (2b δ3p q − x0 γ3(p

2

−q2)) δ3 = 0.

 (34)

Here ϱ = (b δ3p− x0γ3 q) r, ϱ2 = (b δ3q + x0γ3p) r.
Let us analyze the subsystem 1.
It can be easy verified by IM definition that equations

(32) define the IM of codimension 2 for differential
equations (27).
The equations of vector field on IM (32) are given by:

2ṗ=q r + b δ3, 2q̇=x0γ3 − p r, ṙ= ϱ2

p2+q2 ,

γ̇3 = b [bq r δ3−(p2+q2)(2q2−r2)] δ3
2x0 (p2+q2) r + p γ3 q

r

+
(x2

0γ
2
3−2(p2+q2)2) q
2x0 (p2+q2) ,

δ̇3 = [b r δ3−2(p2+q2) q] p δ3
2 (p2+q2) r − 1

2b

+x0γ3 p (2p (p2+q2)+x0γ3 r)
2b (p2+q2) r .


(35)

From (31), we find the values for λ0, λ1, λ2, λ4 which
are the first integrals of equations (35).
In a similar manner, we have established that equa-

tions (34) also define the IM of codimension 2 for dif-
ferential equations (27), and the values of λ1, λ2 found
from the two latter expressions of (33) are the first in-
tegrals for the equations of vector field on this IM. Ob-
viously, these integrals are dependent. We have also
found the families of IMs of codimension 3, 4 and 5.
Let us consider the latter. In order to obtain this fam-

ily, we take δ1, δ2, δ3, γ3, r, λ0 as unknowns and con-
struct a Gröbner basis with respect to the lexicographic
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ordering δ1 > δ2 > δ3 > γ3 > r > λ0 for the poly-
nomials of system (30). A result will be the following
system:

λ0(4λ1λ2 − 4λ2
3) + λ2

4α1 = 0, (36)

λ4 α1 r − 2α2 (p
2 + q2) = 0,

−α2 γ3 − λ4 (λ3 b q + λ2x0p) = 0,
α2 δ3 − λ4 (λ1 b q + λ3x0 p) = 0,
2α1 α2 δ2 − 2λ1 α2 b (p

2 − q2)
+4λ3 α2 x0p q + λ2

4 α1 b x
2
0 = 0,

−α1 δ1 − 2λ1b p q − λ3x0 (p
2 − q2) = 0,


(37)

where α1 = λ1b
2 + λ2x

2
0, α2 = λ2

3 − λ1λ2.
Equations (37) define the family of IMs of codimen-

sion 5 for differential equations (27). The parame-
ters of the family are λ1, λ2, λ3, λ4. This family pos-
sesses an extremal property: the integral K (29) takes
a stationary value on the elements of the family when
λ0 =−λ2

4α1/(4α2) (this value is found from equation
(36)).
Obviously the solutions found by the described tech-

nique are related. Indeed, on substituting expres-
sions (37) (resolved with respect to δ1, δ2, δ3, γ3, r)
into equations (34), the latter equations become iden-
tities. Hence, one can conclude that the elements of
IMs family (37) are submanifolds of IM (32).
Thus, the procedure presented above allows one to

find the embedded in one another IMs families. In the
case considered, the latter is caused by the technique
applied. In general case, this technique enables us to
classify IMs on the basis of their embedding and de-
gree of their degeneration.
The IMs families found for the differential equations

written on IM (26) can be “lifted up” as invariant into
the phase space of system (24). To this end, it is suffi-
cient to add the equations of IM (26) to the equations
of the IMs families.

