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Abstract
The article deals with the synthesis problem of control

system regulator for non-affine multivariable dynamic
plant with state delay. The plant operates in periodic
modes and also in the presence of external disturbances
and parametric uncertainty. As a solution methods the
hyperstability criterion, the fast-acting dynamic correc-
tor, and L-dissipativity conditions are used. The key
step of the system synthesis is the receipt for V. M.
Popov’s integral inequality special estimates that en-
sure the fulfillment of the control goals. In final article
part with the help of simulation the dynamic processes
taking place in the proposed control system, are being
visually illustrated.
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1 Introduction
Nowadays the problems of developing control sys-

tems for various dynamic plants, which are operates
in periodic modes, are still remaining relevant and in-
demand for modern control theory. This circumstance
is due to the fact that similar automatic systems are
very increasingly used on various practical solutions.
For example, control of periodic modes may be occur-
ring in: systems for manipulation robots [De Oliveira
and Lages, 2016], some aircraft tracking systems [He,
Guo, and Leang, 2017], systems for voltage converters
[Li and Ye, 2018] and others.
It should be noted that often control plants are com-

plex multiply connected systems, the development of
regulators for which requires special approaches. One
such approach is the decentralized control method, in
which the original plant is decomposed into several in-
terconnected subsystems. And then for each local sub-
system synthesis of control algorithms is carried out
[Zhu and Pagilla, 2007], [Dragicevic, Wu, Shafiee, and
Meng, 2017], [Shukla and Mili, 2017].

Many of modern publications are devoted to develop-
ment of control laws for linear in control (affine) dy-
namic plants [Eilsen, Teo, and Fleming, 2017], [Shao
and Xiang, 2017], [Yao, 2017]. At the same time,
there are practically no works that are related to de-
signing control systems for non-affine plants. How-
ever, plants mathematical models which contain non-
linear dependencies with respect to the input signal
are encountered in a number of applied problems,
such as: electromagnetic suspension control [Cho,
Kato, and Spilman, 1993], underwater robots control
[Pshikhopov and Medvedev, 2011] and aircraft control
[Tavakol and Binazadeh, 2017]. In this regard, the anal-
ysis and synthesis problems of control algorithms for
non-affine systems (including periodic ones) are very
relevant and require careful consideration.

In this article, with the help of results obtained in
[Eremin and Shelenok, 2017a], [Eremin and Shelenok,
2017b], [Eremin, 2013], [Eremin and Shelenok, 2015],
the synthesis of periodic action decentralized control
system for a stationary non-affine plant with state de-
lay and maximum relative orders of local subsystems
is being considered.

2 Mathematical Description of the Control System

We consider a control non-affine multi-loop dynamic
plant which local subsystems mathematical model has
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the following form:

dxi(t)

dt
= Aixi(t) +Bi

[
ui(t)fi(xi(t), ui(t)) + (1)

+dTi xi(t− τi) + φi(ui(t)) + σi(t)
]
,

yi(t) = = x1i(t),

σi(t) = ψi(t) +

k∑
j=1

θij(t), i = 1, 2, ...k; i ̸= j,

where xi(t) = [x1i(t), x2i(t), ..., xni(t)]
T ∈ Rni is

the state vector of the i-th local subsystem; Ai is some
matrix in the Frobenius form; Bi = [0, ..., 0, bni ] ∈
∈ Rni , bni

= const > 0 is the stationary vector;
ui(t) ∈ R and yi(t) ∈ R are respectively the scalar
control signal and output; dTi = [d1i , d2i , ..., d(ni)i ] ∈
∈ Rni is unknown constant vector; τi is the known con-
stant delay; fi(xi(t), ui(t)) and φi(ui(t)) are smooth
nonlinear scalar functions; σi(t) ∈ R is the equivalent
disturbance; ψi(t) ∈ R is the periodic signal of con-
stantly acting external disturbance; θij(t) ∈ R is the
cross couplings output signal acting on the i-th subsys-
tem from the j-th subsystem side with dynamics

dxij(t)

dt
= Aijxij(t) +Bijyj(t), (2)

