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Abstract: The work deals with application of the interval analysis methods to the outer
estimation of the current set of states (geometrical coordinates and velocities) of aircraft,
which motion is described by the standard system of ordinary differential equations of the
sixth order with known geometric constraints onto controls in the longitudinal, vertical, and
lateral accelerations; the current aircraft controls are not known for the observer. Estimation is
performed under conditions of uncertainty about both measuring errors restricted on modulus
and the chaotic disturbances that are unknown on the sign and value. The result of estimation
is represented by the six–dimensional parallelepiped composed of interval estimates on each of
the phase coordinates computed by special sequential procedures.
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1. INTRODUCTION AND PROBLEM
FORMULATION

Usually, estimation of motion of dynamic systems are
based mainly on obtaining a sample of sufficiently large
length and application of procedures of the mathemati-
cal statistics (for example, Kalman filtration approaches).
There, the probabilistic data about both the measuring er-
rors and possible chaotic perturbations (e.g., the probabil-
ity distribution laws, means, variances, correlation indices,
etc.) have to be known.

But, in practice, for example, in air traffic control systems,
the cases prevail when no such information is known, but
only approximate geometric constraints can be put on the
maximal values of the measuring errors, the measurement
sample for processing is very short (only 5–6 sequential
measurements), and the measurements are corrupted by
both the usual measuring errors and chaotic perturbations
with unknown characteristics. In this paper application
of the interval analysis Jolin et al. (2001), Milanese and
Norton (1996), Kalmykov et al. (1986) and informational
sets theory Kumkov and Patsko (2001), Kumkov (2008),
Patsko et al. (1999) to estimation of the current states
(geometrical coordinates and velocities) of aircraft is con-
sidered.

The aircraft motion in the three-dimensional space is de-
scribed by the standard system of ordinary differential
equations with geometric constraints on controls in the
longitudinal, vertical, and lateral accelerations. The air-
craft current controls are unknown for the observer. All
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phase coordinates, i.e., three components of the veloc-
ity and three geometric coordinates are measured. Mea-
surement of each phase coordinate is corrupted both by
the usual measuring error of known geometric constrains
(in modulus) and chaotic perturbation of unknown sign
and values. No statistical (probability) data about both
disturbances are known. The structure of errors of both
types and their behavior in time can be arbitrary. The
case is investigated when the length of the measurement
sample is short, and estimation is implemented in the
“sliding window” of measurements sequentially coming
from some informational system (for example, Automat-
ical Dependent Observation System–Broadcasting on the
basis of GPS or GLONASS measurements, or from on–
board aircraft navigational systems, etc.).

Problem formulation. Having the input sample of cor-
rupted measurements of the aircraft motion (geometrical
positions and velocity components) and the given descrip-
tion of the aircraft dynamics, it is necessary to estimate
the outer (from above) current set of its states.

Since the simultaneous analysis in the six-dimensional
phase space is hampered in practice, the problem is solved
by constructing the outer box–estimation composed of
interval estimations on each phase coordinate that are
found in special sequential order. This guarantees the outer
box-estimation to be approximately minimal in size.

The uncertainty of the measuring error is formalized in
the form of the uncertainty interval or uncertainty set of
measurement for each aircraft phase coordinate by the
given constraint on the measuring error.

Estimation and construction of the current set of aircraft
coordinates are performed in presence of possible chaotic
corruption. As a result, the input sample in each coor-



dinate can be inconsistent in the whole, can split into
possible parallel subsamples (registers). These subsamples,
in the turn, can split or fuse between themselves; the false
subsamples generated by the chaotic disturbances do not
continue are eliminated.

2. NOTIONS AND DEFINITIONS

Aircraft motion is described by the following ordinary
differential equation system (officially standardized for
navigational computations):

V̇ = a, θ̇ = α/V, ψ̇ = β/V,
|a(t)| ≤ aap

max, |α(t) | ≤ αap
max, |β(t) | ≤ βap

max,
ẏ = Vy = V sinθ,
ẋ = Vx = V cosθ cosψ,
ż = Vz = V cosθ sinψ.