3.3 Applying 2nd Procedure
Let us eliminate the parameter λ4 from equations (37)

with the aid of one of the equations, e.g., the first. The
value of λ4 found from this equation is:

λ4 = −2α2 (p
2 + q2)(α1 r)

−1. (38)

Next, construct a lexicographic Gröbner basis with re-
spect to the lexicographic ordering δ1 > δ2 > δ3 > γ3
for the polynomials of a resulting system (after elimi-
nating λ4 from equations (37)). The system obtained

α1 γ3 r + 2(p2 + q2)(λ3bq + λ2x0p) = 0,
α1 r δ3 − 2(p2 + q2)(λ1bq + λ3x0p) = 0,
α2
1r

2 δ2 + α1 [λ1b (q
2 − p2) + 2λ3 x0 p q]

×r2 − 2α2(p
2 + q2)2 = 0,

−α1 δ1 − 2bλ1p q + λ3x0(q
2 − p2) = 0

 (39)

defines the IMs family of codimension 4 for the ini-
tial differential equations, which is parameterized by
λ1, λ2, λ3.
Expression (38) is the first integral for the equations

of vector field on the elements of IMs family (39). The
latter is verified by IM definition.
The elements of IMs family (37) are submanifolds of

the IMs family found. This can be verified by direct
substitution of expressions (37) (resolved with respect
to δ1, δ2, δ3, γ3, r) into equations (39).
The above example shows that the presented proce-

dure also provides a possibility to find embedded in one
another IMs families by eliminating the family param-
eters from the equations of known IMs families. In this
case, the resulting IMs family includes the initial one.

4 Conclusion
In the given work, nonlinear systems which are de-

scribed by differential equations with polynomial first
integrals were considered. The algorithms for the study
of extremal properties of the first integrals of such sys-
tems have been proposed. With the aid of these algo-
rithms, new invariant manifolds have been obtained for
both Euler’s equations on Lie algebras and the equa-
tions of motion of a rigid body under the influence of
two force fields, and their properties have been investi-
gated.
In this paper, we restricted our study to the linear com-

binations of the basic integrals only. For the exhaustive
analysis of the problems on the base of the proposed ap-
proach, it is necessary to investigate in detail the prop-
erties of the algebra of the first integrals of these prob-
lems.

Acknowledgements
This research was supported financially by the Rus-

sian Foundation for Basic Research (16-07-00201a)
and the Council on Grants of the President of the Rus-
sian Federation for State Support to Leading Scientific
Schools of the Russian Federation (NSh-8081.2016.9).

References
Adler, V. E., Marikhin, V. G., and Shabat, A. B. (2012).

Quantum Tops as Examples of Commuting Differ-
ential Operators. Theoret. and Math. Phys., 172(3),
pp. 1187–1205.

Banshchikov, A. V., Burlakova, L. A., Irtegov, V. D.,
and Titorenko, T. N.(2011). The software package
for selecting and investigation the stability of station-
ary sets of mechanical systems. Certificate of state
registration of the program on a computer, number
2011615235, on July 5. (In Russian)

Bogoyavlenskii, O. I.(1984). Two integrable cases of a
rigid body dynamics in a force field. USSR Acad. Sci.
Doklady, 275(6), pp. 1359–1363.



230 CYBERNETICS AND PHYSICS, VOL. 6, NO. 4

Borisov, A. V., Mamaev, I. S., and Sokolov, V. V.
(2001). A new integrable case on so(4), Dokl. Phys.
46(12), pp. 888–889.

Irtegov, V. D. and Titorenko, T. N.(2009). The invari-
ant manifolds of systems with first integrals.J. Appl.
Math. Mech., 73(4), pp. 379–384

Lyapunov, A. M. (1954). On Permanent Helical Mo-
tions of a Rigid Body in Fluid. Collected Works, vol.
1. USSR Acad. Sci., Moscow–Leningrad. (In Rus-
sian)

Poincare, A. (1947) On curves defined by differential
equations. OGIS. Moscow–Leningrad. (In Russian)

Sarychev, V. A. and Gutnik, S. A. ( 2015). Dynamics of
a Satellite Subject to Gravitational and Aerodynamic
Torques. Investigation of Equilibrium Positions. Cos-
mic Research., 53(6), pp. 449–457.

Smirnov, A. V. (2008). Systems of sl(2, C) tops as
two-particle systems. Theoretical and Mathematical
Physics, 157(1), pp. 1370–1382 .

Sokolov, V. V. (2001). A new integrable case for the
Kirchhoff equations. Theoretical and Math. Phys.
129 (1), pp. 1335–1340