θij(t) = LT
ijxij(t), i ̸= j,

where xij(t) = [x1ij (t), x2ij (t), ..., x(nij)ij (t)]
T is the

cross coupling state vector; Aij , Bij = [0, ..., 0, 1]T ,
LT
ij are stationary matrix and vector respectively.
The control plant (??), (2) operates while the follow-

ing assumptions are executed:

1. Parameters of the matrixAi, vectorsBi, di and the
signals fi(xi(t), ui(t)), φi(ui(t)) and ψi(t) are
priori unknowns and are determined by the rela-
tions:

Ai = Ai(ξ), Bi = Bi(ξ), di = di(ξ), (3)
fi(xi(t), ui(t)) = fξi(xi(t), ui(t)),

φi(t) = φξi(t), ψi(t) = ψξi(t),

where ξ is unknown set of parameters belonging to
a known bounded numerical set Ξ;

2. The subsystems (??) relative orders are exceed a
single value.

3. The subsystems (??) relative orders are known and
equal to ni.

4. The internal states of the plant subsystems (??) are
not available for measurement.

5. For direct measurement only signals yi(t) are
available.

6. The nonlinear functions fi(xi(t), ui(t)),
φi(ui(t)), and the signal ψi(t) are satisfy the
following expressions:

ε1i < fi(xi(t), ui(t)) ≤ ε2i , (4)
|φi(u(t))| ≤ ε3i , |ψi(t)| = |ψi(t+ T )| ≤ ε4i ,

where ε1i = const > 0, ε2i = const > 0, ε3i =
= const > 0 and ε4i = const > 0 are known
numbers;

7. Matrix Aij and vectors Bij , Lij are determined in
such a way that the transfer function of the cross
couplings (2) corresponds to the stable dynamic
unit like

Wij(s) = LT
ij(sEij −Aij)

−1Bij =
bij(s)

cij(s)
, (5)

where s is a complex variable; bij(s) and cij(s)
are Hurwitz polynomials; Eij is an identity matrix
of the corresponding dimension.

8. The signals θij(t) corresponding to the outputs of
the dynamic cross couplings (2) and with regard
for (4) the equivalents perturbations σ(ni)i(t) are
bounded and satisfy the conditions

∣∣∣∣∣∣
k∑

j=1

θij(t)

∣∣∣∣∣∣ ≤ θ̃0ij , θ̃0ij = const > 0, (6)

|σi(t)| ≤ ε̃4i , ε̃4i = const > 0.

To define the desired dynamics of the plant at hand
(??)–(6), we introduce in each its subsystem, similar
[Eremin and Shelenok, 2017a] and [Eremin and She-
lenok, 2017b], explicit local reference models

dxMi(t)

dt
= AMixMi(t) +BMiri(t), (7)

yMi(t) = xM1i(t), zMi(t) = gTi xMi(t),

where xMi(t) = [xM1i(t), xM2i(t), ..., xM(ni)i(t)]
T ∈

∈ Rni is the reference state variables; AMi is the
Hurwitz matrix, last row of which has the form
[aM1i , aM2i , ..., aM(ni)i ], aMii are known numbers;
BMi is the known vector, ri(t) = ri(t + T ) is the
scalar periodic command signal; yMi(t) ∈ R is the
main local reference output (to define the required
motion of the local subsystem); zMi(t) ∈ R is the
auxiliary local reference model output (to specify
the dynamics for the local main control contour);
gTi = [1, g1i , g2i , ..., g(ni−1)i ] is the given vector.
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For control plant (??)–(6) and reference model (7),
following structural matching conditions

AMi = Ai +BMiC
T
0i , BMiK0i = Bi, (8)

where CT
0i = [C01i , C02i , ..., C0(ni)i ] ∈ Rni , K0i are

unknown constant vector and number respectively; are
fulfilled.
Since only the outputs signals yi(t) are measured, we

introduce in the each local main control loop a filter-
corrector (see [Eremin and Shelenok, 2017b]) that has
following mathematical description:

dxFi(t)

dt
= AFixFi(t) +BFiyi(t), (9)

zFi
(t) = CT

Fi
xFi

(t) +DFi
yi(t),

where xFi(t) = [xF1i(t), ..., xF (ni−1)i(t)]
T ∈

∈ R(ni−1) is the filter state variables vector; zFi(t) ∈
∈ R is the filter output; AFi