(1)

Here, x, z, and y (in meters) are the aircraft coordinates in
the standard normal ground coordinate system, in which
the origin point O is located at some reference point, the
OX-axis is directed to the Notrh, the OZ-axis is directed
to the East, the OY -axis is directed along the local
vertical, the plane XOZ coincides with the local horizontal
plane; Vx, Vz, and Vy (in m/sec) are the componentns of
the velocity along the coordinate axes; V (in m/sec) is the
longitudinal (space) velocity; θ (in radians) is the velocity
angle with respect to the local horizontal plane, the angle is
count upward from this plane; ψ (in radians) is the heading
angle of the projection Vhor of the velocity V into the
horizontal plane, the heading is counted clockwise from the
OX-axis; a(t) (in m/sec2) is the longitudinal acceleration
with the a priory constraint aap

max and can have arbitrary
piecewise-constant structure in time, all such realizations
of this control are called admissible; α(t) (in m/sec2) is the
vertical acceleration with the a priory constraint αap

max and
can have arbitrary piecewise-constant structure in time,
all such realizations of this control are called admissible,
the acceleration α(t) is orthogonal to the vector of the
longitudinal velocity and lieing in the vertical plane; β
(in m/sec2) is the lateral acceleration with the a priory
constraint βap

max and can have arbitrary piecewise-constant
structure in time, all such realizations of this control are
called admissible, the acceleration β(t) is orthogonal to
the vector of the longitudinal velocity and lieing in the
horizontal plane.

Moreover, the following finite relations between the phase
coordinates are used:

V =
√

V 2
x + V 2

z + V 2
y , Vhor =

√
V 2

x + V 2
z ,

θ = arctan (Vy/V ), ψ = arctan (Vz/Vx).
(2)

Direct measurements and their uncertainty sets.
The following measurements of the aircraft motion are
called direct, since they are directly provided to the ob-
server:

{ tn, Vx,n, Vz,n, Vy,n, xn, yn, zn }, n = 1, N,
with ordered instants :
for all n = 1, 2, ..., tn < tn+1,

(3)

where n is the number of each measurement; N is the
number of measurements in the sample to be processed;
tn (in seconds) is the instant of each measurement along
the scale of the absolute time.

At the instant tn, n = 1, ... , each phase coordinate is mea-
sured with the usual measuring error constrained geomet-
rically and can be corrupted by some chaotic disturbance.
The model of corruption has the form (for example, for
the Vx component):

Vx,n = V ∗
x,n + εVx + χVx ,

|εVx | ≤ εVx
max; χVx ∼ unknown,

(4)

where V ∗
x,n is unknown true value; εVx is the error of

measuring with the geometrical constraint εVx
max; χVx is

unknown possible chaotic disturbance. Measurements of
other phase coordinates have the similar structure of
corruption. The instants tn of measuring are assumed to
be known exactly.

For each measurement of each phase coordinate, the uncer-
tainty inteval or uncertainty set is put in correspondence:

HVx
n = [hVx

n , h
Vx

n ] :
hVx

n = Vx,n − εVx
max; h

Vx

n = Vx,n + εVx
max,

(5)

where εVx
max is the geometrical constraint onto the measur-

ing error in Vx; hVx
n and h

Vx

n are the lower and the upper
boundaries of the uncertatinty interval. For other phase
coordinates, the similar uncertainty sets are computed.

Indirect measurements and their uncertainty sets.
As it was mentioned above, the simultaneous consistency
analysis of the measurements (3) in the six-dimensional
phase space of the dynamic system (1) is hampered in
practice. So, for reasonable computational implementa-
tion, the sequential analysis of the measurements samples
in each phase coordinate is performed on the first steps for
the variables V , θ, and ψ, which values at the instants tn
are regarded as the auxiliary or indirect measurements.

