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Abstract
Our previous study [Konishi, Takeuchi, Shimizu,

Chaos 2011] proposed a simple systematic design
procedure of a periodic impulsive force and a time-
continuous feedback force to eliminate traveling waves
in a piecewise linear FitzHugh–Nagumo (FHN) model.
As our previous study used only the integral control
method in classical control theory, it is not easy to
specify its system performance. The present paper in-
troduces an optimal control method in modern control
theory, which can specify its system performance. Fur-
thermore, we show that the designed force is valid not
only for the piecewise linear function but also for a
class of smooth nonlinear FHN models.
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1 Introduction
Excitable media, such as cardiac tissue and the

Belousov–Zhabotinsky reaction, have received con-
siderable attention in the field of nonlinear science
(Mikhailov and Showalter, 2006). It is known that the
spatial waves and spatiotemporal chaos in cardiac tis-
sue induce a major health problem, since irregular acti-
vation, such as ventricular tachycardia and ventricular
fibrillation, decreases the ability of the heart to pump
blood. One of current treatments for the irregular acti-
vation is to apply a high-voltage electric shock to a pa-
tient’s chest to eliminate it. However, this shock often
causes physical and mental strain to the patient. There-
fore, a practical use of low-voltage electric shock is an-
ticipated (Sinha and Sridhar, 2008; Takagi et al., 2004).
On the other hand, the Belousov–Zhabotinsky (BZ) re-
action have attracted increasing interest (Mikhailov and
Showalter, 2006). It was reported that a feedback light-
intensity control can stabilize and track unstable propa-
gating waves in the photosensitive BZ reaction (Mihal-
iuk et al., 2002; Sakurai et al., 2002).

Some researchers have proposed various feedback
control methods for eliminating spatiotemporal be-
havior in excitable media (Sinha and Sridhar, 2008).
Yuan, Chen, and Yang showed that an external force
injected into the resting regions to counter propaga-
tion waves can eliminate the propagation waves (Yuan
et al., 2007). The global feedback control proposed by
Yoneshima, Konishi, and Kokame is to apply a force
uniformly to every region of the medium only when
the area of active region is at local minimal values
(Yoneshima et al., 2008). Guo et al. provided the
local feedback control which identifies the spiral tip
areas and makes them unexcitable. This method can
experimentally eliminate spiral turbulence (Guo et al.,
2010). Sakaguchi and Nakamura eliminate breathing
spiral waves in the Aliev–Panfilov model by using the
delayed feedback control (Sakaguchi and Nakamura,
2010).

From a viewpoint of practical applications, it would
be desirable to know a systematic design of external
forces for elimination of spatiotemporal behavior be-
cause the systematic design does not require trial-and-
error testing. However, most studies on the elimina-
tion of spatiotemporal behavior were investigated only
by numerical simulations (Sinha and Sridhar, 2008).
A systematic design procedure of the single impulsive
nonfeedback force was provided by Osipov and Collins
(Osipov and Collins, 1999). Although a periodic im-
pulsive force and a time-continuous feedback force
have the potential to achieve a low-amplitude elimina-
tion, their procedure cannot be used for these forces.
Our previous study proposed a simple systematic de-
sign procedure for such forces (Konishi et al., 2011).
This study focused on a one-dimensional FitzHugh–
Nagumo (FHN) model with a piecewise linear func-
tion (Ohta and Kiyose, 1996; Ohta et al., 1997; Koga,
1993; Rinzel and Keller, 1973; Tonnelier, 2003b; Ton-
nelier, 2003a), and obtained simple and analytical re-
sults. The proposed procedure is useful for designing
nonfeedback and feedback control systems. However,
in our previous study, the following problems, which



Figure 1. Spatial distribution of traveling wave

are important subjects from a practical viewpoint, re-
main unsolved: (i) it is impossible to specify the system
performance, such as the transient time for elimination
and the amplitude of the external force, in designing the
feedback controller; (ii) it is unclear whether the proce-
dure can be used for FHN model with smooth nonlinear
functions.
The present paper shows that problems (i) and (ii)

can be solved by using modern control theory and
by employing a smooth nonlinear function, respec-
tively. As our previous study (Konishi et al., 2011) used
only the integral control method in classical control
theory, problem (i) cannot be systematically solved.
The present paper introduces an optimal feedback con-
trol method in modern control theory to systematically
solve problem (i). Furthermore, for problem (ii), the
force designed by our procedure for the piecewise lin-
ear FHN model is applied to a smooth nonlinear FHN
model: we see that the designed force is valid not only
for the piecewise linear model but also for a class of
smooth nonlinear models.