, BFi
, CFi

, DFi
are matri-

ces and vector defined in such a way that transfer func-
tion of the filter can be represented as follows:

WFi(s) =
gi(s)

(Tis+ 1)(ni−1)
= (10)

= CT
Fi
(sE(ni−1) −AFi

)1BFi
+DFi

,

where gi(s) is the polynomial which composed with
respect to coefficients of vector gi; Ti is a small time
constant.

3 Problem Statement
For the non-affine plant (??)–(6) which operates under

the uncertainty conditions (3), it is required to synthe-
size a control law

ui(t) = ui(xi(t), xi(t− τi), xFi(t), ri(t)), (11)

which for any initial conditions xi(0) and any level of
parametric uncertainty ξ ∈ Ξ will provides the fulfill-
ment of the following condition

lim
t→∞

|yMi
(t)− yi(t)| ≤ ∆yi , (12)

∆yi = const > 0,

where ∆yi is a small value.

4 Synthesis of the Control Law
Construction of the control system we will carry out

in accordance with the two-stage methodology which
is described in [Eremin and Shelenok, 2015], [Eremin
and Shelenok, 2017a], and [Eremin and Shelenok,
2017b]. At the first stage, we will obtain an explicit
form of the control law (11) in assumption of availabil-
ity the internal states xi(t) of the subsystems (??), (2).
To determine the explicit form of control law (11), it is
used the standard scheme of V. M. Popov’s hypersta-
bility criterion. In the second stage, we will ensure the
L-dissipativity of the synthesized system with the help
of estimates xFi(t) of the variables xi(t) and special
conditions.
Using equations (8) and also the concept of mismatch

the state variables of local reference models (7) and
subsystems of the plant (??) (ei(t) = xMi(t)− xi(t)),
we represent the equivalent mathematical description
of the studied system as follows

dei(t)

dt
= AMiei(t) +BMiµi(t), (13)

vi(t) = zMi(t)− gTi xi(t),

µi(t) = −[ui(t)− δi(t)− CT
0ixi(t)+

+K0d
T
i xi(t− τi) + (K0ifi(xi(t), ui(t))− 1)ui(t)+

+K0iφi(ui(t))],

where δi(t) = ri(t)−K0iσi(t) is a periodic signal.
For the linear stationary part (LSP) of an equivalent

system (13), it is necessary to ensure the validity of
condition

Re [WLSPi
(jω)] > 0, ∀ω > 0, (14)

whereWLSPi(jω) is the appropriate frequency transfer
function; j2 = −1. It can be shown (see [Eremin and
Shelenok, 2017a] and [Eremin and Shelenok, 2017b])
that, the choice of values of the vector gi elements,
based on following relation

sni + aM(ni)is
(ni−1) + ...+ aM2is+ aM1i =

= (s+ a∗i)

(
s(ni−1) +

g(ni−2)i
g(ni−1)i

s(ni−2) + ... +

+
g1i

g(ni−1)i
s+

1

g(ni−1)i

)
g(ni−1)i ,

where a∗i = const is an any root of the polynomial
aMi(s) which is written with respect to the coefficients
aMi , i = 1, 2, ..., ni; it is possible to ensure the exis-
tence of transfer function
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WLSPi(jω) = gTi (jωEi −AMi)
−1BMi =

= K0i

a∗i
a∗i + jω

,

for which inequality (14) is always feasible.
Let us define the control signal ui(t) as a sum of five

components:

ui(t) = ζ1i(t) + ζ2i(t) + ζ3i(t)+ (15)
+ ζ4i(t) + ζ5i(t).

In this case the expression corresponding to nonlin-
ear non-stationary part of the equivalent system (13)
is converted to the following form:

µi(t) = −[(ζ1i(t)− δi(t))+ (16)

+ (ζ2i(t)− CT
0ixi(t))+

+ (ζ3i(t) +K0id
T
i xi(t− τi))+

+ (ζ4i(t) + (K0ifi(xi(t), ui(t))− 1)ui(t))+

+ (ζ5i +K0iφ(ui(t)))].