By values of the direct measurements (3), the values
of the indirect measurements are calculated evidently
by relations (2), and the similar relations are used for
calculations of the uncertainty intervals of the indirect
measurements for n = 1, ... :

HV
n = [hV

n , h
V

n ], Hθ
n = [hθ

n, h
θ

n],
Hψ

n = [hψ
n , h

ψ

n ].
(6)

Forecast sets of the phase coordinates. Let we have
an uncertainty interval, for example, HV

n at the instant tn
and the dynamics of this phase coordinate is described by
a corresponding equation from (1).

Then the forecast interval, forecast set, or attainability set
of possible values of this coordinate at the instant tn+1 is
the interval constructed in the following special way:

GV
n+1 = [gV

n+1
, gV

n+1] :
δT = tn+1 − tn,

gV
n+1

= h
V

n − aap
maxδT ; gV

n+1 = hV
n + aap

maxδT.

(7)

From (7) it is seen that the construction is implemented
only from the marginal points of the set HV

n under
the marginal values ±aap

max of control a(t). The similar
attainability sets can be similarly constructed for other
phase coordinates.



Consistency and inconsistency of pair of measure-
ments. If the forecast set, for example, interval GV

n+1
at the instant tn+1 completely includes the uncertainty
interval HV

n+1 at this instant

HV
n+1 ⊂ GV

n+1, (8)

then the nth and (n+1)th masurements of this coordinate
are called consistent. Otherwise, they are called inconsis-
tent.

The uncertainty interval of a consistent measurement is
used to call the current informational interval IV

n (or
informational set) of this coordinate.

Remark 1. From the engineering point of view, inclusion
(8) means that by an admissible control from any point in
HV

n it is possible to achieve the whole interval HV
n+1 and

otherwise. Such type of consistency is used to call strong.

Consistency of a sample of measurements. A sample
of measurements comprised of the consequently consistent
(in the given sense) measurements is called consistent.

The tube of admissible trajectories in each phase
coordinate. Let we have a pair of consistent mea-
surements with informational intervals IV

n = HV
n and

IV
n+1 = HV

n+1. The totality of all trajectories, for example
of velocity, {V (t)} beginning with the left ends at IV

n
at the instant tn and right ends at IV

n+1 at the instant
tn+1, generated by all admissible controls a(t) from (1) is
called the tube of admissible trajectories Tb(V, n, n + 1).
The tubes of the admissible trajectories in other phase
coordinates are defined similarly.

3. THE MAIN PROCEDURES OF ANALYSIS AND
ESTIMATION (ON EXAMPLE OF VELOCITY

CHANNEL)

Elaborated algorithms for building the current set of ad-
missible states of aircraft includes the following main pro-
cedures.
1. Elimination of measurements inconsistent in time (for-
malization of corresponding engineering criterion).
2. Analysis of consistency of each next coming measure-
ment with each accumulated subsample.
3. “Splitting” the current inconsistent sample into consis-
tent (in itself) parallel subsamples (registers).
4. Elimination of subsamples that can not be continued.
5. “Fusion” of parallel subsamples.
6. Shift of the “sliding window” on each subsample.
7. Constructing the output informational set or a collec-
tion of informational sets in the case of unique or several
parallel subsamples, correspondingly.

1.Elimination of measurements inconsistent in time imple-
ments simple engineering criterion of minimal admissible
time–tempo τmin of coming the next measurement (Fig.1).

2. Analysis of consistency of each next coming measure-
ment with each accumulated subsample. The next coming
measurement is analyzed on consistency with the last
measurement of each subsample (Fig.2). In the case of

Fig. 1. Elimination of time–inconsistent measurement

Fig. 2. Analysis consistency of pair of measurements

inconsistency of the next measurement with the last and
the pre–last measurements of the accumulated subsam-
ples, this measurement is taken as a beginning of a new
subsample (register Rg) (Fig.3).