2 Piecewise linear FitzHugh-Nagumo model
Now consider the one-dimensional piecewise linear

FHN model (Ohta and Kiyose, 1996; Ohta et al., 1997;
Koga, 1993; Rinzel and Keller, 1973):

⎧⎪⎪⎨
⎪⎪⎩

∂u(x, t)
∂t

= f [u(x, t)] − v(x, t) + D
∂2u(x, t)

∂x2

∂v(x, t)
∂t

= ε{u(x, t) − γv(x, t)} + e(t)
,

(1)

f [u] = H[u − u∗] − u, (2)

where u(x, t) and v(x, t) are fast and slow variables,
respectively. x denotes position and t is continuous
time. The diffusion coefficient for the fast variable
is denoted by D > 0. Here 0 < ε � 1 and
γ ∈ (0, u∗/(1−u∗)) are the parameters. u∗ ∈ (0, 1/2)
is the threshold of f [u]. H represents the step function.

Figure 2. Block diagram of a state feedback with integral control

The weak external force e(t) is applied with spatial uni-
formity to the slow dynamics. Let us assume that one
traveling wave propagates through a one-dimensional
space x ∈ (−∞, +∞). Figure 1 sketches the spatial
distribution of the traveling wave

3 Feedback control
This section derives a linear time-invariant system

(Konishi et al., 2011) and designs an optimal feedback
controller on the basis of the linear quadratic regulator.

3.1 Linear time-invariant system
This subsection reviews our previous work (Konishi

et al., 2011). The velocity of the traveling wave at wave
front (curve AB in Fig. 1), cf , is given by

cf = {1 − 2(u∗ + vf )}
√

D

(u∗ + vf )(1 − u∗ − vf )
.

(3)

The wave front velocity cf depends on v(x, t) = vf

in front of the wave (A–A’ region in Fig. 1). u(x, t)
and v(x, t) are with spatial uniformity in the A–A’ re-
gion. As the external force e(t) is applied uniform spa-
tially to the whole medium, u(x, t) and v(x, t) main-
tain their spatial uniformity in this region. Here they
can be considered as the variables uf (t) and vf (t) in
this region. In addition, the wave front velocity satis-
fying Eq. (3) can also be a time variable cf (t). Since
u(x, t) and v(x, t) in this region have their spatial uni-
formity, we can neglect the diffusion term in Eq. (1).
As uf (t) < u∗, the nonlinear function is simplified
to f [u] = −u. The parameter ε is assumed to be a
sufficiently small positive value; thus, we ignore the
fast mode and focus only on the slow dynamics. In
consequence, the force e(t) and the variable vf (t) are
approximately given by the linear time-invariant (LTI)
system,

{
ẇ(t) = aw(t) + be(t)

vf (t) = cw(t)
, (4)



where w(t) describes the slow dynamics and the sys-
tem parameters (a, b, c) are

a := η(+), b := − 1
η(+) − η(−)

, c = −1 − η(+),

η(±) := {−(1 + εγ) ± √
(1 − εγ)2 − 4ε}/2.

3.2 Controller
This paper proposes a state feedback with integral

control (Kuo and Golnaraghi, 2003), as shown in Fig.
2, to eliminate the traveling waves. The external force
e(t) is given by

{
e(t) = k1w(t) + k2z(t)

ż(t) = r(t) − vf (t)
, (5)

where z(t) is the additional variable and k1,2 are the
feedback gains we have to design. Our main goal is to
stop the traveling wave front (i.e., limt→+∞ cf (t) =
0); thus, according to Eq. (3), the controller must track
vf (t) to 1/2 − u∗. In order to achieve this goal, the
reference signal r(t) should be a step input with am-
plitude 1/2 − u∗. The reason we use the additional
variable z(t) is that the integral unit is required to track
without steady-state error.
Let us design the gains k1,2 by using the linear

quadratic regulator (Zak, 2002). Combining LTI sys-
tem (4) and controller (5), we have

{
ẋ(t) = Ax(t) + be(t) +

[
0 1

]T
r(t)

vf (t) = cx(t)
, (6)

e(t) = kx(t), (7)

where x(t) :=
[
w(t) z(t)

]T is the system variable.
The system matrices (A, b, c) and the feedback gain
vector k are written as

A :=
[

a 0
−c 0

]
, b :=

[
b
0

]
, c :=

[
c
0

]T

, k :=
[
k1

k2

]T

.

(8)

Since it is obvious that (A, b) is controllable (i.e.,
det

[
b Ab

]
= −b2c �= 0), the feedback gain k can

be designed by simple procedures. In order to obtain
an optimal system performance, this paper employs the
linear quadratic regulator: controller (7) is designed
such that the performance index,

J =
∫ ∞

0

{
x̄(t)T Qx̄(t) + μē(t)2

}
dt, (9)
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Figure 3. Spatial distribution of the traveling wave with integral
control (k1 = 0, k2 = 0.003).