Let’s satisfy the requirements of V. M. Popov’s inte-
gral inequality

ηi(0, t) = −
∫ t

0

µi(ς)vi(ς)dς ≥ −η20i , (17)

η0i = const,∀t > 0,

the left side of which, taking into account (16), we
write as follows:

ηi(0, t) =
5∑

j=1

ηji(0, t) = (18)

=

∫ t

0

[ζ1i(ς)− δi(ς)]vi(ς)dς+

+

∫ t

0

[ζ2i(ς)− CT
0ixi(ς)]vi(ς)dς+

+

∫ t

0

[ζ3i(ς) +K0id
T
i xi(ς − τi)]vi(ς)dς+

+

∫ t

0

[ζ4i(ς) + (K0ifi(xi(ς), ui(ς))− 1)ui(ς)]×

× vi(ς)dς +

∫ t

0

[ζ5i(ς) +K0iφi(ui(ς))]vi(ς)dς.

In accordance with the results were obtained in
[Eremin and Shelenok, 2015], we synthesize compo-
nent ζ1i(t) of the control law (15) in the form

ζ1i(t) = ζ1i(t− T i) + γ1ivi(t), (19)

where γ1i = const > 0, T i = const > 0. Then for the
integral summand η1i(0, t) it will be fair the following
estimate:

η1i(0, t) =

= γ1i

∫ t

0

vi(ς)

[ ∫ ς

0

ω0(ς − h)vi(h)dh− δi(ς)

]
dς ≥

≥ −η201i , η01i = const, ∀t > 0,

where ω0(·) is the weight function of periodic
signals generator with transfer function W (s) =

=
β

1− e−sT
, β = const ≥ 1.

Considering the second integral term from (18):

η2i(0, t) =

∫ t

0

[ζ2i(ς)− CT
0ixi(ς)]vi(ς)dς =

=

∫ t

0

[
ζ2i(ς)−

ni∑
p=1

C0pixpi(t)

]
vi(ς)dς,

we define the component ζ2i(t) like

ζ2i(t) =

ni∑
p=1

γ2pixpi(t)

∫ t

0

xpi(ς)vi(ς)dς, (20)

γ2pi = const > 0.

Then, taking into account the identity

∫ t

0

χ(ς)

∫ ς

0

χ(h)dhdς = 0.5

(∫ t

0

χ(ς)dς

)2

,

where signal χ(t) is bounded, it can be written follow-
ing estimate:

η2i(0, t) =

∫ t

0

[ ni∑
p=1

γ2pixpi(ς)

∫ ς

0

xpi(ϑ)vi(ϑ)dϑ−

−
ni∑
p=1

C0pixpi(ς)

]
vi(ς)dς =

ni∑
p=1

γ2pi

∫ t

0

xpi(ς)vi(ς)×
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×
∫ ς

0

xpi(ϑ)vi(ϑ)dϑdς−
ni∑
p=1

C0pi

∫ t

0

xpi(ς)vi(ς)dς =

= 0.5

ni∑
p=1

γ2pi

(∫ t

0

xpi(ς)vi(ς)dς

)2

−

−
ni∑
p=1

C0pi

∫ t

0

xpi(ς)vi(ς)dς ±
ni∑
p=1

C2
0pi

2γ2pi

=

=

[
0.5

ni∑
p=1

γ2pi

(∫ t

0

xpi(ς)vi(ς)dς

)2

−

−
ni∑
p=1

C0pi

∫ t

0

xpi(ς)vi(ς)dς +

ni∑
p=1

C2
0pi

2γ2pi

]
−

−
ni∑
p=1

C2
0pi

2γ2pi

≥ −
ni∑
p=1

C2
0pi

2γ2pi

= −η202i ,

η02i = const, ∀t > 0.

Let us define the component ζ3i(t) as follows

ζ3i(t) =

ni∑
p=1

γ3pixpi(t− τi)× (21)

×
∫ t

0

xpi(ς − τi)v(ς)dς, γ3pi = const > 0.