Fig. 3. Consistency and inconsistency of the next measure-
ment with accumulated subsamples

3. “Splitting” the current inconsistent sample into con-
sistent (in itself) parallel subsamples. Operation of this
procedure is illustrated in Fig.4.

4. Elimination of subsamples that can not be continued.
This procedure implements simple engineering criterion of



Fig. 4. Splitting of a sample into parallel subsamples

maximal admissible time–delay τmax of coming the next
measurement (Fig.5).

Fig. 5. Elimination of a non–continuable subsample

5. “Fusion” of parallel subsamples. The procedure detects
fusion of a pair of subsamples of the next coming consis-
tent measurement. As a result, one of the subsamples is
taken for further consideration by additional engineering
criterion: a) by the maximal length, b) by the minimal
“summary expenditure of control”. The other subsample
is deleted (Fig.6, solid arrows).

Fig. 6. Fusion of subsamples

6. Shift of the “sliding window” on each subsample, if
the next coming measurement is consistent with some
subsample. The standard time–shift is performed in the

case of complete previous occupation of the window by
this sample.

7. Constructing the output informational set or a collection
of informational sets in the case of unique or several paral-
lel subsamples. Formation of the output informational set
(interval) in the case of unique consistent sample is shown
in Fig.7. The case with two parallel subsamples is given in
Fig.8.

Fig. 7. Output informational interval (for unique sample

Fig. 8. Output informational intervals (for several subsam-
ples

The typical tube Tb(V, n − 1, n) of the admissible tra-
jectories between informational intervals IV

n and IV
n+1 of

two consistent measurements is shown in Fig.9. Here, the
upper V (t) and the lower V (t) boundary trajectories are
performed on corresponding marginal values of the control
a(t).

Fig. 9. Tube of admissible trajectories in V

In the main procedures, the analysis of consistency in θ–
channel repeats the procedures described above for the
V channel. Recall, that processes in the phase coordinate
θ(t) are stipulated by the special form of its differential
equation in (1)

θ̇ = α/V, (9)



where the control acceleration (unknown to the observer)
is constrained geometrically −αap

max ≤ α(t) ≤ αap
max and

can have arbitrary piecewise-constant structure in time.

Equation (9) is nonlinear with respect to the phase coordi-
nate V , and in the general case of realization V (t) it is im-
possible to obtain some forecast trajectory θ(t, α(t), V (t))
in the finite form. But in the forecast we are only interested
in the extremal lower and upper boundary points of the
forecast interval in θ

θ(tn+1) = θn + min{
∫

tn,tn+1

α(t)dt/V (t)},

θ(tn+1) = θn) + max{
∫

tn,tn+1

α(t)dt/V (t)}.
(10)

The extremal forecast trajectories in Eq.(10) are acheived
on the corresponding extremal values ±αap

max of accelera-
tions and the lower extremal trajectory V (t) of the tube in
V in this interval. Recall that for aircraft motions every-
when V (t) À 0. This trajectory can consist of (see Fig.9):
only one segment with constant value of the acceleration
a(t) ≡ −aap

max or a(t) ≡ aap
max, or maximum two segments

with the sequence of constant values of the acceleration
a(t) = −aap

max → aap
max. It allows to obtain the boundary

points of the forecast set Gθ
n+1) = [θn+1, θn+1] in very

simple finite forms.

Having the forecast interval Gθ
n+1, the analysis of consis-

tency of each next coming measurement θn and all other
procedures in the θ–channel are performed similarly to
such operations in the V –channel. As a result, we ob-
tain the sequence of informational intervals Iθ

n and tubes
Tb(θ, n, n + 1) of admissible trajectories in θ.

The similar procedures are implemented in the ψ–channel
resulting in obtaining the sequence of informational inter-
vals Iψ

n in ψ and corresponding tubes Tb(ψ, n, n + 1).