Figure 4. External force with integral control (k1 = 0, k2 =
0.003).

x̄(t) := x(t) − x∞, ē(t) := e(t) − e∞,

is minimized, where x∞ := limt→∞ x(t) and e∞ :=
limt→∞ e(t). Here Q > 0 and μ > 0 are the weights
we can arbitrarily choose. The feedback gain is given
by

k = − 1
μ

bT P , (10)

where P =
[
p11 p12

p12 p22

]
> 0 satisfies the algebraic Ric-

cati equation,

AT P + PA + Q − 1
μ

PbbT P = 0. (11)

Now let us design the feedback gain k according to
the above procedure. For simplicity, the weight Q is
fixed at Q = diag {q1, q2}. Substituting Eq. (8) into
Eq. (11), we have

p12 =
√

μq2/b2,

p11 =
{

aμ +
√

a2μ2 − b2μ(2cp12 − q1)
}

/b2,

p22 = p12(a − b2p11/μ)/c.

Here, we obtain the optimal gain (10),

k1 = − 1
μ

bp11, k2 = − 1
μ

bp12. (12)
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Figure 5. Spatial distribution of the traveling wave with optimal
control (case (I): k1 = 0.0598, k2 = 0.0041).

Figure 6. External force with optimal control (case (I): k1 =
0.0598, k2 = 0.0041).

As a consequence, we have optimal feedback controller
(5) with gain (12).

3.3 Numerical examples
Throughout this paper, we assume that the parameters

of FHN model (1) are known and fixed at

u∗ = 0.2, D = 1.0, ε = 0.03, γ = 0.1. (13)

Let us review the numerical result of the integral con-
trol, which corresponds to a particular case of con-
troller (5) (i.e., k1 = 0 and k2 > 0), discussed in our
previous work (Konishi et al., 2011). Figures 3 and 4
show the spatial distribution of the traveling wave and
the external force just before and after the control start
time (t = 0). For t > 0, the wave front AB slows down
and the wave back CD maintains its velocity, and then
the wave back catches up with the front. Eventually,
the traveling wave disappears at t ≈ 34.5.
Now we design the optimal controller proposed in the

preceding section. Consider the two specifications of
system performance: (I) preference for low peak force
and (II) preference for rapid elimination of traveling
waves.
For case (I), the weights in index (9) are set to q1 =

q2 = 1.0, μ = 6 × 104. From these weights and
parameters (13), optimal gain (12) can be obtained:
k1 = 0.0598 and k2 = 0.0041. The spatial distribution
of the traveling wave and the external force are shown
in Figs. 5 and 6. It can be seen that, compared with the
results of integral control shown in Figs. 3 and 4, the
peak force becomes low.
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Figure 7. Spatial distribution of the traveling wave with optimal
control (case (II): k1 = 0.3134, k2 = 0.0632).

Figure 8. External force with optimal control (case (II): k1 =
0.3134, k2 = 0.0632).

For case (II), the weights are set to q1 = q2 = 1.0,
μ = 250. Optimal gain (12) can be obtained: k1 =
0.3134 and k2 = 0.0632. The spatial distribution of the
traveling wave and the external force are shown in Figs.
7 and 8. We see that the traveling wave rapidly disap-
pears. From the two cases, it can be confirmed that
the optimal controller works well on numerical simula-
tions.

4 FHN model with smooth nonlinear functions
This section investigates whether the force designed

for the piecewise linear FHN model can be valid for
smooth nonlinear FHN models. Let us introduce the
smooth nonlinear function shown in Fig. 9,

f [u] = −u + 0.5 + 0.5 tanh(α(u − u∗)). (14)

It should be noted that this function converges on piece-
wise linear function (2) as α → +∞. We have ob-
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Figure 9. Smooth nonlinear function f [u] (u∗ = 0.2)
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Figure 10. Spatial distribution of the traveling wave in optimal con-
trolled FHN model with function (14) (α = 10, k1 = 0.3134,
k2 = 0.0632).

served that the traveling wave can propagate in FHN
model with function (14) for α ≥ 10; however, it can-
not propagate for α < 10. We have numerically con-
firmed that the integral controller (k1 = 0, k2 = 0.003)
and the optimal controller (k1 = 0.3134, k2 = 0.0632)
designed for the piecewise linear FHN model are valid
for the smooth nonlinear FHN model for α ≥ 10. Fig-
ure 10 shows the optimal control of traveling wave in
FHN model with function (14) (α = 10). It can be seen
that the designed controller works well even for FHN
model with smooth function (14).

5 Conclusion
The present paper provided a systematic procedure for

designing an optimal feedback controller to eliminate
the traveling wave in the piecewise liner FHN model.
The designed controller achieves our goal: the rapid
disappearance of wave and the low peak force. Fur-
thermore, it was shown that the controller designed for
the piecewise linear FHN model is valid for a class of
smooth nonlinear FHN models.
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