Then for summand η3i(0, t) we obtain following esti-
mate:

η3i(0, t) =

ni∑
p=1

γ3pi

∫ t

0

xpi(ς − τi)vi(ς)×

×
∫ ς

0

xpi(ϑ− τi)vi(ϑ)dϑdς−

+

ni∑
p=1

K0idpi

∫ t

0

xpi(ς − τi)vi(ς)dς =

= 0.5

ni∑
p=1

γ3pi

(∫ t

0

xpi(ς − τi)vi(ς)dς

)2

+

+

ni∑
p=1

K0idpi

∫ t

0

xpi(ς − τi)vi(ς)dς±

±
ni∑
p=1

(K0idpi)
2

2γ3pi

=

[
0.5

ni∑
p=1

γ3pi×

×
(∫ t

0

xpi
(ς − τi)vi(ς)dς

)2

+

+

ni∑
p=1

K0idpi

∫ t

0

xpi(ς − τi)vi(ς)dς+

ni∑
p=1

(K0idpi)
2

2γ3pi

]
−

ni∑
p=1

(K0idpi)
2

2γ3pi

≥

≥ −
ni∑
p=1

(K0idpi)
2

2γ3pi

= −η203i , η03i = const, ∀t > 0.

Let’s transform the term η4i(0, t) as follows:

η4i(0, t) =

∫ t

0

[ζ4i(ς) + (K0ifi(xi(ς), ui(ς))− 1)×

× ui(ς)]vi(ς)dς =

∫ t

0

ζ4i(ς)vi(ς)dς+

+

∫ t

0

(K0ifi(xi(ς), ui(ς))− 1)ui(ς)vi(ς)dς±

± 2γ24i γ̃4i

∫ t

0

ui(ς)vi(ς)

∫ ς

0

ui(ϑ)vi(ϑ)dϑdς±

± 1

4γ̃ 4i

≥
∫ t

0

[
ζ4i(ς)− 2γ24i γ̃4iui(ς)×
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×
∫ ς

0

ui(ϑ)vi(ϑ)dϑ

]
vi(ς)dς +

[
γ̃4i×

×
(∫ t

0

(K0ifi(xi(ς), ui(ς))− 1)ui(ς)vi(ς)dς

)2

+

+

∫ t

0

(K0ifi(xi(ς), ui(ς))− 1)ui(ς)vi(ς)dς+

+
1

4γ̃ 4i

]
− 1

4γ̃ 4i

,

where γ4i = max |K0ifi(xi(t), ui(t))− 1| =
= const > 0; γ̃4i = const > 0. If now we synthesized
the component ζ4i(t) in the form

ζ4i(t) = γ4iui(t)

∫ t

0

ui(ς)vi(ς)dς, (22)

γ4i = 2γ24i γ̃4i = const > 0,

for summand η4i(0, t) we will have a fair estimate

η4i(0, t) ≥ − 1

4γ̃ 4i

= −η204i , η04i = const, ∀t > 0.

Let us define the explicit form of the component ζ5i(t)
in the following form:

ζ5i(t) = γ5i

∫ t

0

vi(ς)dς. (23)

where γ5i = 2γ̃5iε
2
3i = const > 0.

In this case for the summand η5i(0, t) it will be fair
the following estimate:

η5i(0, t) =

∫ t

0

[ζ5i(ς) +K0iφi(ui(ς))]vi(ς)dς±

± 2γ̃5iε
2
3i

∫ t

0

vi(ς)

∫ ς

0

vi(ϑ)dϑdς ≥

≥
∫ t

0

[
ζ5i(ς)− 2γ̃5iε

2
3i

∫ ς

0

vi(ϑ)dϑ

]
vi(ς)dς+

+ γ̃5i

(∫ t

0

φi(ui(ς))vi(ς)dς

)2

+

+K0i

∫ t

0

φi(ui(ς))vi(ς)dς ±
K2

0i

4γ̃5i
≥ −

K2
0i

4γ̃5i
= η205i ,

η05i = const, ∀t > 0.