4. PROCESSING THE CHANNELS OF GEOMETRIC
COORDINATES

Channel of the vertical coordinate y. Now, having
the tube Tb(V, n, n + 1) in V and tube Tb(θ, n, n + 1) in
θ, and dynamics (1) for vertical coordinate y

ẏ = V sin θ, (11)

it becomes possible to implement the consistency analysis
of the sample of measurements in this coordinate on the
basis of uncertainy intervals Hy

n, n = 1, ... .

The extremal forecast of the lower and upper points the
forecast interval Gy

n+1 in y is implemented similarly to (10)
as follows:

y(tn+1) = h
y

n + min
Tb(V,n,n+1),Tb(θ,n,n+1)

{
∫

tn,tn+1

V (t) sin θ(t)dt};

y(tn+1) = hy
n + max

Tb(V,n,n+1),Tb(θ,n,n+1)
{

∫

tn,tn+1

V (t) sin θ(t)dt}.

(12)

Unfortunately, in general case, these extremal forecast
points can be calculated only numerically. Moreover, the
crucial fact in optimization of the integrals can appear: the
optima could be acheived on the internal trajectories
of the tubes Tb(V, n, n + 1) and Tb(θ, n, n + 1).

Thus, for practical implementation, special numerical algo-
rithms were elaborated that give the approximate estimate
of y(tn+1) from below and the approximate estimate of
y(tn+1) from above.

Estimation of informational intervals Iy
n is carried out (on

the basis of the constructed forecast interval Gy
n+1) by

operations, similar to ones in V –, θ–, and ψ–channels.

Channel of the coordinates x and z. Having the
tube Tb(V, n, n + 1) in V , tube Tb(θ, n, n + 1) in θ, tube
Tb(ψ, n, n + 1) in ψ, and dynamics (1) for the coordinate
x

ẋ = V cos θ cosψ, (13)

it becomes possible to implement the consistency analysis
of the sample of measurements in this coordinate by
uncertainty intervals Hx

n , n = 1, ... .

The extremal forecast lower and upper points of the
forecast interval Gx

n+1 in x are computed

x(tn+1) = hx,n+
min

Tb(V,n,n+1),Tb(θ,n,n+1),Tb(ψ,n,n+1)
{

∫

tn,tn+1

V (t) cos θ cosψdt },

y(tn+1) = hy,n+
max

Tb(V,n,n+1),Tb(θ,n,n+1),Tb(ψ,n,n+1)
{

∫

tn,tn+1

V (t) cos θ cosψdt }.

(14)

Unfortunately, just as in constructing the extremal fore-
cast points of the forecast interval in the coordinate y,
the points in (14) can be calculated only numerically.
Moreover, the same crucial fact in optimization of the
integrals can appear: the optima could be acheived on
the internal trajectories of the tubes Tb(V, n, n+1),
Tb(θ, n, n + 1), and Tb(ψ, n, n + 1).

Estimation of informational intervals Ix
n is carried out (on

the basis of the constructed forecast interval Gx
n+1) by

operations, similar to ones in V –, θ–, ψ–, and y–channels.

For practical implementation, special numerical algo-
rithms were elaborated that give the approximate estimate
of x(tn+1) from below and the approximate estimate of
x(tn+1) from above.

The channel of the coordinate z is processed similarly to
the x–channel with its own dynamics (1).

5. CONCLUSION

The approach based on ideas of the interval analysis and
informational sets showed its effectiveness in applications
to processing measurements of the aircraft motion cor-
rupted by measuring errors and chaotic perturbations.



Under conditions of uncertainty and absence of any sta-
tistical characteristics of disturbances, it is succeeded to
check out and eliminate both outliers and false subsamples
generated by outliers, and to construct the output interval
box–estimation of the current phase coordinates of the
aircraft motion. Numerical experiments with model and
real information have shown stable work of the elaborated
algorithms.
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