Thus, mathematical description of the regulator (11),
which does not contradict the validity of (17), in accor-
dance with (19), (20), (21), (22) and (23), will take the
form

ui(t) =
(
ζ1i(t− T i) + γ1ivi(t)

)
+ (24)

+

ni∑
p=1

γ2pixpi(t)

∫ t

0

xpi(ς)vi(ς)dς+

+

ni∑
p=1

γ3pixpi(t− τi)

∫ t

0

xpi(ς − τi)vi(ς)dς+

+ γ4iui(t)

∫ t

0

ui(ς)vi(ς)dς + γ5i

∫ t

0

vi(ς)dς,

where vi(t) = zMi(t) − gTi xi(t). Since the frequency
condition (14) is satisfied, and also the valid integral
inequality (17) exists, the equivalent system (13), (15),
(19)–(24) and, consequently, the control system (??),
(2), (4)–(7), (9)–(11), (24) will be hyperstable, and for
this system an auxiliary lim

t←∞
|vi(t)| ≤ ∆zi , ∆zi =

= const > 0 and, the main (12) functioning targets are
going to be fair.

5 L-dissipativity of the Control System
The control law synthesis was carried out on the as-

sumption of the full availability of the local state vec-
tors xi(t). But for direct measurements, only the out-
puts signals of the plant local subsystems yi(t) are
available. So, for technical realization of the obtained
nonlinear-periodic algorithm (24), it is necessary to use
the estimations of the variables xi(t), which are the
state variables of the filter-corrector (9), (10). It should
be noted that the filter parameters must be specified in
a certain way [Eremin, 2013]. In particular, values of
the time constants Ti (see (10)) we should choose with
the help of special conditions:

Ti < T1i =
0.93

(ni − 2)aM1i

,

Ti < T2i =
0.465 · aM1i

(ni − 1)aM2i

.

Thus, replacing in (24) the plant’s subsystems state
variables xpi(t) by their estimates, we obtain following
technically realizable control law:

ui(t) =
(
ζ1i(t− T i) + γ1ivi(t)

)
+ (25)

+

ni−1∑
p=0

γ2pi x̃(p+1)i(t)

∫ t

0

x̃(p+1)i(ς)vi(ς)dς+

+

ni−1∑
p=0

γ3pi x̃(p+1)i(t− τi)×
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×
∫ t

0

x̃(p+1)i(ς − τi)vi(ς)dς+

+γ4iui(t)

∫ t

0

ui(ς)vi(ς)dς + γ5i

∫ t

0

vi(ς)dς,

vi(t) = zMi(t)− zFi(t) = zMi(t)− gTi xFi(t),

where x̃i(t) = [xF1i(t), xF2i(t), ..., ẋF (ni−1)i(t)] ∈
∈ Rni

In this case, the control system (??), (2), (4)–(7), (9)–
(11), (25) is going to be L-dissipative and will preserve
operability in a given class of uncertainty ξ ∈ Ξ.

6 Illustrative Example
To illustrate the quality of synthesized system, let us

consider the control problem of multi-loop plant, which
consist of two subsystems with the following structure:

A1 =

 0 1 0
0 0 1
a11 a21 a31

 , B1 =

 0
0
b31

 , (26)

dT1 =
(
d11 d21 d31

)
,

f1(x1(t), u1(t)) =
d0

1 + |u1(t)|2
+ 1.5(1 + x221(t)),

φ1(u1(t)) = φ01 sin(0.5u1(t)), ψ1(t) = ψ01 sin(0.3t);

A2 =

 0 1 0
0 0 1
a12 a22 a32

 , B2 =

 0
0
b32

 , (27)

dT2 =
(
d12 d22 d32

)
,

f2(x2(t), u2(t)) =
1

0.25 + u22(t)
+ 1.1(1 + 0.1x332(t)),

φ2(u2(t)) = φ02 sin(0.4u2(t)), ψ2(t) = ψ02 sin(0.4t);

W12(s) =
s2 + 2s+ 1

2s3 + 4s2 + 3s+ 1
, (28)

W21(s) =
s+ 1

s2 + 2s+ 1
.

The class of a priori uncertainty of the plant (??), (26),
(27) is determined by following inequalities:

− 3.2 ≤ a11 ≤ 2.1, − 1.5 ≤ a21 ≤ 1,

− 12 ≤ a31 ≤ 5.2, 1 ≤ b31 ≤ 5.5, 1.2 ≤ d0 ≤ 3.2,

0 ≤ d11 ≤ 20, 0.5 ≤ d21 ≤ 5.5, 0.5 ≤ d31 ≤ 10.2

0.02 ≤ φ01 ≤ 1, 0 ≤ ψ01 ≤ 0.8;

− 10 ≤ a12 ≤ 5,−5 ≤ a22 ≤ 5.7,−1 ≤ a32 ≤ 15,

0.1 ≤ b32 ≤ 3, 2.2 ≤ d12 ≤ 18, 0.1 ≤ d22 ≤ 7.3,

0 ≤ d32 ≤ 25.4, 0.02 ≤ φ02 ≤ 2.5, 0 ≤ ψ02 ≤ 1.2,

The structure of the matrix and vectors of the local ref-
erence models we define in the following form:

AMi =

 0 1 0
0 0 1

aM1i aM2i aM3i

 , (29)

BMi =

 0
0

bMi ,

 , gi =

 1
g1i
g2i

 ,

aM1i = −20, aM2i = −41, aM3i = −22,

bM3i = 23, g1i = 2, g2i = 1, i = 1, 2;

wherein the local filter-correctors (9) are formed as fol-
lows:

AFi
=

(
0 1

aF1i aF2i

)
, BFi

=

(
0

bF2i

)
, (30)

CFi =

(
1
g1i

)
, DFi = g2i ,

aF1i = −106, aF2i = −2 · 103,
bF2i = 106, g1i = 2, g2i = 1, i = 1, 2.

The command signals of the subsystem were specified
using following periodic functions:

r1(t) = 0.9 sin5(0.1t) · (2− sin(0.05t)), (31)

r2(t) = 0.5 sin2(0.1t) · (sin(0.05t)− 1)

Simulation of the control system (??)–(9), (26)–(31)
was performed at the following plant coefficients:

a11 = 0.2, a21 = −1, a31 = −6, (32)
d11 = 2, d21 = 0.5, d31 = 1,

d0 = 2, φ01 = 0.2, ψ01 = 0.5, τ1 = 2;

d12 = 3, d22 = 0.1, d32 = 1,

a12 = −7.1, a22 = 2, a32 = −0.5,

φ02 = 0.4, ψ02 = 0.2, τ2 = 1.
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Figure 2. Dynamics of main outputs of the reference models
yMi(t), outputs of the subsystems yi(t) and the external pertur-
bations ψi(t) (i = 1, 2)

Figure 3. Local control signals

In the course of simulation parameters of the
nonlinear-periodic regulator (25) in order to increase
the system performance were selected as follows:

γ11 = γ12 = 100, γ211 = γ212 = 500, (33)
γ221 = γ222 = 600, γ231 = γ232 = 400,

γ311 = γ312 = 300, γ321 = γ322 = 200,

γ331 = γ332 = 400, γ41 = γ42 = 200,

γ51 = γ52 = 200, T 1 = 12, T 2 = 10.

The results of the system simulation are shown at
Fig. 1–3.

Figure 1. Mismatch signal between main outputs of the local ref-
erence models (29), and outputs of control plant subsystems (??),
(26), (27)

The presented results make it possible to conclude that
proposed control system (??)–(9), (26)–(33) has a quite
high quality: the magnitude of control error from the
start of operation does not exceed 0.16% to the both
subsystems(Fig. 1). It means that the signals yMi(t)
and yi(t) are almost coincide (Fig. 2).

7 Conclusion
The synthesis method of the control system for one

class of non-affine MIMO dynamic plants with delay is
proposed. With the help of simulation it is shown that
the resulting control law allows to achieve high qual-
ity of control system operation. The obtained results
can be useful for construction the decentralized control
systems for non-affine periodic action plants.
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